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UTADL Account

* Request an account: https://www.utadl.org

* Log into jupyter.

* Mac/Linux:
* Open terminal.

* Type: (replace afarbin with your username)
ssh -NfL 8000:127.0.0.1:8000 afarbin@orodruin.uta.edu

* Point your browser to 127.0.0.1:8000

* Windows:
* Download plink.exe

e http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

* Open command prompt

* Type: (replace afarbin with your username)

plink.exe -N -L 8000:127.0.0.1:8000 afarbin@orodruin.uta.edu
* Point your browser to 127.0.0.1:8000


https://www.utadl.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Goal

« Understand Context
* Hammer. Deep Learning
 What is possible?
* Nail. High Energy Physics
e What are the problems?
- Practical Knowledge:
* [nitiative Understanding:
 Feynman Diagram Like understanding of Deep Learning
* High Level. No Details... trust that it works.
e Data sets: so you can play...
* Technical: Software and Hardware

* | just want you to know what is possible... so you know what to google to learn more...
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1. Introduction 2.“Lecture”

» DL Basi
 What is Deep Learning? s

e DL Techniques & Examples in HEP
DL in HEP?

e Feature Learning

e What physicists bring to DL? « HEP Searches (SUSY
Example)

DL in HEP Big Picture

* Recurrent NNs
* A bit about detectors... » Unsupervised Learning

 From Data to Physics * Generative Models

« HEP Problems * Special Topics: Calorimetry & Jet Physics
3. Hands on...

 Example Datasets
« DL Software & Technical Challenges

DL Model Components
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What is Deep Learning?

DL in HEP?

What physicists bring to DL?
DL in HEP Big Picture

A bit about detectors...

From Data to Physics

HEP Problems



What 1s Deep
_earning”



Animal Brains

* The brain takes in sensory data... builds hierarchical models of the world. For example:

e Cells in visual cortex respond specific low level features, like contrast in color, or vertical
or horizontal lines

« Other cells combine low level features to identify higher level features, €.g. specific
shapes

e Pattern repeats until get to recognition of actual objects, e.g. chairs.
e S0 effectively, a representation of the input is assembled in the brain.
e Eyes see a limited window... but they scan around and establish a model of surrounding.

* These include maps of the environment, including cells that light up when we are at
specific locations.

* Recently reproduced with DL by DeepMind
« Same cells light up when we imagine (~ simulate?) a specific object or location.

 When making decisions, we use these models to predict outcomes of actions.
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Recent History

 Deep Learning teats that sparked broad interest:

e 2012, Google 1B DNN learns to identify cats (and 20000
other types of objects) (Wired Article, paper)

 Raw input: trained with 200x200 pixel images from
YouTube

 Unsupervised: the pictures were unlabeled.

e Google cluster 16000 cores ~ $1M. Redone with $20k
system with GPUSs.

 2013: Deep Mind builds Al that plays ATARI (Blogpost,
Nature,YouTube,YouTube)



http://www.wired.com/2014/12/deep-learning-renormalization/
http://static.googleusercontent.com/media/research.google.com/en/us/archive/unsupervised_icml2012.pdf
http://robohub.org/artificial-general-intelligence-that-plays-atari-video-games-how-did-deepmind-do-it/
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk

Artificial Neural Networks

* Biologically inspired computation, (first attempts in 1943)
* Probabilistic Inference: e.g. signal vs background
» Universal Computation Theorem (1989)

* Multi-layer (Deep) Neutral Networks:

* Not a new idea (1965), just impractical to train. Vanishing
Gradient problem (1991)

* Solutions:
 New techniques: e.g. better activation or layer-wise training

* More training: big training datasets and lots of
computation ... big data and GPUs

 Deep Learning Renaissance. First DNN in HEP (2014).
* Amazing Feats. Audio/Image/Video recognition, captioning,

and generation. Text (sentiment) analysis. Language
Translation. Video game playing agents.

* Rich field: Variety of architectures, technigues, and
applications.

Images from Wikipedia


http://link.springer.com/article/10.1007%2FBF02551274
https://en.wikipedia.org/wiki/Deep_learning#cite_note-ivak1965-25
https://en.wikipedia.org/wiki/Deep_learning#cite_note-HOCH2001-36
https://arxiv.org/abs/1402.4735

Anrmey

Word Error Rate

ILSVRC top-5 error on ImageNet
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A Survey on Deep Learning in Medical Image Analysis

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi,
Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van Ginneken, Clara I. Sanchez

Diagnostic Image Analysis Group
Radboud University Medical Center
Nijmegen, The Netherlands
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Number of papers Number of papers lenge 2015, image from van Grinsven et al. (2016), prostate segmen-

tation (top rank in PROMISE12 challenge), nodule classification (top
ranking in LUNA16 challenge), breast cancer metastases detection in
lymph nodes (top ranking and human expert performance in CAME-
LYON16), human expert performance in skin lesion classification (Es-
teva et al., 2017), and state-of-the-art bone suppression in x-rays, im-
age from Yang et al. (2016c¢).

https://arxiv.org/pdf/ 1 702.05747.pdf



Captioning

(a) MSVD dataset

Sentences:

* A dogwalks around on its front legs.
» The dog is doing a handstand.
* A pug is trying for balance walk on two legs.

(b) M-VAD dataset

Sentence:
+ Later he drags someone through ajog.

(c) MPII-MD dataset

Sentence:

(d) MSR-VTT-10K dataset

» He places his hands around her waist as she
opens her eyes.

ﬂ " “ “

Sentences:

* People practising volleyball in the play ground.

* Aman is hitting a ball and he falls.
* Aman is playing a football game on green land.

Sentences:

* Aman lights a match book on fire.
« A man playing with fire sticks.

