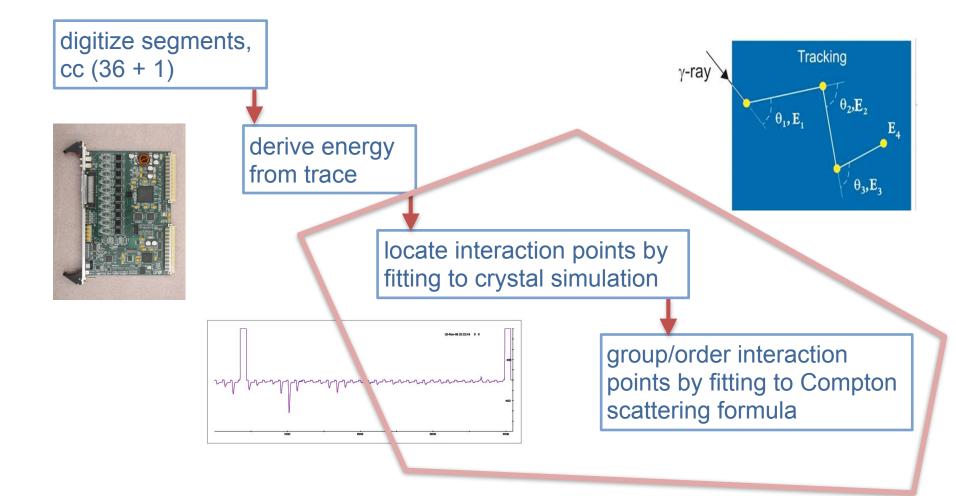

DAQ Overview for GRETA

Mario Cromaz

Nuclear Science Division Lawrence Berkeley National Laboratory

Gamma Ray Energy Tracking Array U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory


Mario Cromaz 2nd AGATA/GRETINA meeting - Apr. 4-6

Outline

- 1. Overview of Online Data Processing
- 2. Requirements, Rates
- 3. Flow control, Containers
- 4. Components of HPC system
- 5. Slow controls, Monitors
- 6. Possibilities, Summary

High-level Data Processing in Tracking Arrays

High-Level Computing Requirements

COMPUTING SYSTEMS REQUIREMENTS

- Support an incoming data rate of 32 MB/crystal/s, corresponding to a triggered data readout rate of 4000 γ -ray decompositions/crystal/s.
- Provide computing resources to perform 480,000 signal decomposition calculations per second.
- Support global event building and disk I/O at 500 MB/s.
- Provide local data storage of order 1 PB for experimental operations.
- Provide controls and monitors for approximately 50,000 channels with a nominal latency of 200 ms.

From GRETA Conceptual Design Report

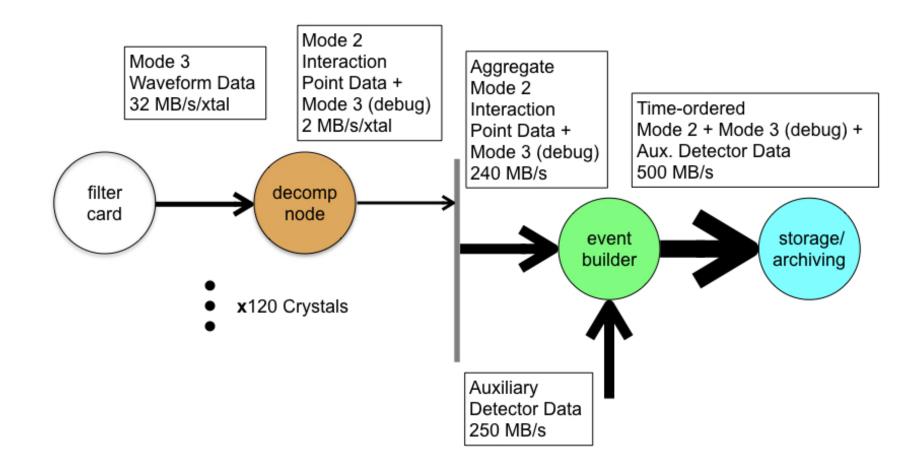
Scaling Up GRETINA to GRETA

GRETINA cluster installation for first NSCL physics campaign

- ×3 crystals (x4 from orig. design)
- ×4 readout rate / crystal
- remove bandwidth limitations associated with VME readout bus
- higher performance global event builder, file store

