Advances in Machine Learning in High Energy Physics Deep Learning, GAN and more

David Rousseau LAL-Orsay <u>rousseau@lal.in2p3.fr</u>

AGATA/GRETINA tracking arrays meeting 4th April 2018

ML in HEP

- Use of Machine Learning (a.k.a Multi Variate Analysis as we call it) already at LEP somewhat, much more at Tevatron (Trees)
- At LHC, Machine Learning used almost since first data taking (2010) for reconstruction and analysis
- □ In most cases, Boosted Decision Tree with Root-TMVA, on ~10 variables
- □ For example, impact on Higgs boson sensitivity at LHC:

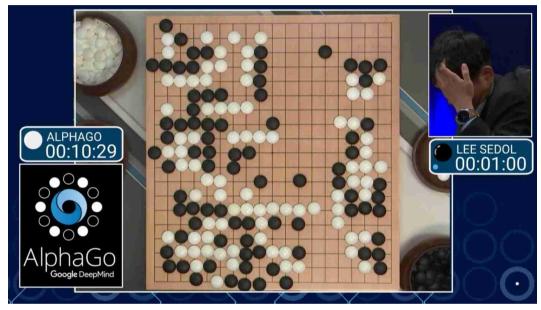
Analysis	Data taking year	No ML sensitivity	ML sensitivity	Relative data gain
CMS H→γγ	2011-2012	2.2	2.7	51%
ATLAS H→τ⁺τ	2011-2012	2.5	3.4	85%
ATLAS VH→bb	2011-2012	1.9	2.5	73%
ATLAS VH→bb	2015-2016	2.8	3.0	15%
CMS VH→bb	2011-2012	1.4	2.1	125%

→~50% gain on LHC running

Advances in ML in HEP David Rousseau, AGATA/GRETINA, 4 April 2018

ML in HEP

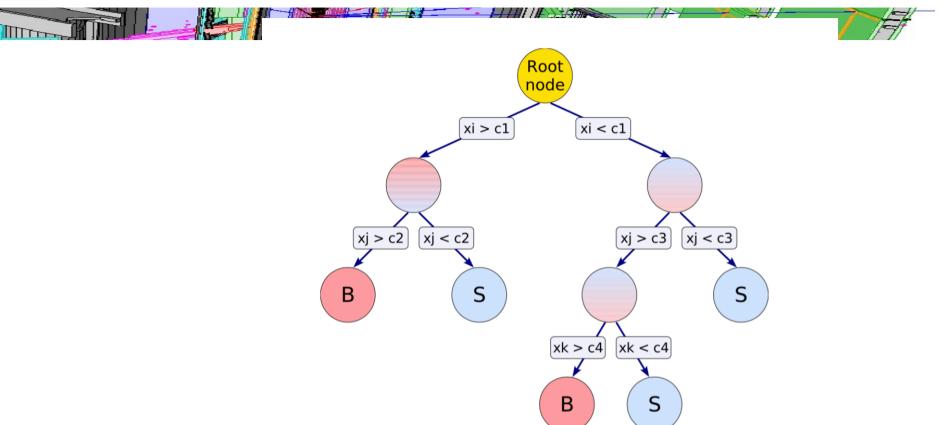
Meanwhile, in the outside world :



- □ "Artificial Intelligence" not a dirty word anymore!
- □ We (in HEP) have realised we're been left behind! Trying to catch up now...
- □ This talk on very selected promising use of advanced ML in HEP

