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Super-B detector

New Focusing DIRC (FDIRC)
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BaBar DIRC ---> SuperB FDIRC

BaBar DIRC

 Long-term accumulated experience

FDIRC prototype

IRC proved to be a very
reliable detector at BaBar.
We all learned to like it.

Fused Silica Bar I'.' _:"‘ =t

Prototype verified the focusing
concept, use of highly
pixilated detectors, developed
MC methods, and established i
that the chromatic error can be 3D imaging (X, y & time),
corrected by timing 25x smaller volume and
10x faster than BaBar DIRC
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Lessons from FDIRC prototype:

- New fast highly pixilated detectors

- 10x better timing resolution than DIRC
- Correction of the chromatic error

- Methods to design the optics

- Ring aberration




Focusing DIRC prototype photon detectors

C. Field et al., Nucl.Inst.&Meth., A 553 (2005) 96
1) Burle 85011 501 MCP-PMT (64 pixels, 6x6mm pad, 0, ~50- 70ps)
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Cherenkov ring in pixel and time domain

J.F. Benitez, 1. Bedajanek, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff. K. Suzuki, J. Schwiening, J. Uher and J. Va’vra,
“Development of a Focusing DIRC,” IEEE Nucl.Sci, Conference records, October 29, 2006, and SLAC-PUB-12236, 2006

Cherenkov ring in the time domain:
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Cherenkov ring in the pixel domain: B
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Both domains can be used to determine 6.

FDIRC uses time to resolve the forward-backward ambiguity, do
chromatic corrections, reject the background; it will be used for PID in a
likelihood analysis, etc.
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Color tagging by measurement of photon propagation time

ingit Dispersive medium
pulse vV
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phase phase

dt/L =dTOP/L = A dA * | - d’>n/dA*1/ c

dt is pulse dispersion in time, length L, wavelength bandwidth dA , refraction index n(\)

We have determined in Fused Silica: dt/LL = dTOP/L ~ 40ps/meter.
e  Qur goal is to measure the color of the Cherenkov photon by timing !
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FDIRC prototype is the 1-st RICH detector to
correct the chromatic error by timing

J.F. Benitez, I. Bedajanek, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff. K. Suzuki, J. Schwiening, J. Uher and J. Va’vra,
SLAC-PUB-12803, 2007 and Nucl. Instr. & Meth. A595(2008)104-107.

Because Cherenkov angle correlates with time-of-propagation (TOP), one can correct the
Cherenkov ring chromatic broadening bv_time. To be able to do the chromatic correction,

one needs a single photon resolution of ~200ps.

ah Beam ) ~410nm Detector
Mirror 4

chromatic ™ 4 mrad

Tagging color by time
in Sm-long DIRC bar:

Cherenkov angle production controlled by n , ... (cos 8, = 1/(n,,,.B): 0 ¢ (I’Cd) <0 ¢ (blue)

ohase = MFAN JAAD: Y (red)>v (blue)

Propagation of photons is controlled by n group

v =c,/n

group ( group = c() / [n

group

group

Excel calculation: Data from the prototype:
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ATOP/Lpath = (TOP cqsurea - TOPexpectea)/Lpath [ns/m] Consistent with expectation
TOP / Lpath = 1/v__ (\)
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Summary of error contributions to 0

J.F. Benitez et al., PUB-12803, 2007 and Nucl. Instr. & Meth. A595(2008)104-107.

- Chromatic smearing: ~ 3-4 mrad
- Pixel size (~6mm x 6mm pixel size): ~5.5 mrad

- Optical aberrations: 0 mrad (at ring center) to 9 mrad
(in outer wings of Cherenkov ring)

s
=
=
=

e’
E

200
X (mm)

Total Oc resolution: ~9.6 mrads
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Optical aberration in FDIRC prototype

J.Va’vra, “Simulation of the FDIRC Optics with Mathematica”, SLAC-PUB-13464, Nov., 2008

- Valy the beam posmon (z isa (]Jsiﬁmce ﬁom the bar end):

. Z;=-3000cm

Overlay of two plots on top of each other (z,=0 & z,=-2000cm):
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" Cherenkov rmg resolution 1s worse |
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Overlay of two plots on top of each other (z,=0 & z, -IOOcm)
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The Optlcal aberratlon (kaleldoscoplc pattern) is due to bar/mlrror acting on
pieces of ring, as determined by Mathematica-based ray tracing.

Non-focusing (no mirror) DIRC has a similar aberration due to a bar alone.
5/4/2010 J. Va'vra, RICH 2010, Cassis, France 11




New FDIRC for SuperB

Design aim:

8.

