The GRETINA tracking code

- Intro, 'review'
- How to use
- Few new developments:
- efirst function
- elast function
- Pipe data

Torben Lauritsen, ANL Amel Korichi, CSNSM

Tracking 101: determining the interaction sequence and how 'good' a gamma ray is

FOM < ~0.6-0.8 considered GOOD

FOM > ~0.8 considered BAD (Compton events)

Note: Single interactions cannot be tracked

Cluster, then find interaction sequence Evaluate scattering <u>angle</u> <-> <u>energy</u> consistency with the <u>Compton scattering formula</u>:

 We find the interaction sequence
We evaluate how 'good' the gamma rays is (BTW: We re-scale to CC energy before tracking)

FOM: a measure of how well the interaction angles and interaction energies follow the Compton scattering formula for the interaction points in a gamma ray. Typical spectrum of FOM values:

ALWAYS You have to choose: good P/T or good efficiency or A compromise for the data at hand

Figure 6: The (P/T) ratio vs. photopeak efficiency curves for GRETINA (ANL setup), with 7 closed-packed modules, when a clustering angle of 20° is used. The lower curve includes single interactions (wsi) and the upper curve is obtained without these interactions (nsi).

4

Selected Chat file options:

./trackMain \ track_GT.chat \ GTDATA/mode2.dat \ GTDATA/mode1.gtd > GTDATA/trackMain.log BTW: We can handle AGATA data too!

$\begin{array}{rcl} \text{dtwin} & 30 \leftarrow (10) \\ \text{target x 0} \end{array}$	nsec units)	recluster1 0.01 0.1 3 10 0.90
target_y 0 target_z 0 CCcal CCenergy.cal useCCEnergy clusterangle 1 20 clusterangle 30 20	GTAG1 →	nprint 20 • singlehitmaxdepth 23 1.9 18.5 1.0 0.000 0.59 • 8.000 10.17 10.00 10.01
enabled "0-180" trackingstrategy 1.0		16.3 20.0
trackingstrategy 2 0 trackingstrategy 3 0 trackingstrategy 4 0		There are many more options! Here we just show the basic ones
trackingstrategy 5 0 trackingstrategy 6 5 ggtt trackingstrategy 7 5 ggg trackingstrategy 8 5 ggg	tt tttt ttttt	<u>We add mode1 data to</u> <u>the mode 2 data!!!!</u>

Some functions in ANL tracking code

- Single interaction range [GTAG1]
- GTAG1 Splitclusters: try to split clusters that have a bad FOM into two gamma rays that have good FOMs. [SUMMED LINES!?]
 - Combine clusters: try to combine that have bad FOMs into one gamma rays that has a good FOM
 - Recluster: split gamma rays with bad FOM decreasing the clustering angle. [TBD: can go the other way too]
 - Matchmaker: combine two single interaction gamma rays into one gamma ray with a good FOM [tricky!]
 - PairProd: TBD

We can execute these functions iteratively until we have made the best out of the data we were given <u>The problem:</u> sometimes we make the wrong call because the experimental data is not perfect (i.e., we accidentally destroy what were actually good gamma rays)

What is new?

J. van der Marel and B. Cederwall. Backtracking as a way to reconstruct Compton scattered gamma rays. Nuclear Instruments and Methods in Physics Research Section A, 437:538, 1999.

> See if adding a <u>penalty</u> if the last interaction is not in the range from ~10 to ~300keV helps, [elast function]

I. Piqueras, F. A. Beck, E. Pachoud, and G. Duchene. A probabilistic γ-ray tracking method for germanium detectors. *Nucl.Instrum.Methods Phys.Res.*, A516:122, 2004.

> Add a <u>penalty</u> if the first interaction point does not have the largest energy deposite, if the energy is larger than ~500keV, [efirst function]

$$^{12}C(^{84}Kr[394MeV], 4n)^{92}Mo$$

Look at 2064 keV line of in-beam experimental data. v/c~8.2%, so first interaction can be gauged by the Doppler correction

elast # +-- lowest accepted energy (MeV) function: # | +-- highest accepted energy (MeV) # | +- penalty factor elast 0.050 0.300 1.5

As a function of the penalty factor, resolution and peak area:

Tue Mar 20 08:27:32 2018

... does not seem to help us

Tue Mar 20 08:41:00 2018

Function seems to help us find the first interaction point better :) ~5% better energy resolution, ~5% more peak area for the same FOM cut

Tue Mar 20 08:38:57 2018

Can now pipe data through the tracker

Conclusions and future

- Not many changes to the GT tracking code since last
- But tried the new efirst and elast functions
- elast does not seem to work. Maybe the same problem as with backtracking which also does not work so well? Is the assumption wrong or is it bad data?
- The efirst function appears to work. It effectively trivializes the tracking at high energy; but so be it. The function and the functional form of the penalty needs to be <u>optimized</u> and we need to make sure it does not hurt us in other energy regions
- Piping data may help us speed up the tracking.
- We still need to add tracking of pair production to the code.
- Try other FOM measures?