+ A man lights matches and yells.

Sentence:
« Awaiter brings a pastry with a candle.

Sentence:

» Someone’s car is stopped by a couple of
uniformed police.

Sentences:
* A catis hanging out in a bassinet with a baby.
» The cat is in the baby bed with the baby.
* A cat plays with a child in a crib.

https://arxiv.org/pdf/ 1 609.06782.pdf



Deep Feature Interpolation for Image Content Changes

Paul Upchurch!-?, Jacob Gardner'-?, Kavita Bala?, Robert Pless®, Noah Snavely?, and Kilian Weinberger?

! Authors contributed equally
2Cornell University
3Washington University in St. Louis

Abstract

We propose Deep Feature Interpolation (DFI), a new data-
driven baseline for automatic high-resolution image trans-
formation. As the name suggests, it relies only on simple
linear interpolation of deep convolutional features from pre-
trained convnets. We show that despite its simplicity, DFI
can perform high-level semantic transformations like “make
older/younger”, “make bespectacled”, “add smile”, among
others, surprisingly well—sometimes even matching or out-
performing the state-of-the-art. This is particularly unex-
pected as DFI requires no specialized network architecture
or even any deep network to be trained for these tasks. DFI
therefore can be used as a new baseline to evaluate more
complex algorithms and provides a practical answer to the
question of which image transformation tasks are still chal-

lenging in the rise of deep learning.

mouth open eyes open smiling facial hair spectacles



Style Transfer

Deeplakes

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_lmage_Style_Transfer_CVPR_2016_paper.pdf



DL in HEP?
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@ATLAS

EXPERIMENT
http://atlas.ch

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST




What can physicists
bring to DL



What can physicists
bring to DL

e Data

* |nteresting problems...



https://www.wired.com/2017/01/move-coders-physicists-will-soon-rule-silicon-valley/
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. Because structurally and technologically, the things that just about every internet
re more and more suited to the skill set of a physicist.

Move Over, Coders—Physicists Will Soon Rule Silicon Valley

But this is a particularly ripe moment for physicists in computer tech, thanks to the rise of machine learning, where machines

learn tasks by analyzing vast amounts of data. This new wave of data science and Al is something that suits physicists
right down to their socks.

these neural networks are really just math on an enormous scale, mostly linear algebra and probability theory.

Chris Bishop, who heads Microsoft’s Cambridge research lab, ... “There is something very natural about a physicist going
into machine learning,” he says, “more natural than a computer scientist.”

Physicists know how to handle data—at MIT, Cloudant’s founders handled massive datasets from the the Large Hadron
Collider—and building these enormously complex systems requires its own breed of abstract thought.

They come because they’re suited to the work. And they come because of the money. As Boykin says: “The salaries in tech are
arguably absurd.” But they also come because there are so many hard problems to solve.

Machine learning will change not only how the world analyzes data but how it builds software.

In other words, all the physicists pushing into the realm of the Silicon Valley engineer is a sign of a much bigger
change to come. Soon, all the Silicon Valley engineers will push into the realm of the physicist.


https://www.wired.com/2017/01/move-coders-physicists-will-soon-rule-silicon-valley/

DL In HEP
The Big Picture...



HEP Experlments

e 5 technical components to HEP experiment:

 Accelerator. e.g. LHC collisions creating quickly decaying heavy
particles. Extremely high rate: 40 * O(50) Million collisions/sec.

 Detector. a big camera. ~ e.g. LHC 1.5 MB/event (60 TB/s)

* Pictures of long-lived decay products of short lived heavy/
Interesting particles.

e Sub-detectors parts: Tracking, Calorimeters, Muon system,
Particle ID (e.g. Cherenkov, Time of Flight)

DAQ/Trigger: Hardware/software

« Software: Reconstruction (Raw data -> particle “features”) /
Analysis

Computing: GRID Monarch Model “Cloud” Computing/Data
Management (software/hardware)




Frontiers

* Energy Frontier. Large Hadron Collider (LHC) at 13 TeV now, High Luminosity
(HL)- LHC by 2025, perhaps 33 TeV LHC or 100 TeV Chinese machine in a couple of
decades.

* Having found Higgs, moving to studying the SM Higgs find new Higgses

* Test naturalness

* Find Dark Matter (reasons to think related to naturalness)

* Intensity Frontier:

i
il

* B Factories: upcoming SuperKEKB/SuperBelle . N

* Neutrino Beam Experiments:

* Series of current and upcoming experiments: Nova, MicroBooNE, SBND,
ICURUS

» US’s flagship experiment in next decade: Long Baseline Neutrino Facility
(LBNF)/Deep Underground Neutrino Experiment (DUNE) at Intensity
Frontier

* Measure properties of b-quarks and neutrinos (newly discovered mass)...
search for matter/anti-matter asymmetry.

Damping Rings IR & detectors compressor

* Auxiliary Physics: Study Supernova. Search for Proton Decay and Dark Matter.

bunch

* Precision Frontier. International Linear Collider (ILC), hopefully in next decade. compeso
Most energetic ete- machine.

* Precision studies of Higgs and hopefully new particles found at LHC. o



Why go Deep?

 DNN-based classification/regression generally out perform hand crafted algorithms.

» Better Algorithms

e In some cases, it may provide a solution where algorithm approach doesn’t exist or fails.
* Unsupervised learning: make sense of complicated data that we don’t understand or expect.
» Easier Algorithm Development. Feature Learning instead of Feature Engineering

* Reduce time physicists spend writing developing algorithms, saving time and cost. (e.g. ATLAS >
$250M spent software)

* Quickly perform performance optimization or systematic studies.

» Faster Algorithms

After training, DNN inference is often faster than sophisticated algorithmic approach.

