Sensitivity of GRETINA position resolution to hole mobility

Partha Chowdhury University of Massachusetts Lowell

Supported by U.S. Department of Energy

Learning with Purpose

The Team

UMass Lowell V.S. Prasher E. Merchan P. Chowdhury C.J. Lister LBNL M. Cromaz H.L. Crawford C.M. Campbell A.O. Macchiavelli I.Y. Lee ORNL **David Radford**

AGATA-GRETA, Orsay

Segmented Quad Modules

Learning with Purpose

Chowdhury

AGATA-GRETA, Orsay

Signal Basis Generation

- Quasi-cylindrical non-linear grid
- Spacing weighted by electric field gradient
- Signal shapes depend on electric field, weighting potentials at each electrode, charge drift velocities, plus electronics response, segment cross-talk etc.
- Electron mobilities available in literature
- Hole mobilities less well known: vary it to see effect

Hole Mobility & Shaping Time

Drift velocities of electrons and holes currently used. Dashed lines show ± 15% variation in hole velocities Preamp shaping time correlated with hole mobility. Constrained fits performed with shaping times fixed.

Experimental averaged "superpulse" from a ⁶⁰Co source compared ("fitted") to that from simulation

Method originally introduced to extract electronic corrections to calculated basis

Shallow minimum at ~15% lower than currently used values Question: How badly is position resolution affected by this?

Learning with Purpose

Chowdhury

AGATA-GRETA, Orsay

"Pencil beam" measurements

Pencil beam measurements with a ¹³⁷Cs source (Q4A8) Inner hexagon defines the front face Segments labeled A-F in azimuthal direction Dashed lines indicate segment boundaries 7 different collimated pencil beams (black dots) Radial: 1,2,3,4,5 Azimuthal: 2, 2', 2"

Learning with Purpose

Chowdhury

Pencil Beams: 2D y-z histograms

Learning with Purpose

Chowdhury A

current (solid lines) and 15% lower (dashed lines) hole mobilities.

Chowdhury

Learning with Purpose

AGATA-GRETA, Orsay

Pencil beams: Experiment

Difference of pencil beam centroids for (a) x- and (b) yprojections for all collimation points

Only Point 1 shows a ~1.5 mm difference (note FWHM ~4 mm) Point 1 closest to central core, so holes have to move farthest

Pencil beam: Simulations

(a) X-Z histogram of a simulated pencil beam with current hole mobilities

(b) X and (c) Y projections for current and 15% lower hole mobilities

0

No observable difference between the two mobilities Note: simulations are free from electronic cross-talk effects

Chowdhury

AGATA-GRETA, Orsay

(b)

(c)

Summary

- Sensitivity of GRETINA position resolution to the hole mobility parameter investigated
- The χ^2 results from a fit of the averaged "superpulse" exhibit a shallow minimum for hole mobilities 15% lower than currently adopted values
- Calibration pencil beam data on position resolution analyzed
- Simulations performed, that isolate the hole mobility dependence of signal decomposition from other effects such as electronics cross-talk
- No appreciable impact with a15% reduction in hole mobilities applied to the analysis of experimental data from collimated sources
- Hole mobilities appear to be largely optimized and not currently limiting position resolution.
- Hole mobility effectively excluded as a dominant parameter for improving the position resolution for reconstruction of γ-ray interaction points in GRETINA.

Nuclear Instruments and Methods in Physics Research A 846 (2017) 50-55

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Sensitivity of GRETINA position resolution to hole mobility

NUCLEAR NSTRUMENTS & METHODS IN PHYSICS

V.S. Prasher^a, M. Cromaz^b, E. Merchan^a, P. Chowdhury^{a,*}, H.L. Crawford^b, C.J. Lister^a, C.M. Campbell^b, I.Y. Lee^b, A.O. Macchiavelli^b, D.C. Radford^c, A. Wiens^b

^a Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA

 $^{\rm b}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^c Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

V.S. Prasher et al., Nucl. Inst.Meth. A846 (2017) 50

V.S. Prasher, Ph.D. thesis, UMass Lowell, 2015

