

DESPEC

Jürgen Gerl FAIR/GSI 2. AGATA GRETINA Meeting 05.04.2018 CSNSM Orsay, France

NUclear STructure Astrophysics and Reactions

What are the limits for existence of nuclei?

Where are the proton and neutron drip lines situated? Where does the nuclear chart end?

How does the nuclear force depend on varying proton-to-neutron ratios?

What is the isospin dependence of the spin-orbit force?

How does shell structure change far away from stability?

How to explain collective phenomena from individual motion?

What are the phases, relevant degrees of freedom, and symmetries of the nuclear many-body system?

How are complex nuclei built from their basic constituents?

What is the effective nucleon-nucleon interaction?

How does QCD constrain its parameters?

Which are the nuclei relevant for astrophysical processes and what are their properties?

What is the origin of the heavy elements?

NUSTAR - The Project

DESPEC	γ-, β-, α-, p-, n-decay spectroscopy	
ELISE	elastic, inelastic, and quasi-free e ⁻ -A scattering	
EXL	light-ion scattering reactions in in invere kinematics	
HISPEC	in-beam γ spectroscopy at low and intermediate energy	
ILIMA	masses and lifetimes of nuclei in ground and isomeric states	
LASPEC	Laser spectroscopy	
MATS	in-trap mass measurements and decay studies	
R3B	kinematically complete reactions at high beam energy	
Super FRS	RIB production, identification and spectroscopy	
SHE	Nuclear physics and chemistry of super-heavy elements	

The Approach

Complementary measurements leading to consistent answers

The Collaboration

- > 850 scientists
- 184 institutes
- 39 countries

Experimental opportunities for high-resolution spectroscopy at FAIR/NUSTAR

		1	
	Experimental method (beam-energy range)	Physics goals and observables	Beam int. (particle/s)
	Intermediate energy Coulomb excitation, In-beam spectroscopy of fragmentation products (E/A ~ 100 MeV)	Medium spin structure, Evolution of shell structure and nuclear shapes, transition probabilities, moments,	10 ¹ 10 ⁵
	Multiple Coulomb excitation, direct and deep-inelastic, fusion evaporation reactions (E/A ~ 5 MeV; Coulomb barrier)	high spin structure, single particle structure, dynamical properties, transition probabilities, moments,	10 ⁴ 10 ⁷
	Decay spectroscopy (E/A = 0 MeV)	half-lives, spins, nuclear moments, GT strength, isomer decay, beta- decay, beta-delayed neutron emission, exotic decays such as two proton, two neutron.	10 ⁻⁵ 10 ³

HEAL

NUSTAR overall plan

FAIR GmbH | GSI GmbH

DESPEC: Decay Spectroscopy

Ingredients for a successful DESPEC Phase-0 programme at GSI

take AIDA as common active implanter

use DTAS to measure β-strength distributions

use FATIMA to measure lifetimes

use DEGAS for highresolution spectroscopy

> use MONSTER to perform neutron spectroscopy

Exploitation plan

AIDA (narrow config.) used at RIKEN, will serve as initial implanter in 2018. AIDA (wide config.) to be built and commissioned for 2019 and later.

DTAS used at JYFL and RIKEN, was planned for the 1. set-up but got no beamtime

> FATIMA used at IFIN-HH, RIKEN and GANIL, is planned for the 1. set-up in 2018

DEGAS is under construction and is planned to be used for the 2. setup in 2019. Up to 7 modules will be employed already for FATIMA in 2018.

> MONSTER is under construction and shall be tested in 2018 parasitically, prior to proposing experiments

DEGAS Array

28 triple Clusters of Euroball Ge capsuleswith BGO back-catchers and side-shieldsBox configuration around a 24x8 cm² implanter

DEGAS Structure

DEGAS Critical components

DEGAS electrical cooler

MMR/ORTEC X-Cooler II or III

SunPower/ORTEC Type CT or GT

15Th

DEGAS Preamplifier - HV block

PA partially developed at TIFR, successfully tested at GSI HV control board developed at GSI and successfully tested

PA based on hybrid technology

Differential Driver

Active reset

Final version with adapted form factor being designed

DEGAS First of Series

Currently under testing:

- vacuum ok
- cooling losses under investigation

Full array to be employed for DESPEC-0 experiments at GSI in 2019 Digitizers: FEBEX2 14bit, up to 250 MHz DAQ: MBS branch

Conclusions

- DEGAS will be a powerful substitution of RISING
- 20% full-energy efficiency at 1 MeV expected
- Complex triple detectors with electrical cooling
- Integrated electronics with fast reset preamp, HV and all controls on-board
- Issues with the cooling need to be solved
- Planned for an experimental campaign at GSI in 2019

...Thank you