DNN can encapsulate expensive computations, e.g. Matrix Element Method.

Generative Models enable fast simulations.

Already parallelized and optimized for GPUs/HPCs.

Neuromorphic processors.
25



Where i1s ML needed?

* Traditionally ML Techniques in HEP
» Applied to Particle/Object Identification

e Signal/Background separation

* Here, ML maximizes reach of existing data/detector... equivalent to additional integral
luminosity.

e There is lots of interesting work here... and potential for big impact.
 Now we hope ML can help address looming computing problems of the next decade:
- Reconstruction
1. Intensity Frontier- LArTPC Automatic Algorithmic Reconstruction still struggling

2. Energy Frontier- HL-LHC Tracking- Pattern Recognition blows up due to
combinatorics

- Simulation

3. LHC Calorimetry- Large Fraction of ATLAS CPU goes into shower simulation.



A DIt about
detectors...
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HOW dO we
‘'see” particles”

- Charged particles ionize media
* Image the ions.

* In Magnetic Field the curvature of
trajectory measures momentum.

 Momentum resolution degrades as
less curvature: o(p) ~c p @ d.

* d due to multiple scattering.
 Measure Energy Loss (~ # ions)

* dE/dx = Energy Loss / Unit Length =
f(m, v) = Bethe-Block Function

 |dentify the particle type 0|y mesons

T_Mmesons

» Stochastic process (Laudau)

Protons

* Loose all energy — range out.

Energy loss in air [keV/cm]

Electrons
—————

* Range characteristic of particle type.




Tracking

 Measure Charged particle trajectories. It B-field, then
measure momentum.
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How do we “see” particles”

e Particles deposit their energy in a stochastic process know as

. . . ABSORBER
“showering”, secondary particles, that in turn also shower. o’y
* Number of secondary particles ~ Energy of initial particle. . ,,___d.:/’
l\nnYn P /’O/’f l\,\,\,\/\A
* Energy resolution improves with energy: o(E) / E = a//JE ® b/E @ c. \[‘\.@,\1_’_\:‘;_:__‘\Mf\"’ _
* a =sampling, b = noise, ¢ = leakage. g E ‘;’ Mi
; XO e
* Density and Shape of shower characteristic of type of particle.
* Electromagnetic calorimeter. Low Z medium /\/\/\
. Li cles: 0 oy - YA AN A VA ANAA
Light particles: electrons, photons, 0 —=yy interact with electrons WN /AN A/A
in medium - AN

* Hadronic calorimeters: High Z medium

* Heavy particles: Hadrons (particles with quarks, e€.g. charged WV\N\/W\/\\NV\VWNV\NA/V\V\M\\/\/\

pions/protons, neutrons, or jets of such particles)

* Punch through low Z.

* Produce secondaries through strong interactions with the
nucleus in medium.

* Unlike EM interactions, not all energy is observed.




Calorimetry

* Make particle interact and loose all energy, which we measure. 2 types:

* Electromagnetic: e.qg. crystals in CMS, Liquid Argon in ATLAS.

 Hadronic: e.g. steel +

scintillators Pos -~ ATLAS

+ e.gATLAS / PN . ;Effﬁgrlmeyrﬁ

Oate: 20712.D%<171 2:03:42

e 200K Calorimeter cells
measure energy
deposits.

* 64 x36x7 3D Image

Super Cells

1Gey

o
E,




| HC/ILC detectors

Tracking
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[LC Detectors

* Precision measurements require excellent calorimetry

 Aim for jet energy resolution giving di-jet mass resolution
similar to Gauge boson widths

e Various concepts ~ digital/high granularity calorimetry +
particle flow.

e Similarities to upgrade LHC forward detectors




Neutrino Detection

In neutrino experiments, try to determine flavor and estimate energy of
iIncoming neutrino by looking at outgoing products of the interaction.

Typical neutrino event Outgoing lepton:

Flavor: CC vs. NC, u* vs. u,evs.y
Energy: measure

Incoming neutrino:
Flavor unknown

Energy unknown

Mesons:
Final State Interactions

Energy? ldentity?

Target nucleus:
Nucleus remains intact for low Q2
N-N correlations

Outgoing nucleons:
Visible? Energy?

Jen Raaf



How do we “see” particles”

e Charged Particles traveling faster than speed of light in medium
emit Cherenkov light (analogous to sonic boom).

e Light emitted in cone, with angle function of speed and mass.

 Depending on context, allow for particle identitication and/or
speed measurement.

Neutrino " Neutrino ) (+) ©

+ o
Nudeus Electron ©

Muon or Electron

Cherenkov light Cherenkov light

J

)

o

h

|
]
|

1

2

The generated charged particle emits the Cherenkov light.




Neutrino Detectors

* Need large mass/volume to maximize chance of neutrino interaction.
* Technologies:
« Water/Oil Cherenkov
e Segmented Scintillators
Liquid Argon Time Projection Chamber: promises ~ 2x detection efficiency.
* Provides tracking, calorimetry, and ID all in same detector.
* Chosen technology for US’s flagship LBNF/DUNE program.
e Usually 2D read-out... 3D inferred.
* Gas TPC: full 3D
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-rom Data to Physics



Trigger

® Back of the envelope: : LHC  ve=taTov  Leto¥om®s’!
SN IR S R A
® |0OM Electronic Channels - thetadtio | v input ——t—-g O
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® 40 million collisions / sec at |.5 MB/Event = 60 TB/
sec.

|

—. #L_‘LJLIIJ

® Requires 2.5 m diameter bundle of Fibers to read off
detector. (90’s Tech, so | Gb/s)

LAl QLJ_‘UJLLig
3

® Fortunately interesting physics happens ~ | in |0!!