ML Basics

BDT in a nutshell

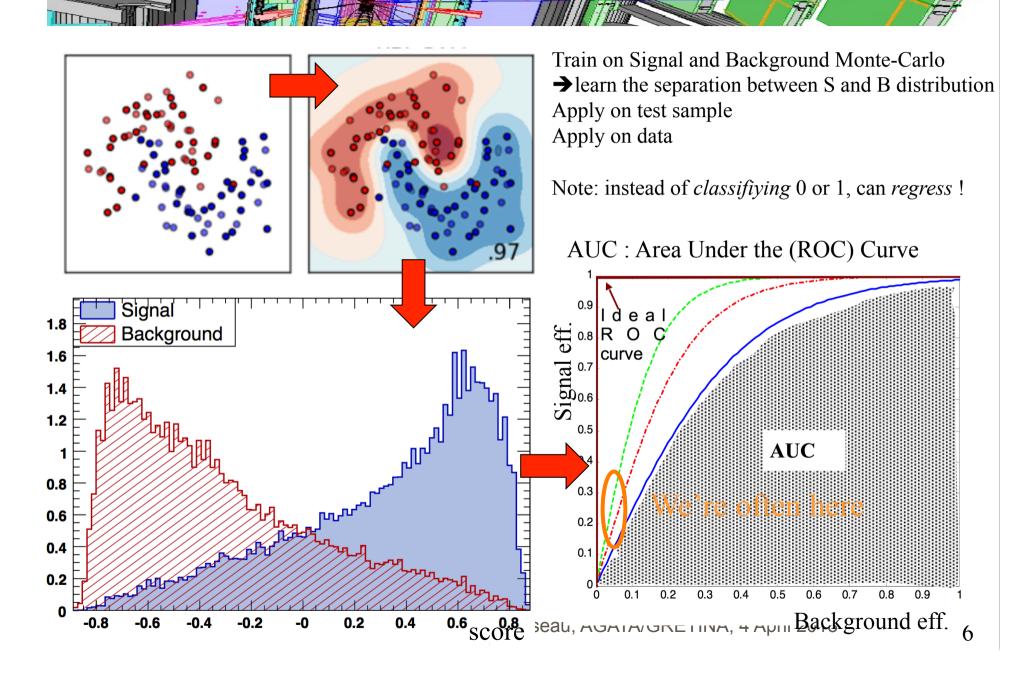


□ Single tree (CART) <1980

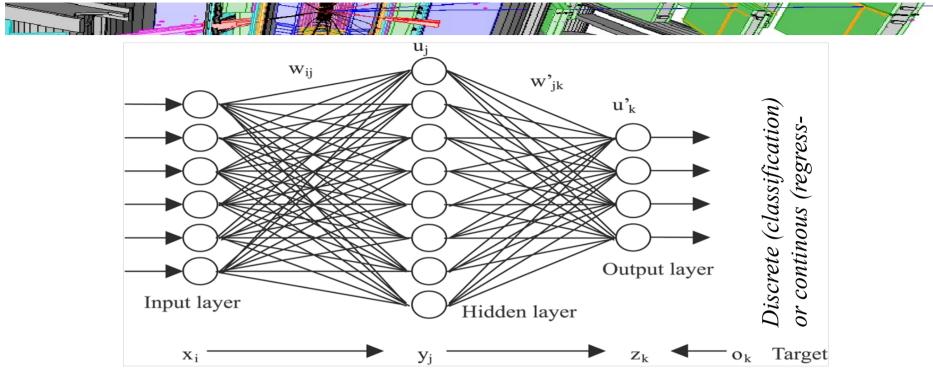
□ AdaBoost 1997 : rerun increasing the weight of misclassified entries → Boosted Decision Trees (Gradient BDT, random forest...)

