A gravitational image of the 2011 Tohoku

earthquake long-term mass transport

Isabelle Panet¹, Sylvain Bonvalot², Clément Narteau³, Dominique Remy², Jean-Michel Lemoine⁴

¹ Institut National de l'Information Géographique et Forestière, Univ. Paris Diderot, Paris
 ² IRD, Géosciences Environnement Toulouse, Univ. Toulouse, UMR 5563, Toulouse
 ³ Institut de Physique du Globe de Paris, Univ. Paris Diderot, UMR 7154, Paris
 ⁴ CNES, Géosciences Environnement Toulouse, Univ. Toulouse, UMR 5563, Toulouse

Subduction at monthly to decadal timescales from GRACE

 \rightarrow GRACE optimal accuracy is obtained at intermediate spatial scales: let's use GRACE where it is best!

→ Take advantage of the satellites homogeneous space-time coverage and zoom out: episodic mass fluxes at the scale of the Earth's regional structure?

• We analyze the GRGS RLO3 geoids Lemoine et al. 2007, Bruinsma et al. 2010

• We compare with the ITSG2016 geoids Mayer-Guerr et al., 2016

Performances: GRACE and beyond

Mission	Temp. res.	Performance				
		Spat. res.	Equivalent Water Height (EWH)	Geoid	Gravity anomaly	Gravity Gradient
GRACE	1 month	800 km (d/o 25)	7.5 mm / 0.75 mm/yr	0.15 mm / 0.015 mm/yr	0.25 μGal / 0.025 μGal/yr	10 μΕ / 1 μΕ/yr
		400 km (d/o 50)	25 mm / 2.5 mm/yr	0.25 mm / 0.025 mm/yr	1 μGal / 0.1 μGal/yr	0.1 mE / 0.01 mE/yr
		200 km (d/o 100)	0.5 m / 5 cm/yr	2.5 mm / 0.25 mm/yr	25 μGal / 2.5 μGal/yr	5 mE / 0.5 mE/yr
Scen. 1	1 month	800 km (d/o 25)	1.5 mm / 0.15 mm/yr	0.03 mm / 3 μm/yr	0.05 µGal / 5 nGal/yr	2 μΕ / 0.2 μΕ/yr
		400 km (d/o 50)	5 mm / 0.5 mm/yr	50 μm / 5 μm/yr	0.2 μGal / 0.02 μGal/yr	20 μΕ / 2 μΕ/yr
		200 km (d/o 100)	10 cm / 1 cm/yr	0.5 mm / 0.05 mm/yr	5 µGal / 0.5 µGal/yr	1 mE / 0.1 mE/yr
		150 km (d/o 133)	50 cm / 5 cm/yr	1 mm / 0.1 mm/yr	10 μGal / 1 μGal/yr	5 mE / 0.5 mE/yr
		100 km (d/o 200)	5 m / 0.5 m/yr	10 mm / 1 mm/yr	200 μGal / 20 μGal/yr	50 mE / 5 mE/yr
Scen. 2	1 month	800 km (d/o 25)	0.15 mm / 0.015 mm/yr	3 μm / 0.3 μm/yr	5 nGal / 0.5 nGal/yr	0.2 μE / 0.02 μE/yr
		400 km (d/o 50)	0.5 mm / 0.05 mm/yr	5 μm / 0.5 μm/yr	0.02 μGal / 0.002 μGal/yr	2 μΕ / 0.2 μΕ/yr
		200 km (d/o 100)	1 cm / 0.1 cm/yr	0.05 mm / 0.005 mm/yr	0.5 μGal / 0.05 μGal/yr	0.1 mE / 0.01 mE/yr
		150 km (d/o 133)	5 cm / 0.5 cm/yr	0.1 mm / 0.01 mm/yr	1 μGal / 0.1 μGal/yr	0.5 mE / 0.05 mE/yr
		100 km (d/o 200)	0.5 m / 0.05 m/yr	1 mm / 0.1 mm/yr	20 μGal / 2 μGal/yr	5 mE / 0.5 mE/yr

R. Pail et al., IUGG study (2015)

Objectives

Can we bring new constraints on the pre-seismic phase of giant subduction earthquakes from the GRACE satellites mapping of the Earth's gravity variations in space and time?