N Signati

® Trigger system (input 40 MHz):
® |ook for unique features of “interesting’”’ events

® analogue hardware determines if we should read datz

" - : .
.;‘LLLJALLLLLLLLLAJ LR qu#LLLL

off of detector (@ 100 KHz) T
: : - ; i](f&']]nr LA\ ; 'y
® Computing farm further reduces to | KHz (Run 2) s e

particle meess (GeV)

® ATLAS/CMS collect 10 PB/month, each. (?)

® High Luminosity LHC will have much busier events






The Computing Model &

e Resources Spread .OReprocgssillw.lg; of full d;ta witflw1 \
t t
Around the GRID improved calibrations 2 months | ler 3

after data taking.
*Managed Tape Access: RAWY, ESD
*Disk Access: AOD, fraction of ESD

*Derive |st pass calibrations
within 24 hours.

eReconstruct rest of the data Tiel" 2
: : : AOD
keeping up with data taking.

DPD

) AOD/ *Production of simulated
T|er O ESD events.
eUser Analysis: 12 CPU/
RAW «L O(300) Sites Worldwide Analyzer
*Disk Store:AOD
@ =2\ *Primary purpose: calibrations

Analvsis eSmall subset of collaboration
4 will have access to full ESD.

Facility o imited Access to RAW Data.



Reconstruction

Service
Starts with raw inputs (e.g.Voltages)
Cell
Low level Feature Extraction:e,g, Builder
Energy/Time in each Calo Cell
Pattern Recognition: Cluster adjacent cionA . Cell
cells. Find hit pattern. ‘Calibrator
ction B
Fitting: Fit tracks to hits.
Cluster
Combined reco:e.g. Builder
® Matching Track+EM Cluster = Electron.
: e cionA ~Cluster
® Matching Track in inter detector + ] ——

muon system = Muon ction B

N

Output particle candidates and
measurements of their properties (e.g.

energy)

er
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Data Analysis

* QObjectives:

 Searches (hypothesis testing): Likelihood Ratio Test (Neyman-Pearson lemma)

| o . P(x|Hy)
e Measurements: Maximum Likelihood Estimate > kg
P(z|Hy)

 Limits (confidence intervals): Also based on Likelihood

Likelihood

n

p({x}]0) = Pois(n|v(0)) | | p(x|6)

e=1

* nlIndependent Events (e) with Identically Distributed Observables ({x})

* Significant part of Data Analysis is approximating the likelihood as best as we
can.



Slide from Kyle Cranmer:

LIKELIHOOD-BASED COMBINATIONS

fiot (Dsim, G| at) = H Pois(n.|v.(a)) H fe(Teela) | - H folaplay)

cEchannels e=1 pPES
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Approximating the Likelihood (i)

in Quantum Field Theory

* Physics is all about establishing a very precise “model” of the underlying 1

phenomena... so we can model our data very well.
Lepton/
Quark 4-vectors

—1

; : - - Soft QCD: Quark Fragmentation
1. Generation: Standard Model and New Physics are expressed in [ - Hadronization ]

language of Quantum Field Theory.

 Enables multi-step ab-initio simulations:

= Feynman Diagrams simplify perturbative prediction of HEP

interactions among the most fundamental particles (leptons, quarks) Particle

4-vectors
2. Hadronization: Quarks turn to jets of particles via Quantum

Chromodynamics (QCD) at energies where theory is too strong to
compute perturbatively.

]‘<

)

Simulation: Particle
Interactions with

= Use semi-empirical models tuned to Data. T

3. Simulation: Particles interact with the Detector via stochastic creray
Processes Deposits in Detector

]‘<

= Use detailed Monte Carlo integration over the “micro-physics”

Digitization: Detector

4. Digitization: Ultimately the energy deposits lead to electronic signals in Response and Piloup Mixing]

the O(100 Million) channels of the detector.

M)

= Model using test beam data and calibrations.

Detector Response

b

e Qutput is fed through same reconstruction as real data.



Problems In HEP



Reconstruction

 Better and faster is always worthwhile... but there
are unsolved problems too Decompression 7| 30 Track Finding
» Neutrino Physics has a long history of hand scans. Event Splitting 3D Vertex Finding
I l
e QScan: ICARUS user assisted reconstruction. Filtering and Shower ID
Deconvolution l
« Full automatic reconstruction has yet to be / \ Corior
alorimetry
demonStrated . Hit-Finding Flash-Finding ‘
. ! | -
 LArSoft project: art framework + LArTPC T article [0
reconstruction algorithms developed by LArIAT, | }
. Event Selection
MicroBooNE, DUNE, ... e | | and Classification
& \‘{ Flash-Cluster l
e Still... full neutrino reconstruction is still far from Association Energy I
expected performance. feconseten
Vertex Properties | Position and Links. |
Primary Yes <
Source c lass CNGS nu |
Reaction type DIS _’I
Reaction curren t cC Ll
Incoming particle nu mu K|
Source Object not set ;’l
: [ 1 save ADC on wires |
OK I Cancel I/




Computing

« Computing is perhaps the biggest challenge for the HL-LHC

160

Higher Granularity = larger events. %
I 140
=
O(200) proton collision / crossing: tracking pattern recognition
combinatorics becomes untenable. 100

80

O(100) times data = multi exabyte datasets.
Moore’s law has stalled: Cost of adding more transistors/silicon area no longey
decreasing.

20

Preliminary estimates of HL-LHC computing budget many times larger than -
LHC.

Problems: Tracking Pattern Recognition, Simulation (Geant and NNLO),
Calorimetry (better trigger)

e Solutions:

Leverage opportunistic resources and HPC (most computation power in
highly parallel processors).