Advances in ML in HEP David Rousseau, AGATA/GRETINA, 4 April 2018

Classifier basics

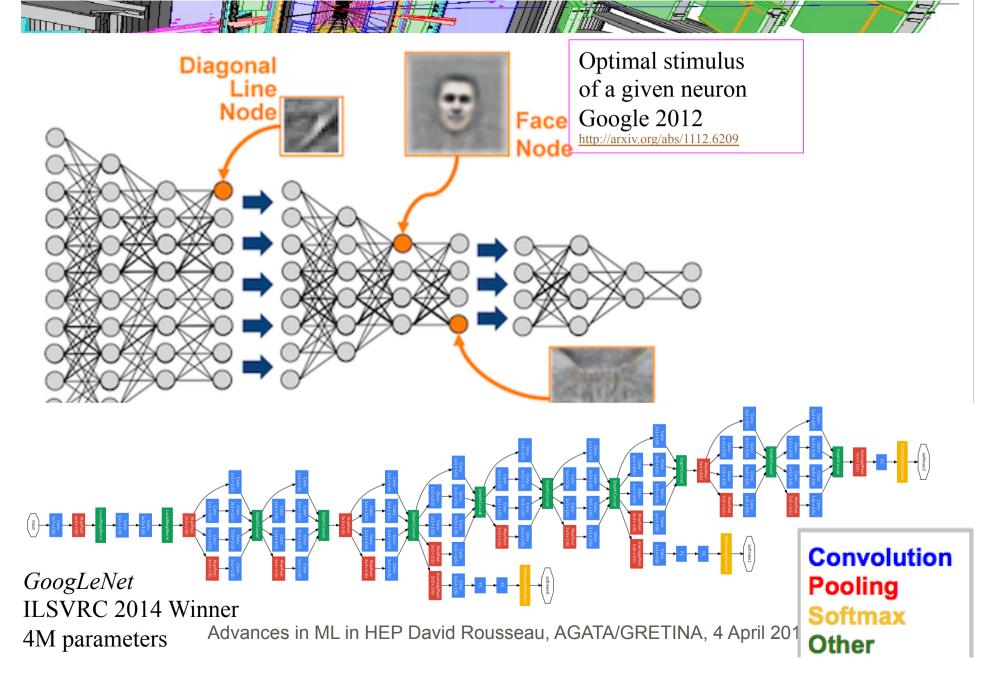


Neural Net in a nutshell



- □ Neural Net ~1950!
- But many many new tricks for learning, in particular if many layers (also ReLU instead of sigmoïd activation)
- Deep Neural Net" up to 100 layers
- Computing power (DNN training can take days even on GPU) Advances in ML in HEP David Rousseau, AGATA/GRETINA, 4 April 2018

Deep learning



ML in analysis

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CET

EXPERIMEN

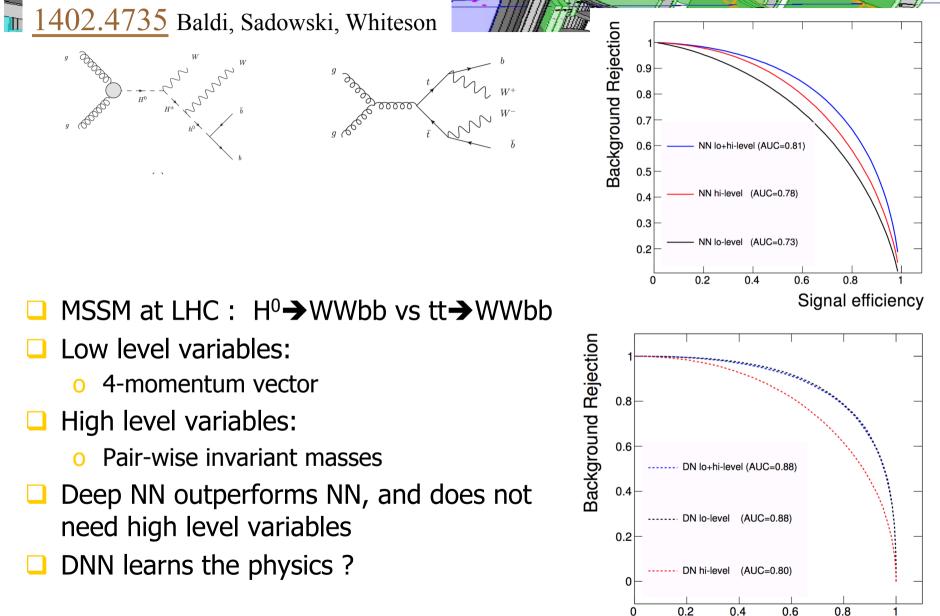
EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells: Tiles, EMC

Persint

Candidat H→Z(→μ⁺μ⁻)Z(→e⁺e⁻)

Deep learning for analysis



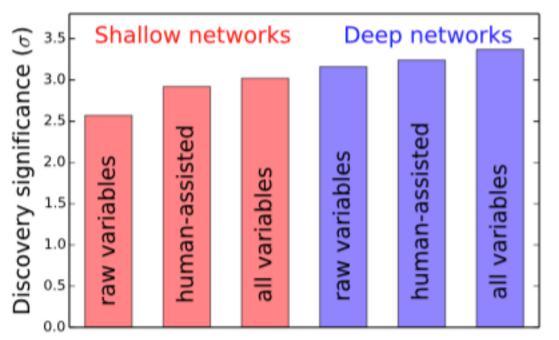
Signal efficiency

Deep learning for analysis (2)

1410.3469 Baldi Sadowski Whiteson

 \Box H tautau analysis at LHC: H \rightarrow tautau vs Z \rightarrow tautau

- Low level variables (4-momenta)
- High level variables (transverse mass, delta R, centrality, jet variables, etc...)