. ~10x better timing resolution than BaBar DIRC.

. ~25x smaller volume than BaBar DIRC.

. Highly pixilated detector (16-32k pixels/system).

. Avoid water as optical coupling medium.

. FDIRC measures photons in 3D (x,y and time), which

allows the chromatic error correction.

. 0, resolution, based on pixels alone, is about the same as in

the BaBar DIRC.
. Time, however, plays a role to determine 6, even in FDIRC,

and will be included 1n the final PID likelihood hypothesis.
Electronics design should be conservative using TDC/ADC concept.

Important condition:

Use the existing BaBar bar boxes without significant changes.




FDIRC for SuperB: optics design

J.Va’vra, SLAC-PUB-13763, 2009

Optics of the detector camera was designed by ray tracing. Then various things were
checked by a Mathematica ray tracing program. Finally a full check by a MC simulation.

We have to live with the existing bar box, which includes the old wedge, which has two
complications: (a) it has a 6 mrad inclined angle at the bottom, intended to do a simple
focusing, and (b) it is not long enough to bring all rays onto the cylindrical mirror, thus not
all rays would be focused. Therefore, we have added a New Wedge outside the box.

Cylindrical mirror radius is 120 cm.

Double-folded mirror optics allows a good access to photon detectors.

Will measure the timing resolution for a single photon to 150-200ps.

Focusing in y only => would like to use small pixels in y, and large pixels in x-direction.
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Ray tracing & MC simulation

J. Va’vra, Simulation with Mathematica, SLAC-PUB-13464 & SLAC-PUB-13763,
D. Roberts, “Geant 4 model of FDIRC”, SuperB meeting, Annecy, Oct. 2009

Ray tracing: Geant 4 model:

L R

Old wedge New wedge FBILOCK
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FDIRC photon detectors

Pixilization of H-9500 multi-anode PMT:

e H-8500: (a) Preferred by medical community, (b) much smaller price
than H-9500, (¢) smaller TTS spread (o ~140ps), (d) available with
“enhanced” QE (~24%), (¢) Hamamatsu ‘‘strongly’’ recommends this
tube to keep a reasonable delivery schedule of large quantities

e H-9500: Better Cherenkov angle resolution
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Single electron timing response

J. Va’vra et al., SLAC-PUB-12236, 2007

H-8500 TTS distribution: H-9500 TTS distribution:
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(Measured with a 635 nm PiLas laser) (Measured with a 407 nm PiLas laser)

H-8500 has a better TTS resolution than H-9500.
Both are good enough to do the chromatic corrections.
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Hamamatsu H-8500 & H9500 Flat panel MaPMTs

Hamamatsu data

Window (2. 8mmt)

™~ Bialkali Photocathode

Metal Channel Dynode (10-stage)
——
—| \
1 ! | '\

Tip off tube’ Anode Pixel

Parameter

Value

Photocathode: Bi-alkali QE at 420nm

20 % (->24%) *

Geometrical collection efficiency CE of the 1-st dynode

75% (-> 80%) *

Geometrical packing efficiency (dead space around boundary)

89 %

PDE = Total fraction of “in time’’ photoelectrons detected

~13% (->16-17%) *

Photocathode uniformity

1:1.5to0 1:2.5

Number of dynodes

12

Total average gain @ -1kV

~108

Fraction of photoelectrons arriving ‘“in time”

~95 %

Oprs - Single electron transit time spread

~140-150 ps

Matrix of pixels (H8500 & H9500)

8x8&16x16

Number of pixels (H8500 & H9500)

64 & 256

Pixel size (H8500 & H9500)

58x58 & 29x29 [mm?

* - now available with a Super QE (24%) and better collection efficiency (80%)
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Detector matrix on the camera

J. Va’vra, SuperB workshop, Annecy, 2010

Detector precision is determined
by a holding screw (H-8500):

[]52.0+0.3
PHOTOCATHODE (EFFECTIVE AREA)
4o

Lv’v‘”l_lr—‘\_l_l ITT i | Lu;—‘LIIH

RS
INSULATING TAPE | | |
|

PLASTIC BASE} ‘.{‘
|

PC BOARD |

SIDE VIEW

Number of H-8500 detectors: 48 = 8 x 6 per camera.
Total number of detectors: 576 = 48 x 12 per entire system.
Total number of pixels (H-8500): 18,432 = 12 x 48 x 32 per entire system.
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H-8500 sensitivity to magnetic field

H-8500

HB8500 Magnetic Field Characteristics

DIRC tube (from DIRC NIM paper):

Orientation X Orientation Y

HB8500 Magnetic Field Characteristics

DIRC PMT tube was much more sensitive to magnetic field (~1 Gauss is a very
visible effect).