Highly parallel processors (¢.g. GPUs) are already > 10x CPUs for certain
computations.

e Trend is away from x86 towards specialized hardware (¢.g. GPUs, Mics,
FPGAs, Custom DL Chips)

« Unfortunately parallelization (i.e. Multi-core/GPU) has been extremely a
difficult for HEP.

T1+T2 CPU [kHS06]

Eric La

GRID
ATLAS
CMS

wlHc, Room for improvement - -

ALICE

Historical growth of 25%/year

§~~
—

ATLAS resource needs at T1s & T2s
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https://indico.cern.ch/event/346005/contributions/1749562/attachments/681981/936896/ECFA-HLLHC-Aix-Les-Bains-Krzewicki.pdf

| ikelihood Approximations

* Need F({xe}|0) of an observed event (e). The better we do, the more sensitive our measurements.
o Steps 2 (Hadronization) and 3 (Simulation) can only be done in the forward mode. ..
= cannot evaluate the likelihood.
* S0 we simulate a lot of events and use a Probability Density Estimator (PDE), e.g. a histogram.
* {xe} = {100M Detector Channels} or even { particle 4-vectors } are too high dimension.
* |nstead we derive {xe} = { small set of physics motivated observables }| = Lose information.
» [Isolate signal dominating regions of {xe} = Lose Efficiency.
e Sometimes use classifiers to further reduce dimensionality and improve significance
* Profile the likelihood in 1 or 2 (ideally uncorrelated) observables.
e Alternative, try to brute force calculate via Matrix Element Method:

P(p"**la) = = [ d®dxydxs| M, (p)|*W (p, p***)

e But it's technically difficult, computahonally expensive, mistreats hadronization, and avoids
simulation by highly simplifying the detector response.



Ssummary: Why DL+HEP?

« HEP handles world’s largest datasets.

« HEP scientists regularly apply and develop “Data Science' technigues
 HEP scientists are well versed in data engineering.

o Build Models

e Physics models are mathematical based on minimal set of rules with as little empirical
modeling as possible.

 ML/DL models are completely empirical... but written in mathematical language
familiar to HEP.

 Hard problems in HEP require new approaches... such as DL. More at later lecture.

 |nsufficient computing resources for upgrade to LHC.

e Some cases, difficulty writing algorithms that perform as well as human eye.



‘Lecture”



DL Basics



Ingredients of ML

 Problem Formulation. Specity:
» Data Set. Inputs/Outputs
* F( Input|Parameters ) = Output
- Cost (aka loss) function
 Compare outputs: ML vs Ground Truth
- Optimization

e Choose how to find best parameters



Data Basics

* How do we train neural networks... or apply them (inference)?
* Data are stored in “tensors”.
* Basically an N- Dimensional Array with a “shape”
* shape = (): Scalar

* shape = (N,): Vector

shape = (N,M): Matrix

shape = (N1, N2, N3, ..., Nr): Rank R Tensor
* Inputs: X
* Can be arbitrary shape. Typically first dimension is the example index (usually an “event” or collision in HEP)

* Example: Let’'s say your examples are students, and your data is their age, sex, years at UTA, undergrad/grad, and
department

* X=[[20,0, 2,0, 4], # 20 year old, 0=male, 2=junior, 0=undergrad, 4=computer science
[ 25,1, 2,1, 3], # 25 year old, 1=female, 2=3nd year, O=grad, 4=physics
[ 23, 0,0, 1, 3] ] # 25 year old, 1=make, 2=1st year, O=grad, 4=physics

« X[0] =[20, 0, 2, 0, 4]: the first students data.
e X[O][3] = 1. This is a graduate student
* Qutputs: Y
* Can be arbitrary shape. Typically first dimension is the example index (usually an “event” or collision in HEP)

* Example: Y = 0/1, student does not / does know python



Supervised

» Classification
* Regression
Transfer
Unsupervised

e Clustering
Semi-supervised
« Auto-encoders

Reinforcement

_earning

Q




Supervised

* Tasks: Classification, Classification with missing
iInputs, Regression, Transcription, Machine
Translation, Structured Output

 “Traditional” Technigues:

* Linear/Logistic Regression

e Support Vector Machines

e Decision Trees



Un-supervised

* Tasks: Clustering, Anomaly Detection, Imputation
of Missing Values, Synthesis & Sampling,
Denoising, Density Estimation

 “Traditional” Technigues:

* Principle Component Analysis

* k-means Clustering



Artificial Neural Network

—

* A simple one layer NN

* FX|a=W,b)=f(WX+b)

- W, b = "weights”, “biases”

. f(X) T ' ' ' y) “‘<% , : \
= “activation functio =~ T

lvation tunction LT T . .

WS i=1 /

- Must be non-linear. T/



Optimization

Training = Minimizing cost function
w.r.l. parameters a

C[F(Xtrain‘&)a ﬁrain] = 0(52)

Gradient Decent (Newton’s Method):

e Gradient points to direction of
maximal change.

e |terate (e sets the step size)

(32@'4_1 — O_ZZ — EVC(&)



Bayesian vs Frequentist

e Supervised Learning:
e Data:(X,Y)
e True:f"(X)=Y
e |leamnf(XIlw)~f
e Frequentist:
e (X,Y)random.
e |deal w exists.
e Estimate w.
e Bayesian:
e (X,Y) fixed.
e wisrandom.

e |[earnp(w)