- Here, the DNN improved on NN but still needed high level features
- Both analyses with Delphes fast simulation
- ~100M events used for training (>>100* full G4 simulation in ATLAS)

Systematics-aware training

Our experimental measurement papers typically ends with

• measurement = m $\pm \sigma$ (stat) $\pm \sigma$ (syst)

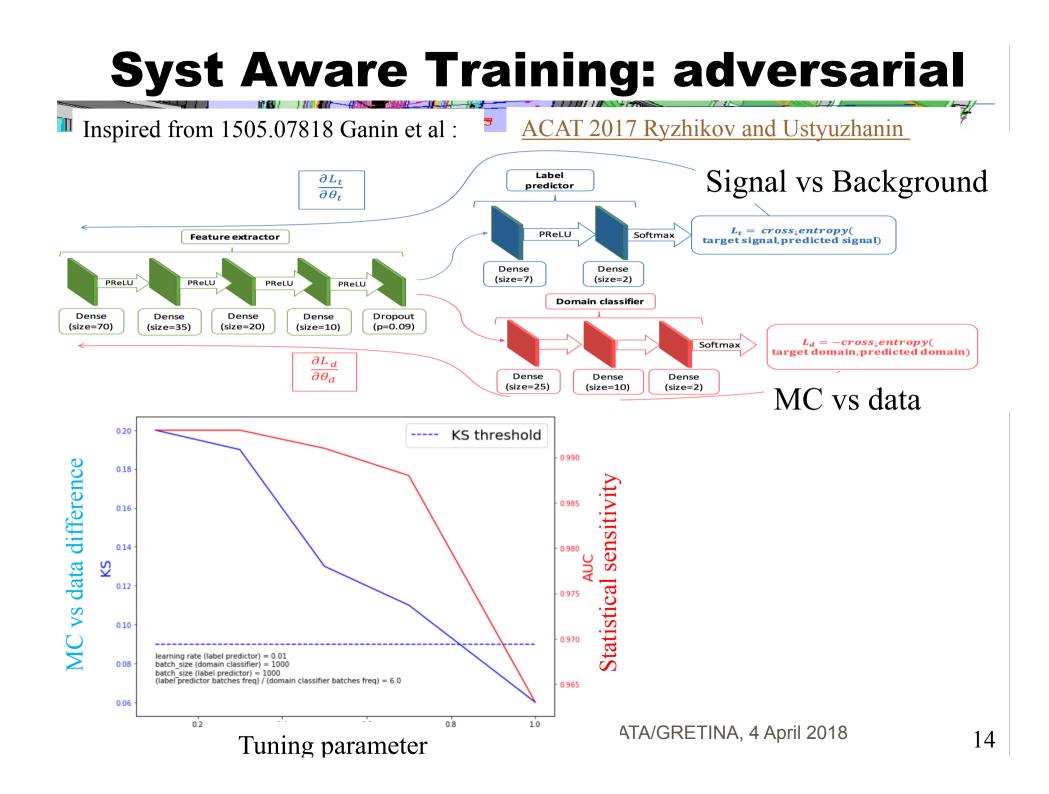
 σ(syst) systematic uncertainty : known unknowns, unknown unknowns...

 \Box Name of the game is to minimize quadratic sum of :

 σ (stat) ± σ (syst)

 \Box ML techniques used so far to minimise σ (stat)

- □ Impact of ML on σ (syst) or even better global optimisation of σ (stat) ± σ (syst) is an open problem
- \Box Worrying about σ (syst) untypical of ML in industry
- However, a hot topic in ML in industry: transfer learning
- E.g. : train image labelling on a image dataset, apply on new images (different luminosity, focus, angle etc...)
- □ For HEP : we train with Signal and Background which are not the real one (MC, control regions, etc...)→source of systematics^{dvances in ML in HEP David Rousseau, AGATA/GRETINA, 4 April 2018}



