
7th International Workshop on Ring Imaging Cherenkov detectors (RICH 2010)

ID de Contribution: 25

Type: Oral presentation

Systematic Studies of Microchannel Plate PMTs

mercredi 5 mai 2010 11:05 (30 minutes)

The PANDA experiment at the FAIR facility at GSI in Darmstadt will use the DIRC technique to separate charged pions and kaons. Two devices are planned: a barrel DIRC and a forward disc DIRC detector covering together a polar angle range from 5 to 140 degrees. Since the PANDA detector was chosen to be very compact the image plane of both DIRCs is located inside the solenoid magnetic field of up to 2 T.

Thus the photosensors have to provide a good spatial resolution and have to detect single photons inside a high B-field. To correct for dispersion effects in the radiators a time resolution of better than 100 ps is desirable. Moreover, the interaction rate of 20 MHz inside PANDA leads to photon densities of up to several MHz/cm2 at the sensor's surface. This puts serious constraints on the rate stability and lifetime of these devices. Because of their excellent time resolution, high gain and B-field resistivity microchannel plate (MCP) PMTs are very appealing sensors for the PANDA DIRCs. As multi-anode devices they provide a good active area ratio while still being rather compact in size. In view of the harsh PANDA conditions the rate stability and the lifetime need to be thoroughly investigated.

In a systematic study we have measured the performance parameters of several types of MCP-PMTs. Among others the new Burle-Photonis Planacon 85012 with an improved vacuum and the latest Hamamatsu R10754-00-L4 were tested for their gain (in dependence of magnitude and orientation of a B-field), time resolution and rate stability. Surface scans were performed to investigate the response uniformity and the cross talk among the anode pixels. We have also started to do lifetime measurements: selected MCP-PMTs are illuminated with rate conditions similar to those in PANDA. Special focus is put on the quantum efficiency as a function of the integrated anode charge.

The results of these comprehensive studies will be presented and compared.

This work is supported by BMBF and GSI.

Please indicate "poster" or "plenary" session. Final decision will be made by session coordinators.

plenary

Author: LEHMANN, Albert (Universität Erlangen-Nürnberg)

Co-auteurs: BRITTING, Alexander (Universität Erlangen-Nürnberg); UHLIG, Fred (Universität Erlangen-Nürnberg); EYRICH, Wolfgang (Universität Erlangen-Nürnberg)

Orateur: LEHMANN, Albert (Universität Erlangen-Nürnberg)

Classification de Session: Photon detection for Cherenkov Counters - vacuum based devices

Classification de thématique: Photon detection for Cherenkov counters