lessons learned from GRETINA will be applied throughout the GRETA design

Signal Decomposition is Highly Parallel

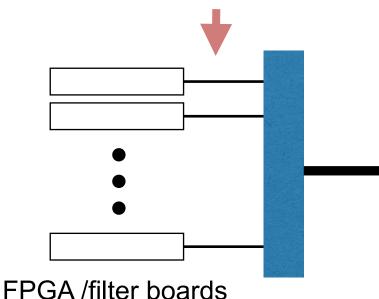

- Each crystal is independent
- Each event in a given crystal is independent and can be run in a different core/process/thread
- Only requirements are:
 - events must be timestamped so that interaction point data can be recombined following decomposition (global event builder) for tracking/ physics analysis
 - any given thread must have access to the basis set for the crystal in question (~ 2GB)
- Simplifies system architecture greatly!

- Signal decomposition is a online process interaction point data required to monitor/debug experiments -*Need to keep up!*
- It is the most computationally intensive aspect of array
- Cores required:
 - Number of crystals 120
 - Rate (/ crystal, post trigger) 4 kHz
 - Time / crystal event 10 ms / core (2016 Xeon)
 - Implies **4800 core cluster** (40 cores / crystal)

Data Flows (GRETINA-like architecture)

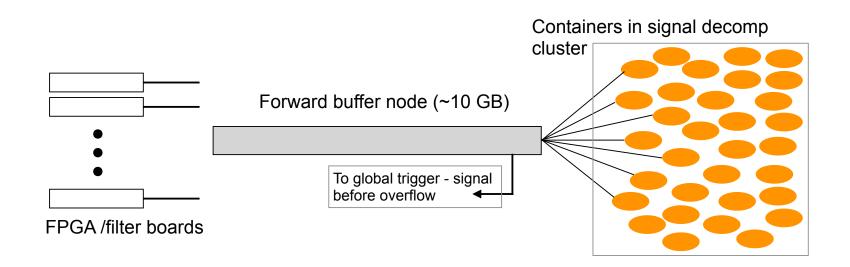
Data Rates In/Out of Cluster

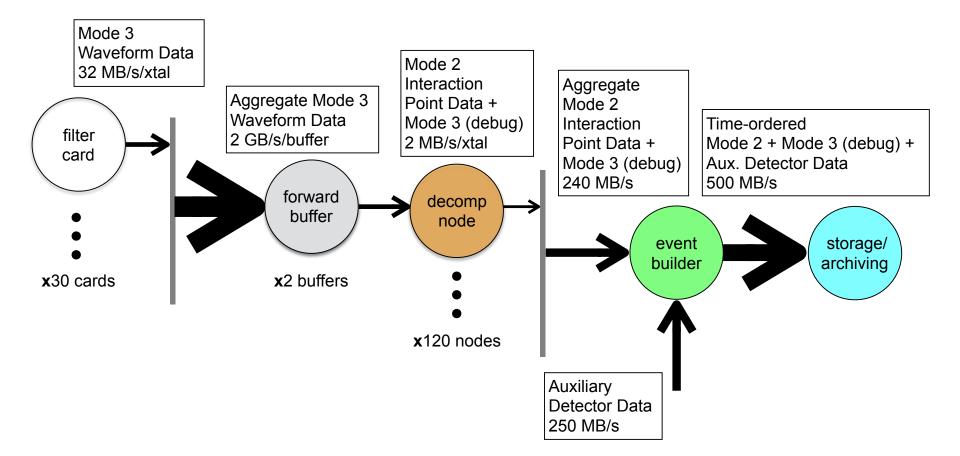
- Input bandwidth:
 - event size trace (mode 3) (single crystal) 8kB
 - input bandwidth/crystal from filter boards -4 kHz * 8kB = 32 MB/s/crystal
 - aggregate bandwidth (switch fabric, link between electronics room & cluster) - 32 MB/s * 120 = 3.8 GB/s
- Output bandwidth:
 - event size interaction points (mode 2) **512 bytes**
 - output bandwidth 512 bytes * 4 kHz = 2 MB/s/crystal
 - aggregate output bandwidth (mode 2) = **240 MB/s**



Network-based Electronics → Architecture Changes

• <u>GRETINA:</u>


- Bus-based readout
- IOC (MVME5500) for data transfer and electronics controls
- "Pull" model signal decomposition nodes request data from IOCs as they become free
- <u>GRETA:</u>
 - Network-based readout "writeout" on-board FPGA's send data via UDP
 - "Push" model datagrams addressed by electronics, sent to 1000's of cores, 100's of processes
 - Load balancing??? Flow control???