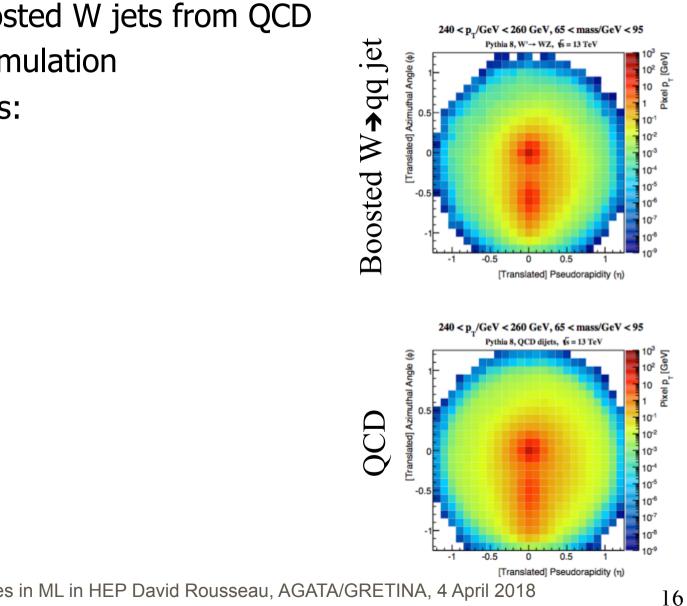
ML in reconstruction

Jet Images

arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman

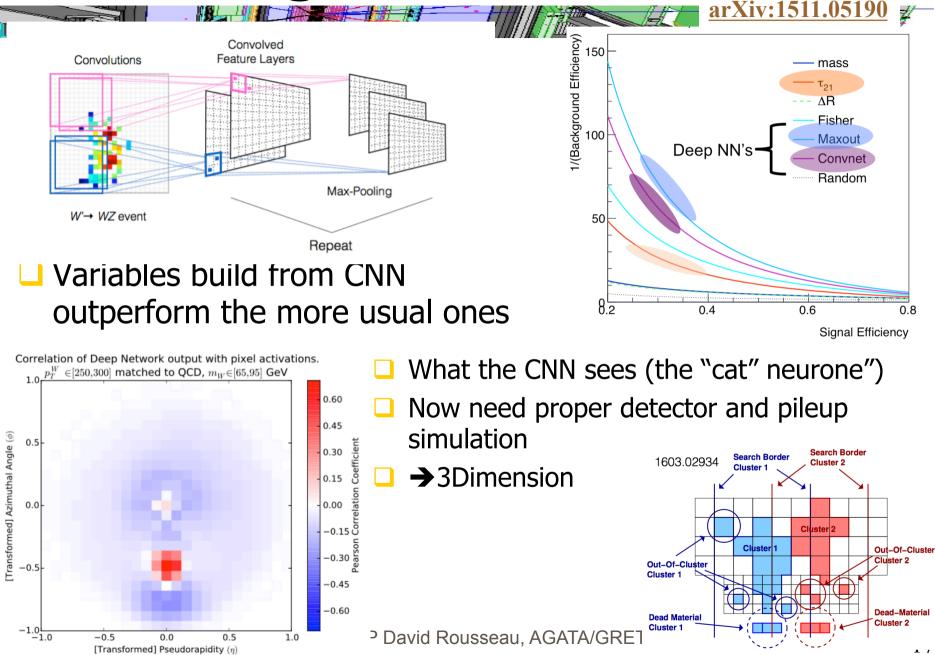
- Distinguish boosted W jets from QCD
- Particle level simulation

Average images:



A

Jet Images : Convolution NN

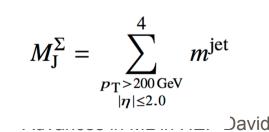


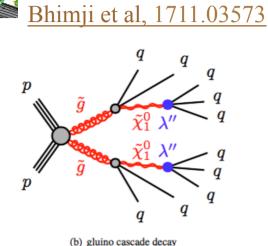
End to end Learning

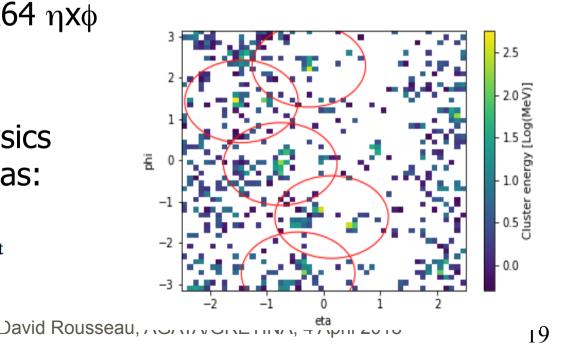
End to end learning

- Train directly for signal on « raw » event ?
- Start from RPV Susy search
- ATLAS-CONF-2016-057
- Fast Simulated events with Delphes

