

ARC Centre of Excellence for Gravitational Wave Discovery

TorPeDO

David McManus, Perry Forsyth, Giles Hammond, Ayaka Shoda, Robert Ward, Daniel Shaddock, David McClelland, Bram Slagmolen

- 1 Department of Quantum Science, Australian National University
- 2 School of Physics and Astronomy, University of Glasgow
- 3 National Astronomical Observatory of Japan

TorPeDO Torsion Pendulum Dual Oscillator

TorPeDO is a gravitational force sensor

TorPeDO Torsion Pendulum Dual Oscillator

Based on the TOBA concept by Ando et. al

TorPeDO measures gravitational forces by accurately measuring the differential rotation between two torsion pendulums.

Applications:

- Measuring Newtonian noise
- Early earthquake detection
- Measuring Quantum Radiation Pressure Noise
- Testing semi-classical gravity
- Low Frequency Gravitational Wave Detector

TorPeDO Torsion Pendulum Dual Oscillator

Based on the TOBA concept by Ando et. al

TorPeDO measures gravitational forces by accurately measuring the differential rotation between two torsion pendulums.

Applications:

- Measuring Newtonian noise
- Early earthquake detection
- Measuring Quantum Radiation Pressure Noise
- Testing semi-classical gravity
- Low Frequency Gravitational Wave Detector

TorPeDO (recently)

TorPeDO (right now)

TorPeDO (Soon)

Mechanical Properties

McManus et al, 2017, Class. Quantum Grav.https://doi.org/10.1088/1361-6382/aa7103

+VERT

Mode	Bar 1	Bar 2	Difference
Yaw	33.4933 mHz	33.489 mHz	4.3 µHz
Longitudinal	0.6072 Hz	0.6077 Hz	0.53 mHz
Transverse	0.65465 Hz	0.653 Hz	1.6 mHz
Pitch	1.16286 Hz	1.14326 Hz	0.0196 Hz
Roll	4.334 Hz	3.853 Hz	0.481 Hz

TorPeDO Prototype Noise Budget

Lock Acquisition with Guardian

Early Earthquake Detection

- Gravity travels faster than seismic waves
- In some cases this extra warning could allow for crucial systems to be shut off or put in a safe operating mode that may prevent injury, death, or damage to assets and infrastructure.

Early Earthquake Warning

Early Earthquake Warning

Simulated time-domain response

Preliminary

$$\ddot{\mathsf{h}}(\boldsymbol{r}_0\,,t) = -\frac{6G}{r_0^5}\;\mathbf{S}(\theta,\phi)\int\limits_0^t\mathrm{d}u\,uM_0(t-u)$$

J. Harms, et al. Geophys. J. Int. (2015) 201, 1416-1425

Strain response over time for a M_w=7.1484 Earthquake 450000m away

Things I'd like to look at

- Localisation accuracy and sensor placement
- Matched filtering / Signal triggering
- Parameter Estimation

Conclusions

- The initial TorPeDO configuration allowed us to test our control scheme
- The sensor is now offline and we are upgrading to a more advanced configuration
- The applications of the TorPeDO as an early earthquake detector appear promising.