

Cayetano Santos 8th & 9th /03/2018 - JUNO sPMT Electronics Review

On behalf of the Juno sPMT team

Outline

Overview

Code

Architecture (bottom to top)

Validation

Conclusion

Context

Omega test card

ABC card

Need to develop test and production firmware for two platforms, reducing complexity and optimizing code reuse

- Common VHDL code base (single top level) for different hardware
- Omega (Altera Cyclone III based) test board - 16 ch.
- ABC (Xilinx Kindex 7 based) card 128 ch
- C++/Matlab slow control & monitoring
- Top-down description of hierarchy blocks
- $\boldsymbol{\cdot}$ Developed from scratch, full stack
- In depth code testing achieved with help of dedicated acq. software
- Quartus 13, ISE 14.7 and Vivado 2017.2 compliant

2/18

Features

Basic features

Trigerless driven data flow Huge pipelining

- Event count tagging
- 64 / 80 bits event modes
- · Phy. event / data rate online monitoring
- Trigger rate up to 5 MHz.
- Dead time computing
- · Optional ASIC data gray decoding
- Sync ASIC and FPGA time stamps
- Discriminator capture and time tagging

Advanced features

Management of variable ASIC latency (Not an oscilloscope!)

- Extended time stamping (N bits)
- Optional DDS flow and TOT measurement
- Coarse time window scan (fine time INL)
- · Parallel (all channels) S-Curve
- IP Bus ready, etc.

Code

VHDL Coding

VHDL code with emacs vhdl-mode

Strategy

Source code extracted from org (markup) files using vhdl-tools library

Hints

- · Code common to two platforms
- Abuse of modularity + hierarchy of building blocks
- Extended use of generics (data / params buses)
- \cdot nb_asics between 1 and 8
- · Design based on peripherals / address decoding
- · Command / interrupt oriented
- Architecture of converging data streams

Version control using git

Remote repository

Files under version control

Only text files + text editor

- · Quartus : full project
- · Vivado 17.2

build.tcl generate project
*.xci/xdc buffers

... and that's it

- VHDL files
- Constraint files

... plus backup mirrors (in2p3, ...)

Version control using Gitlab @ cern

Remote repository commit history

Benefits

Getting back in history, multiple versions in parallel, etc.

- Full commit history
- Tracking / documenting modifications
- Several branches in parallel: master, devel, pages, feature (tdc, multiasic, etc.)
- Multiple collaborators
- Issues tracking
- · Web based diff
- · Mirror for CI + pages @ gitlab.com

Version control using Gitlab: pages

Online site

In2p3 mirror
https://gitlab.in2p3.fr/
CatiROC-test/firmware

Web site

Contains all relevant information

- · Gitlab pages branch in main repository
- Developed in org markup + css
- · Hosted @ Gitlab.org

Share information with users

- · Architecture, releases, specific features
- Project structure
- · Internals, data format
- · How to use, troubleshooting, etc.

Version control using Gitlab: documentation

Online view @ gitlab

Org markup file

Documentation is extracted for web rendering.

Withing the org files, code is embedded in source blocks, along with the documentation.

Lowest level: data capture

from CatiROC datasheet

Frame 2

Physical data

- · One readout line for 8 channels
- One event split off in two frames: 29 + 21 bits
- · Random delay between frames
- · Variable number of channels by frame

Additional data computed online

- · Event counter by channel
- · Card & asic number
- Trigger rate

Middle level: CatiROC controller

- Two peripherals: slow control and data readout
- \cdot Stream 1/2 : physical data channels, 1/9 to 8/16
- Stream 3 : discriminator data, channels 1 to 16
- Stream 4 : special info data
- · 66 bytes of slow control by controller; slow control as payload
- · Time ordered physical data

Top level

- · One USB master enables one peripheral
- 1 Input / output USB manager; 1 Buffer (fifo) by peripheral
- N USB managers peripherals (simple counter, s-curve, etc.)
- 8 CatiROC controllers (2 peripherals/controller) in parallel
- · 2 multiplexers (slow control and data readout peripherals)
- · All CatiROC controllers are enabled in parallel
- · Mixed data : time ordered only by channel

Data format

ASIC.Nb (3 bits)

Physical event word, 80 bits, EventID = '00'

```
'00' - Ch.Nb. (4 bits) - Coarse Time (26 bits) - Gain (1 bit) -
EventCounter (11 bits) - Charge (10 bits) - Fine Time (10 bits) -
'00000' (5 bits) - Card.Nb (8 bits) - ASIC.Nb (3 bits)

Special information word, 80 bits, EventID = '01'

'01' - '0' (41 bits) - Ch.Nb. (5 bits) - TriggerRate (16 bits) -
'00000' (5 bits) - Card.Nb (8 bits) - ASIC.Nb (3 bits)

Discriminator information word, 80 bits, EventID = '10'

'10' - Edge (1 bit) - Ch.Nb. (4 bits) - EventCounter (25 bits) -
Time Stamp (32 bits) - '000000' (5 bits) - Card.Nb (8 bits) -
```


Advanced: Time window scanning

25 ns / 40 MHz time window

- · Pulse generator in sync with daq
- Dynamic fine time histogramming / data saving
- Variable x ns. time steps for linearity characterization

Advanced: Dual Data Stream (under development)

from Juno Electronics Meeting 10/2017

M. Settimo, "CatiROC Status"

Physical data out of CatiROC has a dead time of few us.

Discriminator output is instantaneous.

Why?

- · (Physical data) dead time monitoring
- Very low (auto) dead time (~50 ns.)
- Delta difference between falling / rising edges
- · Proportional to the charge

How?

- · 128 TDC in one Kindex 7 FPGA
- Sampling of discriminator signal at 1 GHz
- · ISERDES based

CNTS IN2P3

· One (artificial) 80-bits event by pulse

Validation: software

GUI

GUI user front end

- Low level software in C++
- · Gui / data visualization in Matlab
- · Windows / Linux
- Amplitude/timing histogramming
- Row data recording for offline analysis
- S-curve displaying
- · Peak fitting and analysis
- Fine time characterization, etc.

CLI scripting - under development (with help of Julia ^a)

using TestCardModule
myTestCard = TestCard()
tc_GetIsOpen(myTestCard)

. . .

ahttps://julialang.org/

Validation with Omega test card / abc in mono asic mode (i)

Piedestals One color by channel Continuous (ping) / dotted (pong)

- · One asic, 16 channels, external trigger
- · All asics tested

Pulse generator Variable amplitude Basic data validity tests

- Internal trigger
- One asic, 16 channels

Validation with Omega test card / abc in mono asic mode (ii)

16 channels S-Curve scan

- All channels in parallel
- Programmable scan : min, max and step soft parameters
- Two methods : using data or discriminator

17/18

Conclusion

Summary

- · All available online under Under GPLv3
- · In depth test using Omega test card
- Preliminary tests using ABC card in one asic mode
- Validation site: https://catiroc-test.gitlab.io/hardware/
- · Needed help for data analysis ...

What's next?

- $\boldsymbol{\cdot}$ Two / eight asics : slow control and data readout
- · Dual data stream : to validate
- Bug fixing
- Increase local buffers capacity with 1 GB DDR
- GCU interfacing
- Adapt for ABC v1