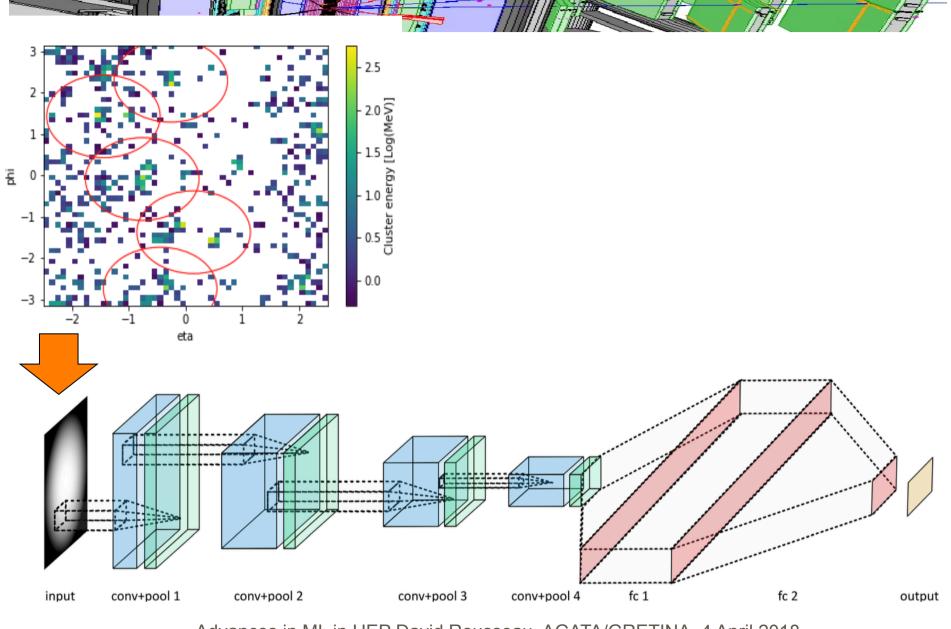
- Project energies on 64x64 ηxφ grid
- Compare with usual jet Reconstruction and physics Analysis variables such as:







End to end learning (2)

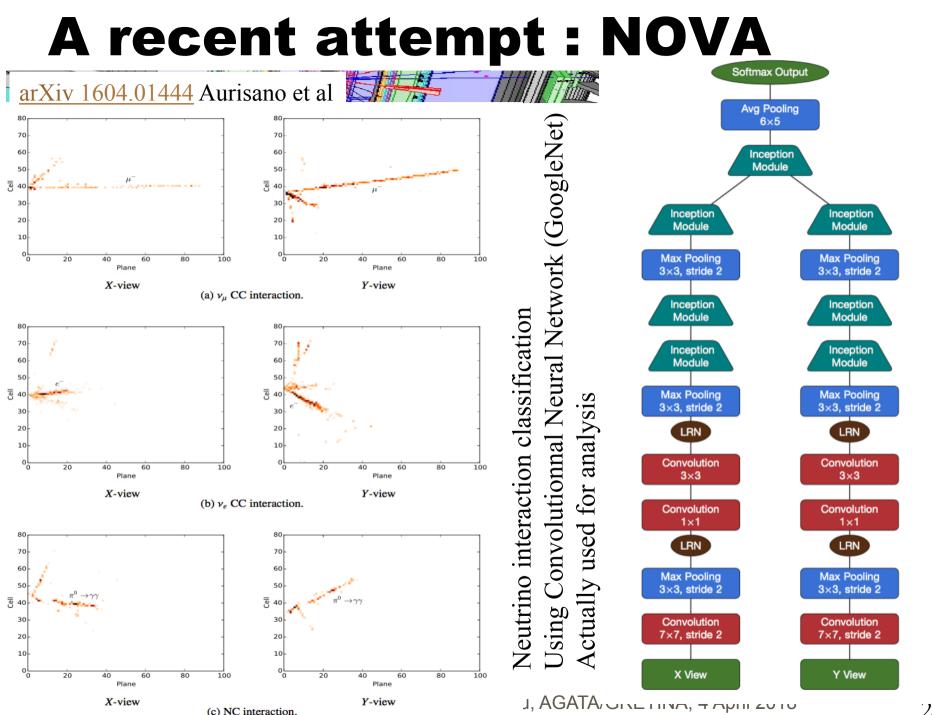


Advances in ML in HEP David Rousseau, AGATA/GRETINA, 4 April 2018

End to end learning (3) ITTTT 1.0 0.8 Signal Efficiency 0.6 CNN Log Weights 0.4 3 Channel Ensemble GBDT 0.2 MLP **Physics Selections** 0.0 0.0002 0.0004 0.0006 0.0008 0.0000 0.0010