Machine Learning Problem Formulation

* Split Datasets:
* (Xirain, Yrrain) = training dataset
* (Xiest, Yiest) = test dataset
e (X ) = unlabeled data
» Set Goal.
* Inference algorithm/function F(X | @) = Ypredict.
* F can be a heuristic. e.g. if (computer science student) then (student knows python).
* F can be anything
* a are parameters of the function, for Neural Networks, these are weights.
« Note that in a simple classification problem, Yiain can be 0 or 1 for any example. But Ypredict Will usually be between 0 and 1.
* Training: (for Neural Networks)
* Optimize (usually a minimization) a cost function F(X | a) = C( F(Xirain| @), Ytrain ) W.r.t. @
* For example, C = [F(X | @) - Yirain]?
* Oirained= result of training
 Validation:
» Compute cost function on test data C( F(Xtest| Qtrained), Yiest )
* Other metrics. For example:
* Select Yiwest=1 and see how often F(Xest| Oirained) > 0.5
 Inference:

° Ypredict = F(Xl Gtrained)



Deep Learning
Techniques

&
Examples In HEP



~eature Learning



Vlotivations

Dimensions = 3
Dimensions = 2 Points = 4

* C fD. . |. Points = 42 6o o o
urse or bimensionality o S A
Dimensions = 1 Oo OQ OO OO 5
Points = 4 © O O O oOOO
0 o o o 0O O O o OO 5
MOOotNNESs o—o oo e o oo

© O O O o o o o [°

* Manifold Learning

 Natural Data Lives in low dimensional (Non-Linear)
Manitfold.

Pics from Yann Lacun and Fei Fei Li Lectures
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Data Manifold & Invariance: &'

Some variations’ must be eliminated - :] | MA;LeClin
_ | - =\ anzato

# Azimuth-Elevation manifold. Ignores lighting. [Hadsell et al. CVPR 2006]
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— —
smiling neutral neutral
woman woman man

smiling man

man man woman
with glasses without glasses without glasses

Results of doing the same
arithmetic in pixel space

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y. The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.



~eature Learning

* Feature Engineering: ¢.g. Event Reconstruction ~ Feature Extraction, Pattern Recognition, Fitting, ...
* Deep Neutral Networks can Learn Features from raw data.
 Example: Convolutional Neural Networks - Inspired by visual cortex

» Input. Raw data... for example 1D = Audio, 2D = Images, 3D = Video

» Convolutions ~ learned feature detectors

- Feature Maps

» Pooling - dimension reduction / invariance

» Stack: Deeper layers recognize higher level concepts.

» Over the past few years, CNNs have lead to exponential improvement / superhuman performance on Image
classification challenges. Current best > 150 layers.

» Obvious HEP application: “Imaging” Detectors such as TPCs, High Granularity Calorimeters, or Cherenkov Ring Imaging.
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Why Deep?

e “We can approximate any function as close as we want with shallow architecture.
Why would we need deep ones”?”

 Deep machines are more efficient for representing certain classes of functions
e They can represent more complex functions with less “hardware”
* Hierarchy of representations with increasing level of abstraction.
* Images: Pixel>Edge— Texton—Motif=Part—=0Object
e Text Character=Word—Word Group—Clause—Sentence—Story
 Speech: Samples—Spectral Band—Sound—...—»Phone—Phoneme—Word
e In DL, these are learned features...
e Each stage transforms input representation into high-level representation
* High-level are more global/invariant

* Low-level are shared among categories.



HEP Searches
(SUSY Example)



SUSY at LHC

10 150 X 250 500 350 400 450 500




Inclusive Signatures

Signature

Motivating Model(s)

Comments

| Jet + 0 Lepton + MET

* Large Extra Dim (ExoGraviton)
e strong qG production, G propagate in extra Dim
* Planck Scale is MD in 4+0 dim
e Normal Gravity >> R

e SUSY

e qg—ISR + 2 Neutralino or squark + Neutralino

* Not primary discovery
channel for SUGRA, GMSB,
AMSB... but helps in
characterization

* Possible leading discovery
for neutralino NLSP with
nearly degenerate gluino

2,3,4 [b]-Jet + O Lepton
+ MET

e Squark/gluino production
* squark—q+LSP, gluino— q+squark+LSP

e Possible leading squark/
gluino discovery channel

e Must manage QCD bkg

2,3,4 [b]-Jet + | Lepton
+ MET

e squark/gluino production with cascades which include electroweak
(or partner) decays
* high tan B leads to more b/t/T’s

* Lepton requirement
suppresses QCD
* T’s partially covered by e/

2 lepton + MET

e Same sign: gluino cascade can have either sign lepton... squark/gluino
prod can produce same sign.

e Opposite sign: squark/gluino decay mediated by Z (or partner)

e Same flavor: 2 leptons from same sparticle cascade must be same
flavor

e Reduced SM backgrounds
for same sign

e Opposite Sign-Flavor
Subtraction

3 lepton + MET

e SUSY events ending in Chargino/neutralino pair decays
* Weak Chargino/Neutralino production
 Exotic sources

e Low SM bkgs

2 photon + MET

e GMSB models with gravitino LSP and neutralino or stau NLSP
* UED- each KK partons cascade to LKP which decays to graviton + Y

* No SUSY limit (not
sensitive at the time)




O Lepton Event Selections

No leptons (medium electrons and muons) >10 GeV

4 signal regions defined to maximize Msquark-Mgluino

coverage :

At least 2 Jets

® | ow mass squark anti-squark (A)

® High mass squark anti-squark (B)

At least 3 Jets

® Direct gluino pairs (C)

® Associated gluino-squark (D)

® Higher x-section — Tighter cuts!

e = > PP + BRI

i—1

(pT ’ pT ’ pT)

min
qT qT _EITIl"a"s

A B C D
5 Number of required jots 2 2 =3 >3
E Leading jor pp [GeV] = 120 = 120 = 1200 = 120
f Other jet{s) pr [GeV = A0 = 10 10 = A0
X l. .-m.:* GoVo = 100 = 100 = 1000 = 100
2 Ad(jet, ) w04 »04 »04 =04
B 03 — 025 %025
2 e [GoV] =500 - > 500 > 1000
E mepa [GeV — > 300 - —