H-8500: edge pixels are more sensitive than center pixels:

up to ~20% amplitude loss at ~20 Gauss; up to ~60% amplitude loss at ~50 Gauss

We will need a magnetic shield, but it may not need to be as massive as in BaBar
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Present FDIRC predicted performance

Doug Roberts, SuperB workshop, Annecy, 2010

Table 1: FDIRC performance simulation by Geant 4 MC.

Option 0, resolution [mrad]
FDIRC with 3 mm x 12 mm pixels with a micro-wedge
FDIRC with 3 mm x 12 mm pixels & no micro-wedge
FDIRC with 6 mm x 12 mm pixels with a micro-wedge
FDIRC with 6 mm x 12 mm pixels & no micro-wedge - (96) |

N

e The most conservative decision, which is a design #4, would
give the same performance as the BaBar DIRC (~9.6 mrads
for di-muons).

e However, one should point out that FDIRC will correct out
the chromatic error by timing, which would reduce the error
by 0.5-1 mrads.
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FDIRC in FullSim

Doug Roberts, SuperB workshop, Annecy, 2010

MC model: Ring image at 4 GeV/c with 3mm x 3mm pixels:

Each bar has
a different image

-150 | ; 3
-200 -150 -100 -50 [1] 100 150 200
X (mm)

- Rings are not circles !
We are handling the problem presently as follows (J.V.):

a) MC-based assignments of k_, k,, Kk,
TOP & TOP, for each pixel, and

direct indirect
: e s
for tracks with 8, =90° and z =z,

b) cos O =k, K, forany track direction
(this procedure is used presently in the FDIRC prototype running in the

CRT test, and works OK)

A full FDIRC model implemented in MC. A full analysis is yet to be worked out.
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FDIRC MC simulation: chromatic corrections

D. Roberts, SuperB workshop, Annecy, 2010

Solution with the micro-wedge in:

3mm x 12mm pixels (H-9500): 6mm x 12mm pixels (H-8500):

No
correction

e According to this simulation, we could gain ~0.4-0.8 mrads in 0
resolution if we do the chromatic correction by timing.

e Results consistent with the FDIRC prototype beam test and MC results.
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Expected number of photoelectrons

FDIRC in SuperB (track at 90 deg)

o
(]

1\111'1 or reflectivity

[a—

&
oo

Reflection coefficient (for 272 bounces in bar)

T1 (EPOTEK 301-2)-25 microns thick single layer
H- bSOO MaPMT "enhanced" Q.E

2 o

Transmission or
Reflectivity or Q.E.[ %]
o

2000 2500 3000 3500 4000 4500 5000 SSOO 6000 6500 7000
Wavelength [A]

* Based on this, expect N, ~ 20 pe/ring at 6, = 90° and in
the middle of the z-acceptance.
e This is for H-8500 MaPMT “enhanced” QE (24 % peak),

and proper packing efficiency and geometrical collection
efficiency.
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FDIRC mechanical design

Massimo Benettoni, mechanical engineer from Padova U., Italy

FDIRC camera: A Light shield

- 48 H-8500 g
soa - detectors

Camera

Magnetic shield

e 1 camera per bar box
e 12 cameras to read the entire FDIRC
e ~25x smaller total camera volume than what we had in BaBar DIRC
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FDIRC TDC/ADC electronics

Christophe Beigbeder, electrical engineer from Orsay lab, France

(takes care of one MaPMT connector):
SNAT chip

Actel PGA

=

1
Event 1 Event
Formater 1 Packing
1
1

\ Fower Supply

FDIRC electronics is split in two parts:
- one directly mounted on the PMT receiving signals and processing it with TDC/ADC

- the other one concentrates and pack all the channels to send data to the DAQ

Goals:

- Max rate capability: ~2.5 MHz/pixel.

- Double hit resolving time: ~ 50 ns.

~ 100 ps, which allows to obtain o, ., ~170-200 ps (H-8500).

= Oyt
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Conclusion

SuperB barrel FDIRC has been designed with a camera made
of solid Fused Silica. We are eagerly waiting for the SuperB
approval to be able to proceed with the prototype.

The detector will have ~10x better timing resolution and ~25x
smaller volume compared to BaBar DIRC. This will be our
main defense against the background at ~100x higher
luminosities compared to BaBar (having quartz material,
instead of water, also helps against the neutron background).

We generate the ring using the pixels only. However, with a
single photon resolution of ~170-200ps, FDIRC will correct
the chromatic error over most of the bar length.

Time plays a role to determine 0, even in FDIRC, and will be
included in the final PID likelihood hypothesis.
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