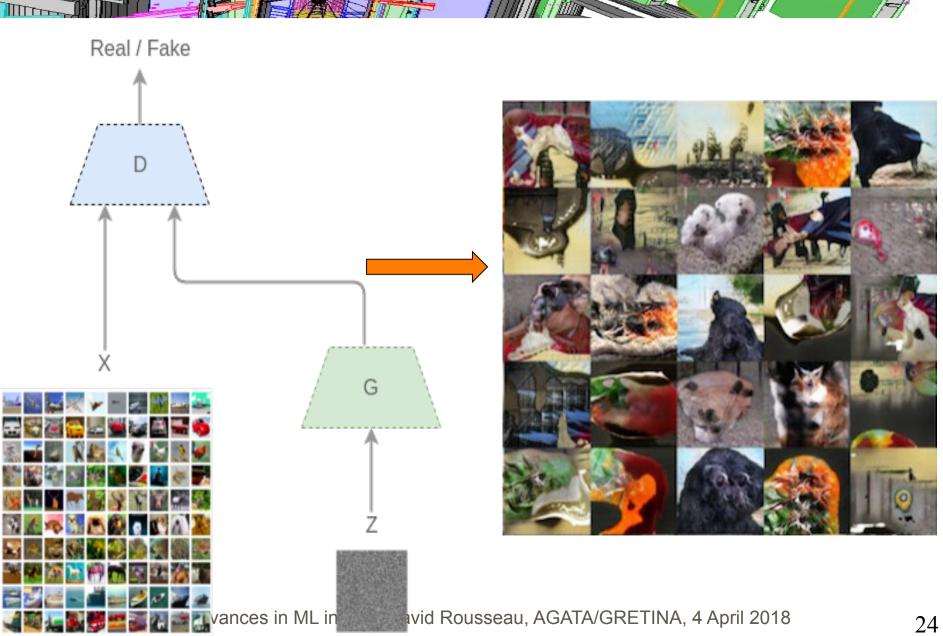
Background Efficiency

- >x2 gain over BDT/shallow network using physics variable and 5 leading jet 4momenta
- \Box \rightarrow CNN extract information from energy grid which is lost in the jets ?
- Not sure they should compare to applying DL on the jets Advances in ML in HEP David Rousseau, AGATA/GRETINA, 4 April 2018



ML in simulation

Generative Adversarial Network



Condition GAN

Text to image

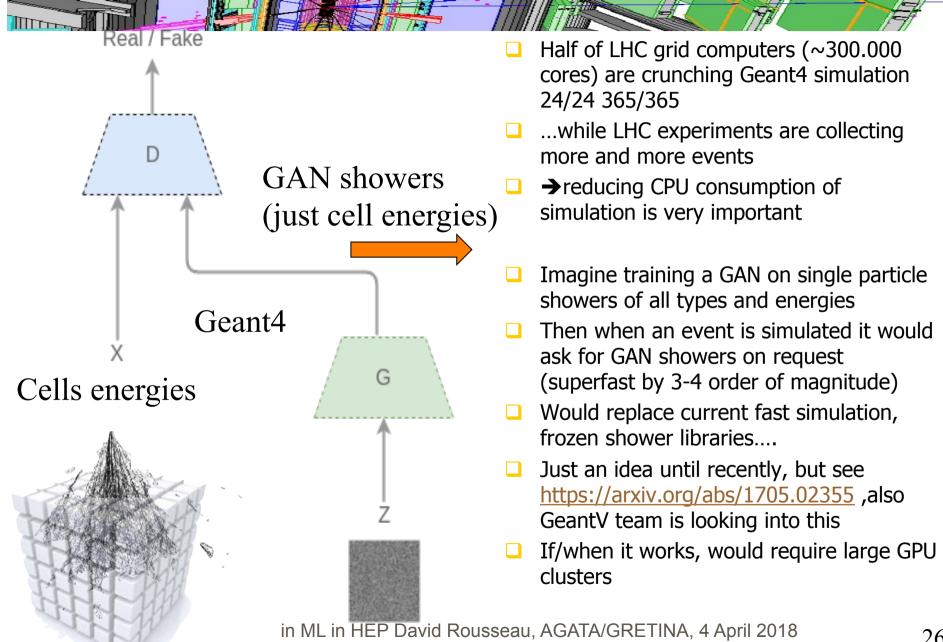
this small bird has a pink breast and crown, and black primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

this magnificent fellow is almost all black with a red crest, and white cheek patch.

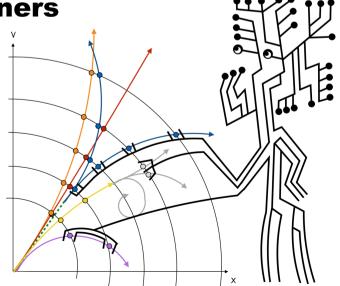
this white and yellow flower have thin white petals and a round yellow stamen

GAN for simulation



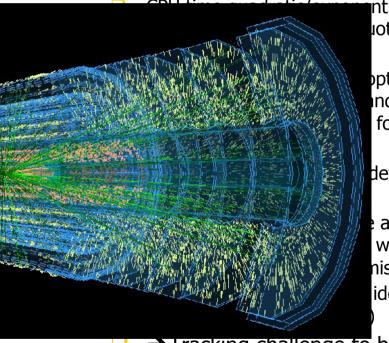
Tracking Machine Learning challenge 2018