{max (”?T (pT , q‘”), mr (p{Tj}, ﬂfj))}

H’lT (p(f) (1) 2|p(f)||q(l)| . 2p(1) )

(1)
T



Standard SUSY Anal

e Require:
e Large Et (> 100 GeV) : N
* 4 Hard Jets U O O O O =
+ Sphericity? iro=gi. i AERRRRREEE
* Look at: Mur= S pr + £r  [UMRACCAR Y RN
for N=0,1,2 (SS/OS) leptons IR i B R

vent

SES
2Same Sign

: SY (B)
1 : = = = = Sum of all BG
3. LePtOns .............. Sp— T —— e tbaredets [
: : : : : : Do

w
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Razor variables

e Razor variables (C. Rogan arXiv:1006.2727) are kinematical variables to identify SUSY-like events

e Variables take advantage of symmetric decay of SUSY events by forming two hemispheres (aka
mega-jets) using all final state visible objects

q G—gX

LAB FRAME

e define variables that take advantage of the symmetry of the SUSY event:

BOOST

4

v

R-FRAME

rough-approximation frame
CM of two heavy produced
particles same as rest frame
of individual heavy particles

YrM R contains longitudinal event information, related to the SUSY mass scale
MR contains transverse event information
R = MmR/yrMr a signal-to-background discriminant
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The Ist ATLAS SUSY paper

MSUGRA/CMSSM: tanfi = 3, A = 0. u=0

-
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8,(500 Gev) CDF §.q, tanp=5, 2 fb

| '§.{500 GeV)

IIIIIIIIIII

{0 . | \\ ‘ ; ) ) : .
b Emiss DN VRN AT W (S
100 200 300 400 500 600 700 800 900
m, [GeV]

* heavy colored particles production fully benefits
from the LHC energy

if SUSY: gluinos & squarks

surpassed Tevatron with only 0.035 fb-!

one of the top-cited LHC papers



ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)

MSUGRA/CMSSM : 0 lep +j's + E s
MSUGRA/CMSSM : 1 lep +j's + E e
Pheno model : O lep +j's + E g (m@) <2 TeV, Ilghtx ) ATLAS
Pheno model : O lep +j's + E s ass (m@<2Tev, Ilghtx ) Preliminary
Gluino med. %" (§—a@y’) : 1 lep + j's +E gmass  (m@)<200GeV,m’) %m(’i )+m(@))

GMSB (I NLSP) : 2 lep (OS) +j's + E; .o gmass (tanp<15)
GMSB (t LSP) 121 + j 's + ET oo | L2077 8 Tev 1210.1314] 1.40Tev. g Mass (tang > 18)
GGM (bino NLSP) :yy + E gmass  (m()>50GeV)

GGM (wino NLSP) :y + lep + E;::SS § mass det =(4.4-20.7) fb"
GGM (higgsino-bino NLSP) 1y +b +E m gmass  (m)>220 GeV) (s=7 8TeV
GGM (higgsino NLSP) : Z + jets + E 1 e 9 mass  (m(H) > 200 GeV) S=1 e
Gravitino LSP : monolet' +E 7 iss F ' scale (m(G) > 10" eV)
g mass m(>z <200 GeV)
T miss | L=207 fb”, 8 TeV [ATLAS-CONF-2013-007] 900GeV. g mMass (any m(;( 8 TeV, all 2012 data

- 0 lep + multl-j s+E gmass (m@ )<3oo GeV)
XL. T,miss ~
g mass (m(;“( ) <200 GeV)

T,miss

Inclusive searches

T,miss

.Qﬁt.tx :0lep+3bjs +E; ~
BB, B.—by’ 1 0lep + 2-b-jets + £ . bmass (@) <120 Gev)
bb b —>t')“(+ 2 éS -lep + (0-3b-)j's + E ., [£=2071b" 8 TeV [ATLAS-CONF-2013-007] " 430Gev. b mass (mk) 2m(>2
tt (Ilght) t—>12§z: 172 lep (+ b-jet) + E; tmass  (m@)=55Gev)
T (medlum) t—>bx1 ~1 lep + b-jet + E Tmiss | =207 6", 8 TeV [ATLAS-CONF-2013-037] 160-410Gev  t mass (m&?) =0 GeV, m(x;) = 150 GeV)
T (medlum),t—>bx :2lep + ET miss | L=13.0 1", 8 TeV [ATLAS-CONF-2012-167] NiEoaaeEeW t mass (m(;z =0 GeV, m(t )-m(x) = 10 GeV)
T (heavy) t—>tX0 1 Iep + b-jet+ E L=20.7 fb™, 8 TeV [ATLAS-CONF-2013-037] 200-610Gev  t mass (m(;“(
Tt (heavy), T—t7°:0 Iép + 6(2b-)jets + E . . |L=20.5b", 8 TeV [ATLAS-CONF-2013-024] 320-660Gev t mass m(f(
1t (natural GMSB) Z(—ll) + b-jet + E L=20.7 fb", 8 TeV [ATLAS-CONF-2013-025] 500Gev t mass (m(x;) > 150 GeV)
(X3 t,—t +Z Z(—>|I) +1 Iep + b-jet + E Fmiss. | 207 fb™, 8 TeV [ATLAS-CONF-2013-025] » 520 GeV t mass (m(ﬂ) =m(>2‘1’) +180 GeV)