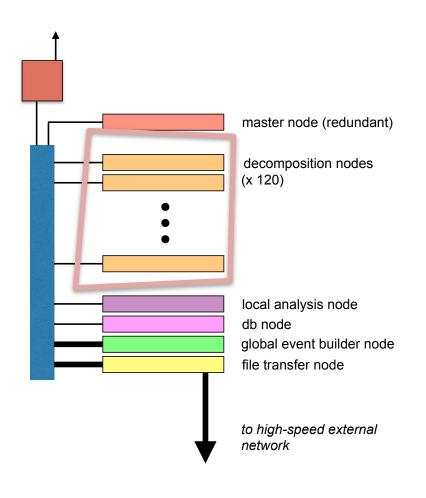

Forward buffers

- Introduce a compute node that acts as a memory buffer between electronics and signal decomposition nodes
- Filter boards sends to a common buffer (static address), decomposition processes read from that buffer
 - Restore 'pull' model for decomp processes load balancing
 - Allows for easy flow control, synchronous throttling of the trigger
 - UDP only necessary between filter board and forward buffer

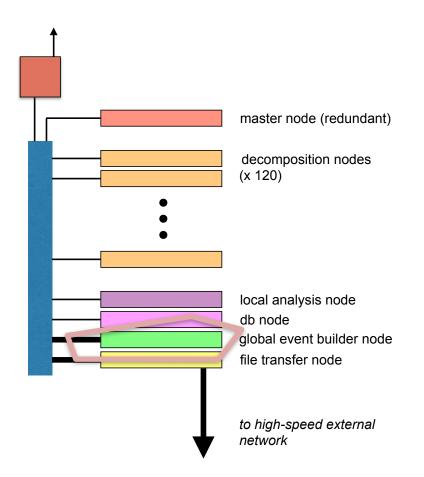
Data Flows (w forward buffer)

Signal Decomposition / Software Containers

- Encapsulate signal decomposition algorithm in a software container
- Each container:
 - Serves one crystal only
 - Implements thread-level parallelism
 - Has 3 (static) interfaces
- Expect of order 1000 such containers on local GRETA cluster
- Advantages:
 - Dynamic load-balancing in cluster (new container instances can be created on-the-fly)
 - Portability/deployability development laptop, local cluster, AWS, your favorite HPC
 - Modularity forces well-defined interfaces


Cluster Components

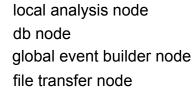
Signal Decomposition Nodes


- Signal decomposition processes implemented on a linux-based cluster
- 4800 cores (2016 Xeon) required to keep up with data rate
- Estimates based on:
 - Dell 6220 2 processors/node -Broadwell 2860v4, 14-core 2.4GHz
 - 120 nodes, 30 chassis
- 60U rack space ('twin format'), 44KW
- Future .. more highly integrated processors may allow smaller form factor, reduced power
- Use standard LBNL cluster management scheme for stateless operation

Global Event Builder

- Combines event data according to global timestamp - essentially a sort algorithm
- Will share codebase with forward buffer
- 120 crystals (≤ 240 MB/s)
- Auxiliary detector data (≤ 250 MB/s)
- Aggregate IO 500 MB/s in, 500 MB/s out (to filestore or file transfer node)
- Seconds of latency → GB's of buffering

