γ-γ Angular Correlations with GRETINA and

what they may say about low-energy position distributions

James Mitchell Allmond

Physics Division – Oak Ridge National Laboratory

Second AGATA-GRETINA tracking arrays collaboration meeting – April 2018

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

 $E_{\gamma}\text{-}E_{\gamma}\text{-}\theta\;Cube$ The angular correlations were constructed from three cubes

NonPrompt(mixed events)

Filter: $N > N_{max}/100 \& N_{max}^* Random(0,1)$

E_{γ} - E_{γ} - θ Cube (with Tracking) The angular correlations were constructed from three cubes

NonPrompt(within event build)

Filter: $N > N_{max}/100 \& N_{max}^* Random(0,1)$

200

0^[]

Compton cross scatter seen only in prompt data and mostly at small angles

 $E_{\gamma}-E_{\gamma}$

 $\theta = 0-30$

200 400 600 800 10001200

10⁰

200

0 0

200 400 600 800 10001200

 10^{1}

10⁰

)AK

 $E_{\gamma}-E_{\gamma} \text{ (with Tracking)}$ Tracking removes much but not all of the Compton cross scatter (e.g., at low E, large σ_z)

 $\theta = 0-30$ $\theta = 30-90$ 10^{4} 10⁵ 1200 1200 10^{3} 1000 1000 10^{4} 800 800 E_{γ} 10³ 10² Prompt 600 600 10² 400 400 10^{1} 10^{1} 200 200 10⁰ 10^{0} 0 0 400 600 800 10001200 200 200 400 600 800 10001200 E_{γ} 10⁶ 10⁵ 1200 1200 10⁵ 1000 10^{4} 1000 10^{4} Non 800 800 10³ 10³ Prompt 600 600 10² 10^{2} 400 400 10^1 10^{1} 200 200 10^{0} 10^{0} 0 0 200 400 600 800 10001200 200 400 600 800 10001200

 $E_{\gamma}(\text{gate1})-E_{\gamma}(\text{gate2})-\theta$ The following two gate- and background-subtraction methods were considered

*Correlated background mostly impacts small $\theta_{\gamma\gamma}$ and weak $I(\gamma\gamma)$

Angular correlation similar between tracked and untracked beyond "cluster angle" effect

Systematic deviation looks like the result of attenuation or an isotropic component

Attenuation impacts A4 term the most; 0.81*A4 can account for systematic deviation

Pencil Beam: Position Distribution

Position distribution doesn't look Gaussian. More Lorentzian?

Pencil Beam: Position Distribution

Position distribution looks mostly Gaussian but with a ~uniform background

Slide from Radford

AGATA Position Resolution

Position resolution is worse at low energy; what about distribution shape?

Next Steps

- Investigate a γ - γ angular correlation that involves large energies and a large A4 term
- Investigate position distribution with low-e γ pencil beam data
- Compare GEANT4 γ-γ simulations with data using segment and xtl centers
 Need to develop γ-γ simulation capability (i.e., missing from UCGRETINA)
- Investigate angle resolution and distribution with coincident 511 source

Thanks to Dirk for taking the high-statistics Eu and Co data sets and Torben, Shaofei, Heather, David, Jenna, Amel, and others for useful discussions

¹⁵²Sm

Attenuation seems large as compared to xtl centers.

Perhaps low-E position resolution/distribution is not much better than segment?