A collaboration between ATLAS and CMS physicists, and Machine Learners



TrackML : Motivation

- Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
- HL-LHC (phase 2) perspective : increased pileup :Run 1 (2012): <>~20, Run 2 (2015): <>~30,Phase 2 (2025): <>~150



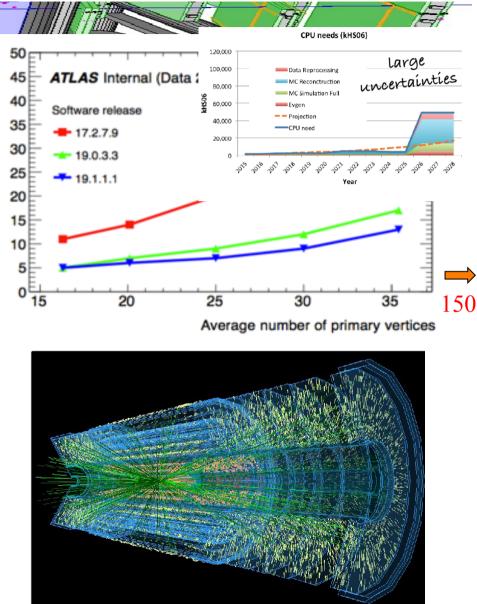
ntial Iote any

ptimise Ind macro for Run 2 but

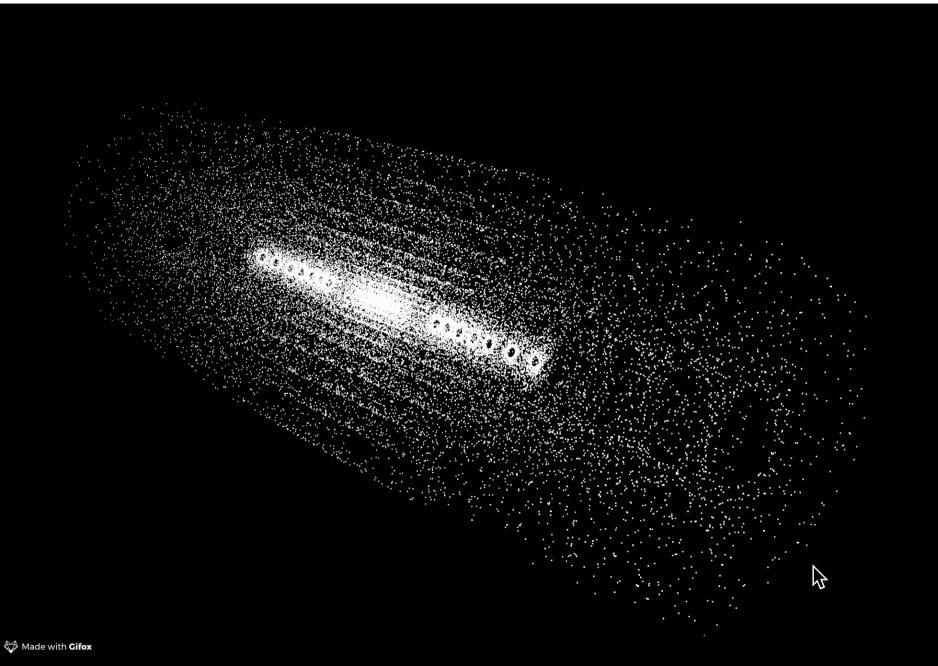
development.

e algorithm with a better nissed ? ideas from ML

- J → I racking challenge to be launched on Kaggle this April 2018
- Follow us on @trackmllhc !



Advances in ML in HEP David Rousseau, AGATA/GRETINA, 4 April 2018



David Rousseau, LRI-Orsay Seminar, 13th March 2018

Wrapping-up

ML Collaborations

- Many of the new ML techniques are complex→difficult for HEP physicists alone
- □ ML scientists (often) eager to collaborate with HEP physicists

- o prestige
- o new and interesting problems (which they can publish in ML proceedings)
- Takes time to learn common language
- Note : Yandex Data School of Analysis (with ~10 ML scientists) now a bona fide institute of LHCb
- □ Access to experiment internal data an issue, but there are ways out → more and more Open Dataset
- Very useful/essential to build HEP ML collaborations : study on shared dataset, thesis (Computer Science or HEP)
- □ There is always a friendly Machine Learner on a campus!