Precise Modeling of PPC Signals

Ben Shanks ORNL

"Deep" Learning

Work has been done as part of MAJORANA DEMONSTRATOR.PPC detectors (enriched, manufactured by ORTEC)

Goal: understanding signal shape as well as possible with eye toward maximizing extraction of information

Model Components

Component	Dependencies	
Weighting Potential	Crystal geometry	
Electric Field	Crystal geometry; impurities	
Drift velocity	Mobility (crystal specific); electric field	
Electronics shaping	Electronics chain	
Energy deposition		

Weighting Potential and Electric Field

Similar calculations:

- WP: solve the Laplace equation given electrode configuration
- EF: solve Poisson equation (includes charge from impurities)

Has to be done numerically. Two options:

- Custom-built numerical relaxation on a grid (*fieldgen*)
- Open-source PDE solver using finite element mesh method (*FEniCS*)

In either case, answer is discretized: calculating field at arbitrary point requires interpolation

http://radware.phy.ornl.gov/MJ/mjd_siggen/

https://fenicsproject.org/

Carrier Velocity

Both hole and electron velocities are:

- Linear at low field
- Saturate at high field (due to scattering)
- Anisotropic between crystallographic axes (due to multi valleyed conduction band)

Carrier Velocity

Standard Parameterization along any given axis:

$$v = \frac{\mu_0 E}{(1 + (E/E_0)^\beta)^{1/\beta}}$$

Carrier Velocity

Velocity curves depend sensitively on crystal temperature, and can vary between crystals due to differences in impurities

Approach: parameterize along fast (<100>) and slow (<111>) axes; use band structure to calculate velocity between axes

Electrons: Mihailescu NIM A 447

Holes: Bruyneel NIM A 569

Waveform Calculation

for a point-like event, ignoring electronics effects

Calculated Waveform

MJD Electronics

Electronics shaping is particularly significant for MJD waveforms due to long feedback loop (~100 ns rise time increase!)

Modeling electronics signal

Response dictated by gain and delay as function of frequency

Modeling electronics signal

Parameterized as a digital filter in frequency space by a *pole-zero* representation

Modeling electronics signal

For MJD signals, we use two cascaded filters

Lowpass~ hi-frequency attenuation from preamp Highpass~ RC-decay from capacitive couplings

Total Model Overview

Total Model Overview

Waveform	Detector	Electronics	
Position (r,phi,z)	Hole Mobilities (x6)	Preamp response (x2)	Assumptions
Energy	Impurity Profile (x2)	RC Decay (x2)	Detector geometry
Charge cloud size			Operating voltage
Mounterer aliens times			Axial-only, linear impurity gradient
waveform align time			Spherical Gaussian charge cloud
Total: 6 params	8 params	6 params	Flat baseline, pre-removed
			Electron mobility
Uncertainties	s in each of the	e input paramete	ers:

how to optimize?

Learning from Waveforms

Question: can we use the waveforms we measure to optimize the parameters?

Technique: Fit a set of "training" waveforms, in a way that pools information from each individual waveform to learn as much as possible about the detector

Bayesian Model

Fit done with MCMC (Diffusive Nested Sampler)

Training Performance

Choose well-behaved waveforms with a variety of drift times to sample across the detector

Residuals from across the detector are ~ part per thousand

(But the coherent residual structure indicates model can be improved) 18

Segmented Detectors

n-type inverted coaxial point contact detector

Backup

Mean of Residuals

"The wiggle" — Fast and slow components

Expected Position

Simulation prediction of position of DEP Events

Estimating Position

Reconstructed position of DEP Events in P42575A Able to sample the full detector fairly well

Pass cut Fail cut

Estimating Position

Our ultimate ability to estimate position is limited by model

The chain was run for 680,000 saved steps. Each plot shows a histogram of chain values for position over a different slice of the iteration number: (a) steps 1,000 - 7,700; (b) 7,700 - 14,400; (c) 14,400 - 21,100; (d) 21,100 - 27,800.

Electric Field

E-field in DEMONSTRATOR enriched detector

Azimuthal Sensitivity

Difference in rise time between <100> and <110> as a function of position

Position Sensitivity

Difference in waveforms between events on the 500 ns isochrone: part per hundred (all on <100> axis)

Notes on digital filters

Order of filter given by number of zeros and poles

- First order filter is purely real; second+ order is complex
- Every pole/zero must have a complex conjugate because the filter has to be symmetric about its nyquist frequency (top half of the unit circle represents frequencies up to the nyquist frequency, bottom half is frequencies from nyquist to sampling frequency)

Low -vs- hi-pass:

- Pure low-pass: zeros are at z=-1
- Pure hi-pass: zeros are at z=+1

Gain:

• Gain given by H(z) at z=1 (correponds to t->infinity)