Numerical correction of neutron damages in AGATA HPGe detectors

R.Hetzenegger, L.Lewandowski, B.Birkenbach, B.Bruyneel, P.Reiter, J.Eberth, H.Hess, R.Hirsch, A.Vogt Institute of Nuclear Physics – University of Cologne

2nd AGATA-GRETINA Tracking Arrays Collaboration Meeting Orsay

Bundesministerium für Bildung und Forschung

AGATA campaigns

AGATA @ INFN	AGATA @ GSI Darmstadt	AGATA @ GANIL (Caen)
Legnaro	2012-2014	2014-2019+
2010-2011		_

stable beam

60Co gamma-ray spectra

Annealing

- Disassembly/assembly of cryostats
- Risk of detector damage e.g. leakage currents after annealing
- After 120h at 102°C the original perfomance is not restored

 \rightarrow Numerical correction method

Numerical description

 $q_{e,h}(t) = q_{e,h}(0) \exp\left[-\int_{0}^{t} \left(\langle \sigma v \rangle N_{e,h} dt'\right)\right]$ Amount of measured charge carriers: $\eta_{e,h}^{i} = \left| \int_{0}^{t_{coll}} \left(\nabla \Phi_{i}(x(t)) * v_{e,h} \right) \frac{q_{e,h}(t)}{q_{e,h}(0)} dt \right|$ Collection efficiency: $\eta_{tot}^{i} \approx 1 - \left[\frac{tSG_{e}^{i}(x_{0})}{\lambda_{e}} + \frac{tSG_{h}^{i}(x_{0})}{\lambda_{h}}\right]$ Total collection efficiency: Position-sensitive trapping sensitivity in cm³ $E_{corr}(\vec{x}) = \frac{E_0}{1 + \frac{tSG_e(\vec{x})}{1 + \frac{tSG_h(\vec{x})}{1 + \frac{$ $\vec{x} \in R^3$ Inverse trapping centre density N in cm³

B.Bruyneel et al. EPJA (2013) 49:61 DOI i2013-13061-4

Position dependence of trapping sensitivities

Uncorrected energy E in dependency of trapping sensitivities

Electrons

Holes

Corrected energy E in dependency of tSG_e,tSG_h

Electrons

Holes

Detector C001 Segment B3 1350 1345 1340 (хор 1335 1330 ш 1325 1320 1315 1310 -0.09-0.08 -0.07 -0.06 -0.05 -0.04 -0.03-0.02 -0.010 tSG_e (cm³)

Dataset e696 23.04.2016

- 29 crystals
 1044 segments
- 21 h measurement
- Very high statistics $7 \cdot 10^7$ events per detector
- Rawdata available

Replay with improved PSA possible

Detector C001 segment B3: FWHM = 6.40 keV Ratio = 2.91 FWHM = 2.85 keV Ratio = 2.08

uncorrected

corrected

Results detectors A001 and C001

original corrected

Detector A001

Detector C001

Single segments detector 00A

Segment sums of all detectors

Example: extremely damaged segment

Summary and outlook

Summary:

- Numerical method for neutron damage correction
- Novel way to determine trapping centre densities
- Energy resolution and peak shape improved
- Time between annealing procedures extended

<u>Software:</u>

• ≈ 20 min for 29 detectors

Hardware:

- Complete disassembly of cryostats
- Annealing
- Possible damages
- Minimum one month

Thank you for your attention!

Bundesministerium für Bildung und Forschung

Results detectors A001 and C001

1310

1330 E (keV)

1330 E (keV)

Average improvement of all detectors

AGATA ⁶⁰Co source runs at GANIL

23. April 2016 26. e696

26. May 2017 e705

Run	Events /	FWHM
	detector	improvement
e696 April	1.3·10 ⁸	26.2%
2016		
e705 May	$1.9 \cdot 10^{6}$	27.2%
2017		
e673 June	$1.7 \cdot 10^{7}$	29.8%
2017		