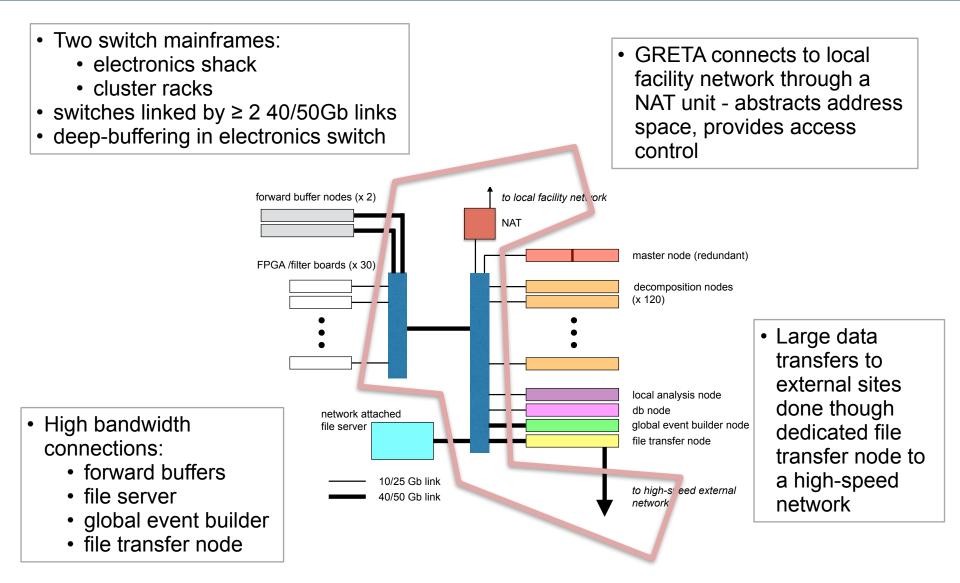
1 PB Data Store; high IO bandwidth


- Storage of experimental data, calibration data, basis, configuration files
- Key requirements:
 - 1 PB capacity: three 5-day mode-2 (interaction points) sets + mode-3 (waveform) sets [1 day equivalent]
 - 1 GB/s I/O bandwidth (×2 eventbuilder) .. this is probably very conservative
 - high level of hardware redundancy vital subsystem

network attached

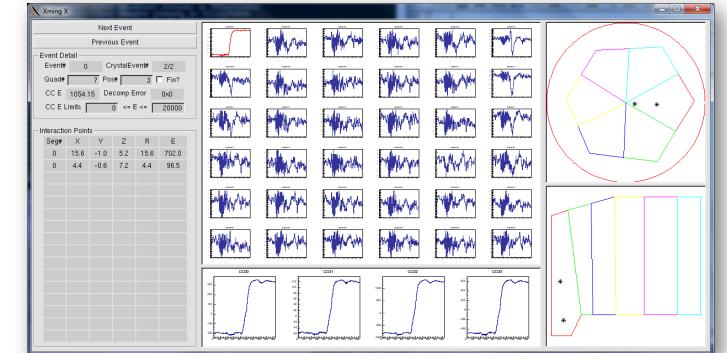
10/25 Gb link

40/50 Gb link


file server

to high-speed external network

Network


Controls and Monitors

- Large # of control monitor points (~ 50k) but most replicated on per channel or per crystal basis, latency ~200 ms
- Supports archiving, system restoration from checkpoint
- Electronics
 - EPICs based interface using UDP
- Computing Cluster
 - Currently in GRETINA, state machines (run by EPICS soft IOCs) implement controls on real-time processing codes at process level
 - Does not map well to large # of processes, software containers will need another method
- Liquid nitrogen fill system
 - to be based on commercial PLCs
 - remotely accessible monitors, alarms

Online Monitoring

- Allows for prompt monitoring and diagnostics to facilitate the optimization of experiments in real-time
- Includes the gamma-ray tracking package
- To be based on GRETINA analysis packages supported by the user community

ROOT-based visualization tool for signal decomposition in GRETINA

- Performance of modern computing platforms gives us new possibilities .. and new questions:
- Implicit architecture assumption single-pass signal decomposition algorithm - could this change?
- Waveforms (mode 2) to HPC facilities? 4 GB/s through DTN .. very possible (even today)
- Allow for energy filters in cluster? (not fpga's) should have sufficient network/IO bandwidth

Summary

- The GRETA computing system provides online processing to determine the location of interaction points in the array, global event building, and controls/ monitors for all major subsystems
- The scope/requirements of the GRETA computing system are well understood from the experience with the GRETINA system
- Network-based readout of electronics changes computing architecture
- Take advantage of modern computing platforms and techniques