Improve our knowledge on the mass fluxes associated with subduction at intermediate scales.

Episodic mass changes in the regional subduction system?

• Zoom-out and focus on the **regional scales**: 800 - 1600 km

Wavelet filtering of the potential at different scales

• Enhance the gravity signals following the geometry of the plate boundaries / slabs?

Use the direction information: orientation of the subduction.

11 March 2011 Tohoku earthquake

Northwest Pacific subduction

 \rightarrow Rate of change of the Earth's gravity vector in space and time₅

Gravity gradients in rotated frames: local slip

10m thrust slip, 1200-km x 100-km plane, dip 30°, strike 220°N. Top of the fault plane: 5 km depth.

Anomalous transients near the earthquake

Describe the time variability over months to years, without using prior models, for each spatial scale/orientation.

Haar wavelet transform of the time series
 → increased rates of variations near March
 2011 for the different timescales.

Abrupt time changes, regionally coherent

Cumulated gravity variation (T_{$\phi\phi$} gradient) over:

A gravitational image of the earthquake

Amplitude of the annual cycle fitted in the GRACE data

Pre-seismic trend changes

10

Time series: Northern Japan

rot. 20-55°

Dec. 2010, February 2011;
 March 2011

Time series: Sea of Japan

GRACE dealiasing ocean model added back

Original time series 136°E, 42°N 136°E, 40°N 134°E, 40°N 134°E, 38°N 132°E, 38° 132°E, 36°N 2004 2006 2008 2010 2012

• Dec. 2010, February 2011 ; March 2011

A step-like temporal signature

Contrasting with other large sudden deviations, the preseismic signal does not vanish.

- persistent fingerprint in the gravity field,
- large amplitude with respect to usual water signals & noises,
- sea/ocean/island spatial pattern.

Co/Post-seismic signals removed

Regional orientation, persistent from pre-seismic to co-seismic (March 2011) phases

Signals follow the geometry of the regional subduction

Regional orientation, persistent from pre-seismic to co-seismic (March 2011) phases

Signals follow the geometry of the regional subduction

Eastward propagation of the gravity signals

The rupture is part of a broad, depth-to-surface sequence of motions

 $\mathbf{0}$ + $\mathbf{2}$ \rightarrow A subduction episode at regional scale

Before the rupture

Large-scale gravity gradient high (no detection at smaller scales)

 \rightarrow Mass decrease; a broadscale source.

Mass decrease in the slab \rightarrow Slab extension at regional scale

ightarrow Depths 100-350 km

→ Precedes at depth the shallower acceleration of the seismic release reported before the rupture (Bouchon *et al.*, 2016).

Precursory slab extension

Equivalent quasi-static slip model, normal faulting: a M_w 8.4 event over a few months.

 \rightarrow Subduction acceleration at depth

Co-seismic signals: gravity vs geodesy

Co-seismic slip model: Minson et al. (2014), based on: surface and seafloor geodesy, tsunami data

• Orientation: local 1400-km versus regional strike of the subduction.

• **Spatial extent**: gravity indicates motion of both oceanic plates across the triple junction.

800-km

GRACE: a larger deformation pattern near the rupture than detected from geodesy.

Τφφ

rot. 20-55°

Conclusions

• From gravity, episodic mass transfers at timescales of months are detected within the entire subduction system.

- Deep precursors are thus found for the Tohoku earthquake; need to perform the analysis for other giant events.
- Highly deformable layers in the slab and at its boundaries are needed to enable pre-seismic deformation rates of 10⁻¹² s⁻¹.
- Such layers decouple deep motions from the surface
 → no crustal deformation.
- Time-varying satellite gravity provides unique information on the dynamics of mass redistributions related to giant events, including in the pre-seismic phase.