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Outline

• Principle of a cold atom inertial sensor (reminder)

 Interferometer transfer function

 Sensitivity curve

• Some ongoing and future projects in France

• Gravimeter and gradiometer at SYRTE

• MIGA (large scale gradiometer)
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Simplified principle of a cold atom sensor

Number of graduations ∼
𝑎𝑇2

𝜆𝑙𝑎𝑠𝑒𝑟

Use free falling atoms to read the phase of a laser linked to the accelerated frame

Measurement of distance in units of laser wavelength

Orders of magnitude : 

• 𝑇 ∼ 100 𝑚𝑠 ; 𝜆 ∼ 0.5 µ𝑚 ;

• Resolution on the distance  ∼ 𝜆/100 (SNR = 100)

 Acceleration sensitivity ∼ 10−7 𝑚. 𝑠−2/ 𝐻𝑧

Concept similar to a free-falling corner cube gravimeter
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Principle of Atom Interferometry

• Analogy with a Mach-Zehnder optical interferometer

• Use laser pulses to coherently manipulate a matter-wave
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Two photon transitions

Example :  with
stimulated Raman 

transition

Momentum transfer
Laser phase difference imprinted on the atoms

𝑘𝑒𝑓𝑓 = 𝑘1 + 𝑘2 ∼ 1 𝑐𝑚/𝑠



Rabi oscillation between

|f> and |e>

Pulse duration

1

1/2

“π/2” pulse = beam splitter

“π” pulse = mirror

Transition

Probability f → e

Interferometer building blocks
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Interferometer phase

UP

DOWN

Simple picture of the AI : sampling of the atomic trajectory by the lasers at 

3 different times.

space

time
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Measurement of the phase difference

Normalized detection of
the atomic populations

Interferometer output signal
N
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Acceleration (𝑚. 𝑠−2)

𝑃 = 𝑃0 + 𝐴cosΔ𝜙

space

time

Typical values : 

• 2T = 200 ms, 106 atoms @ 1 µK

• Lasers of ~ 100 mW power, 1 cm beam radius, 

phase locked < mrad level

• Cycling frequency ~ 1 Hz.
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Sensitivity function (transfer function)

Cheinet et al, IEEE 57, 1141 (2008)

• Response of the atom interferometer to an instantaneous change of (laser) phase

𝛿Φ = 𝜑1 − 2𝜑2 + 𝜑3
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Sensitivity function (transfer function)

Phase sensitivity function in Fourier space: 𝐻 𝜔 = 4sin2(
𝜔𝑇

2
)

Acceleration transfer function : 

𝜑 𝑡 = 𝑘𝑒𝑓𝑓 𝑥 𝑡   𝜑 𝑡 = 𝑘𝑒𝑓𝑓 𝑎 𝑡  𝐻𝑎 𝜔 =
𝑘𝑒𝑓𝑓

𝜔2 𝐻 𝜔 = 𝑘𝑒𝑓𝑓𝑇
2𝑠𝑖𝑛𝑐2(

𝜔𝑇

2
)

Second order low pass filter, 

cutoff frequency = 1/(2T)
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AI gradiometer

• Measurement of the differential phase between 2 physically separated AIs

• Gradiometer signal = 𝜙 𝑋 − 𝜙(𝑋 + 𝐿) = 𝑘𝑒𝑓𝑓𝑇
2(𝑎 𝑋 − 𝑎(𝑋 + 𝐿))

• Position noise of the retro-reflecting mirror is common rejection of Δ𝑥2.
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Shot noise limit for a gradiometer

Shot noise limited phase sensitivity for each interferometer:

𝑆Γ(𝜔) =
2𝜂/  𝑁𝑎𝑡

𝑛𝐿𝑘𝑒𝑓𝑓𝑇
2𝑠𝑖𝑛𝑐2(𝜔𝑇/2)

2
Gravity gradient sensitivity :

(in 𝒔−𝟒/𝑯𝒛) 

𝑛 = number of two photon transitions

𝐿 = baseline (distance bewteen the two atom clouds)

 𝑁𝑎𝑡 =Cold atom flux

𝜂 = squeezing parameter (𝜂 < 1 for sub shot noise detection)
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Outline

• Principle of a cold atom inertial sensor (reminder)

 Interferometer transfer function

 Sensitivity curve

• Some ongoing and future projects in France

• Gravimeter and gradiometer at SYRTE

• MIGA (large scale gradiometer)
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Cold-atom gravimeter (2003 )
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Cold-atom gravimeter (2003 )
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Transportable gravimeter
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P. Gillot et al, Metrologia 51, L15-L17 (2014)

Sensitivity, accuracy
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Accuracy : 4 µ𝐺𝑎𝑙 (Louchet-Chauvet et al, NJP 13, 065025 (2011))

Sensitivity, accuracy
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SYRTE atomic gradiometer (2016)

Langlois et al, Phys. Rev. A 96, 053624 (2017)
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 2 ultracold Rb clouds obtained on 2 chips

 2 clouds launched with elevator

Ultracold atoms
Fast generation on atom chips

AtoM Interferometry dual Gravi-GradiOmeter: AMIGGO
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AtoM Interferometry dual Gravi-GradiOmeter: AMIGGO
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SYRTE gradiometer target sensitivity
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The MIGA project : 

