$\gamma-\gamma$ Angular Correlations with GRETINA ${ }_{\text {and }}$

what they may say about low-energy position distributions

James Mitchell Allmond

 Physics Division - Oak Ridge National LaboratorySecond AGATA-GRETINA tracking arrays collaboration meeting - April 2018

\author{

* Oak Ridge National Laboratory
 managed by ut-battelle for the department of energy
}

$\mathrm{E}_{\gamma}-\mathrm{E}_{\gamma}-\theta$ Cube

The angular correlations were constructed from three cubes

NonPrompt(mixed events)

Filter: $N>N_{\max } / 100 \& N_{\max }{ }^{*}$ Random $(0,1)$

$\mathrm{E}_{\gamma}-\mathrm{E}_{\gamma}-\theta$ Cube (with Tracking)

The angular correlations were constructed from three cubes

NonPrompt(within event build)

NonPrompt(mixed events)

Filter: $N>N_{\max } / 100 \& N_{\max }{ }^{*}$ Random $(0,1)$

$\mathrm{E}_{\gamma}-\mathrm{E}_{\gamma}$

Compton cross scatter seen only in prompt data and mostly at small angles

$\mathrm{E}_{\gamma}-\mathrm{E}_{\gamma}$ (with Tracking)

Tracking removes much but not all of the Compton cross scatter (e.g., at low E, large σ_{z})

$\mathrm{E}_{\gamma}($ gate 1$)-\mathrm{E}_{\gamma}($ gate 2$)-\theta$

The following two gate- and background-subtraction methods were considered

*Correlated background mostly impacts small $\theta_{\gamma \gamma}$ and weak $I(\gamma \gamma)$

RIDGE

$\gamma-\gamma$ Angular Correlation: 2-2-0

Angular correlation similar between tracked and untracked beyond "cluster angle" effect

$\gamma-\gamma$ Angular Correlation: 2-2-0

Systematic deviation looks like the result of attenuation or an isotropic component

$\gamma-\gamma$ Angular Correlation: 2-2-0

$\gamma-\gamma$ Angular Correlation: 3-2-0

$\gamma-\gamma$ Angular Correlation: 2-2-0

$\gamma-\gamma$ Angular Correlation: 3-2-0

$\gamma-\gamma$ Angular Correlation: 2-2-0

$\gamma-\gamma$ Angular Correlation: 4-2-0

$\gamma-\gamma$ Angular Correlation: 2-2-0

Attenuation impacts A4 term the most; 0.81*A4 can account for systematic deviation

ENSDF: $\delta\left(2_{2}-2_{1}\right)=-9.3(6)$
$W\left(\theta_{\gamma \gamma}\right)$

Pencil Beam: Position Distribution

Position distribution doesn't look Gaussian. More Lorentzian?

Pencil Beam: Position Distribution

Position distribution looks mostly Gaussian but with a ~uniform background

Slide from Radford

AGATA Position Resolution

Position resolution is worse at low energy; what about distribution shape?

Next Steps

- Investigate a $\gamma-\gamma$ angular correlation that involves large energies and a large A4 term
- Investigate position distribution with low-e γ pencil beam data
- Compare GEANT4 $\gamma-\gamma$ simulations with data using segment and xtl centers
* Need to develop $\gamma-\gamma$ simulation capability (i.e., missing from UCGRETINA)
- Investigate angle resolution and distribution with coincident 511 source

Thanks to Dirk for taking the high-statistics Eu and Co data sets and Torben, Shaofei, Heather, David, Jenna, Amel, and others for useful discussions

$\gamma-\gamma$ Angular Correlation: 4-2-0

2-2-0 angular correlation for 152 Sm

${ }^{152}$ Sm

$\chi^{2}=1.96 \rightarrow 1.4$
$\mathrm{~A} 2=0.10204 * 0.86$
$\mathrm{~A} 4=0.00907$

$\mathrm{Q} \sim \mathrm{Q}_{2}(122) * \mathrm{Q}_{2}(244)$
$\mathrm{Q}_{2} \sim 0.93$
Cf., $\mathrm{Q}_{4}(122) \sim 0.81$

2-2-0 angular correlation for 152 sm

$\gamma-\gamma$ Angular Correlation: 2-2-0

${ }^{152}$ Sm

Attenuation seems large as compared to xtl centers.

Perhaps low-E position resolution/distribution is not much better than segment?