Matter wave laser Interferometric Gravitation Antenna

References

• R. Geiger et al, arXiv:1505.07137 (2015)

• B. Canuel et al, Proceedings SPIE, arXiv:1604.02072 (2016)

http://arxiv.org/abs/1505.07137
http://arxiv.org/abs/1604.02072


The MIGA project
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• 10 years (2013 – 2023), 9 M€, 13 research institutes, 2 companies

• Goal : precision gravity measurements with Atom Interferometry (AI)

• Design and realization of an instrument for 2 applications:

1. Monitoring of underground mass distributions

 Applications: geophysics, hydrology

2. Test setup for applications of AI to gravitational wave (GW) detection



Overview of the MIGA project
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Implementation site

• Low noise underground laboratory

• Site of (hydro)-geological interest

MIGA arms
(2 x 200 m)
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MIGA geometry

π

π/2

30 cm

Cold atom cloud
launching

Detection

π

200 m

780 nm

780 nm



MIGA main subsytems

• LP2N (Talence, PI): vacuum systems, coordination of the project

• SYRTE (Paris) : cold atom source and detection system, AI expertise

• ARTEMIS (Nice): cavity mirror suspensions, GW detection expertise

• µQuans (Talence): laser systems

• LSBB (Rustrel): tunnels & site management, geophysics expertise

27
MIGA installation at LSBB : mid 2018
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MIGA target sensitivity
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MIGA vacuum system (L2PN)

AI sensors



Cold atom source (SYRTE) 
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108 atoms at 2 µK 

launched at 4 m/s
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MIGA : status and perspectives

• First cold atom source delivered by SYRTE to LP2N (June 2015)

• Beginning of the digging of the MIGA galleries at LSBB (Spring 2018)

• MIGA installation at LSBB in 2020

• MIGA commissioning and data runs: 2021-2023

• Plans for a design study of a larger infrastructure at European scale (ELGAR).
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Conclusion

• Technology developped for more than 15 years at SYRTE

• Metrological expertise, industrial transfer (µQuans company)

• Large-scale French ongoing project: MIGA (PI: LP2N laboratory)

Requirements for an early-warning Earthquake system ?

• Gravimeter: need to resolve < 1 nm/s^2 in 100-300 s 

 seems difficult currently with an atomic gravimeter (vibration limit)

• Gradiometer: specifications are within reach, but needs technology development

• Other experiments of potential interest: gyroscope-accelerometer ?

 Combine two-axis acceleration and rotation data: interesting ?



Thank you for your attention!
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Extra slides
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Perspectives

• Industrial transfer (e.g. muquans in France; AO Sense in California)

• Long term stability ∶ 4 × 10−10 𝑔 ; accuracy: few 10−9 𝑔 ; market : geophysicits

• 15 years of academic research + 5 years of development
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4-light pulse gyroscope
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800 ms interrogation time  𝟏𝟏 𝒄𝒎𝟐 Sagnac area 

1 𝑟𝑎𝑑. 𝑠−1 rotation signal  5 × 106 𝑟𝑎𝑑 phase shift

Scale factor of the gyroscope

Sagnac area : 𝐴 =
1

4

ℏ𝑘𝑒𝑓𝑓𝑇
3𝑔

𝑀
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Experimental setup

I. Dutta, PhD Thesis

• 4 × 107 Cesium atoms @ 1.2 µK launched

vertically at 5 𝑚. 𝑠−1

• Relative alignement of the beams < 3 µrad

• Mitigation of vibration noise

passive isolation platform (>0.4 Hz)

 noise rejection with classical sensors
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Rejection of vibration noise

seismometers

Vibration isolation platform

Measured 
vibrations

Calculated 
phase

AI transfer 
function

Merlet et al., Metrologia 46, 87–94 (2009)

AI

feedback

rejection efficiency ≈ 20
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Demonstration of a cold atom

sensor without dead times

Dutta et al., PRL 116, 183003 (2016)
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Dead times in quantum sensors

• Sequential operation of cold atom interferometers

Cooling AI Detection Cooling AI Detection

Cycle time 𝑇𝑐

Dead time 𝑇𝐷

…

Dead times  (inertial) noise aliasing (Dick effect) + loss of information 

 prevent from reaching the full potential of atom interferometers
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Continuous (zero dead time) sensor

Joint interrogation scheme: prepare the cold atoms and operate the AI in parallel

Dutta et al., 
PRL 116, 183003 

(2016)
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Gyroscope stability

State of the art of 
atomic gyroscopes 
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Gyroscope stability

State of the art of 
atomic gyroscopes 

𝑛𝑟𝑎𝑑. 𝑠−1. 𝐻𝑧−1/2

Current short term 40

Measured detection noise contribution 8

Quantum projection noise (10% contrast) 2.5

Measured laser noise contribution 4

Short term stability still limited by residual vibration noise
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Higher bandwith sensor

Interleave 3 joint interrogation schemes Tc = 2T/3 = 266 ms (~4 Hz cycling frequency)
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Higher bandwith sensor

Improved short term stability : 30 𝑛𝑟𝑎𝑑. 𝑠−1. 𝐻𝑧−1/2
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4-light pulse atom interferometer

B. Canuel et al., PRL 97, 010402 (2006)
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Title