----------- 22 LT |—>fX‘ :2lep+E L=4.7 fb", 7 TeV [1208.2884] [gsHescev! | mass m()Z
')242(4, % +—>Iv(|v} 2lep+E L=4.7 fb™, 7 TeV [1208.2884] . 110-340 GeV X mass m(;} ) <10 GeV, m(i, jz.-m(;‘( +m(>2 ))
Ay Ko Xy 2TV (tv) 12T+ E, | |L=207 1" 8 Tev [ATLAS-CONF-2013-028] 180-330 GeV x mass (m(z) <10 GeV, m(‘ 2 (M) + m(;z
TR | vl |(VV1) |V| I(Vv) :3lep + E o |L=207 " 8 Tev [ATLAS-CONF-2013-035] 600 GeV. . mass m()z =m@), m@;) =0, m(Iv)as above)
}?5{ =W *X Z(* 320 : ' | =207 b", 8 TeV [ATLAS-CONF-2013-035] 315 GeV X mass mex) = m& mG( ) 0, sleptons decoupled)
: long- I|ved X X mass (1 <)) <10ns)
Stable § g, R- hadrons low B, [3y g mass
GMSB, stableT : low p v Tmass <tan[5 <20)
GMSB, X —>yG non- pomtlng photons X, mass (0.4 <(7.) )<2ns)
q mass (1 mm<crt<1m,gdecoupled)
LFV : pp—>v +X,V_ —e+u resonance vV.Mmass  (i,=0.10,2,,=0.05)
LFV : pp—v_ +X,v,—e(u)+t resonance V. Mmass (i, =0.10,4,,=0.05)
Blllnear RPV CMSSM 1lep +7j's + Er s g=gmass (g, <1 mm)
x Yo X —>W%§1 —eev euv_:4 lep + E L=20.7 fb", 8 TeV [ATLAS-CONF-2013-036] 760 GeV x mass (m(Z)) > 300 GeV, ., >0)

~1+~ T,miss

Ao e X —>1:1:V erv 13 Iep +1t+E T miss L=20.7 fb", 8 TeV [ATLAS-CONF-2013-036] 350GeV| . mass (m()Z ) >80 GeV, A, >0)

9— qqq 3-Jet resonance pair g mass
—it, T—bs : 2 SS-lep + (0-3b-)j's + E _ L=20.7 fb”, 8 TeV [ATLAS-CONF-2013-007] 880 GeV mass  (any m()
j miss-
Scalar %uon 2- jet resonance palr L=4.6 fb™, 7 TeV [1210.4826] [Ho02876ev sgluon mass  (incl. limit from 1110.2693)

WIMP interaction ( irac ) : ‘monojet' + £ _ _— M* Srtale (m,, <80 GeV, limit of < 687 GeV for D8) |
’ | | L 1 1 11 | | | L1 | | | I I |

T,miss

3rd gen. squarks
direct production

T,miss

T,miss

10" 1 10

*Only a selection of the available mass limits on new states or phenomena shown. Mass scale [TeV]
All limits quoted are observed minus 1o theoretical signal cross section uncertainty.

Higgs is at 125 GeV and no sign of new physics at LHC — Nature is not “natural’?




DEEP LEARNING IN HEP e
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Neutrino PnysICS

Core Physics requires just measuring neutrino flavor and energy. HFadionic
80 eature
T : : — - I Map
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http://arxiv.org/pdf/1604.01444.pdf
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College of William and Mary | . NC Background |
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Why Convolutional N | gt .

Networks?

» That means that any oscillation analysis can benefit fror
precise identification of the interaction in two ways:
» Estimating the lepton flavor of the incoming neutrino.
« Correctly identifying the type of neutrino interaction, t
better estimate the neutrino energy, aka is it a quasi
elastic event or a resonance event?

* Qur detectors are also often the perfect domain:
* Large ~uniform volumes where spatially invariant
response is a benefit.
* Usually only one or two detector systems.

t-SNE projection of final features to 2D

However our CNN achieves 73% efficiency and 76% purity on -
Ve selection at the s/vs+ b optimized cut.
Equivalent to 30% more exposure with the old PIDs.




Other interesting problems...

* Matrix Element Method vs DNNS.
« MEM is supposed to lead to most sensitive measurements.
 But DNNs can reproduce MEM, and avoid simplifications in MEM by learning on full simulation.
» Fast Next to Leading Order (NLO) and NNLO...
 |HC/HL-HLC require ever improving theoretical calculations,
» Essentially the probability of seeing a set of particles with specific kinematics.

« Calculations become exponentially more computationally demanding as we go to higher
orders in perturbation theory.

» FastNLO technigue performs the computation once (function from high dimensional space to a
number) and projects down to 3D histogram.

 DNNs could instead learn the high dimensional function.
* We can imagine perhaps learning soft QCD (~ pythia) from data...

o Simplity PDF systematic error evaluation...



| earning Representations

« Example: Daya Bay Experiment (Evan Racah, et al)

o Input: 8 x 24 PMT unrolled cylinder. Real Data (no simulation)

e 2 Studies:

Supervised CNN Classifier

e Labels from standard analysis: Prompt/Delayed Inverse Beta Decay,

Muon, Flasher, Other.

e Convolutional Auto-encoder (semi-supervised)

» Clearly separates muon and |IBD delay without any physics knowledge.

» Potentially could have |ID’ed problematic data (e.g. flashers) much earlier.
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(a) Example of an “IBD delay” event
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(b) Example of an “IBD prompt” event
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http://arxiv.org/pdf/1601.07621v1.pdf

Recurrent DNNSs



Votivation

DNN inputs:
Fixed size: images, video, raw data from detector...
Variable size: audio, text, particles in event... sequences.
Usual NNs map input to output.
No memory of previous information.
Recurrent NN: feed some output back into self.

DNNSs can represent arbitrary functions... RNNs can represent arbitrary programs.

(h) G (h)
o Lo !

A —> —> >

b o S S

http://colah.github.io/posts/201 5—08—Understanding—LSTI\/Is/




RNN input/output

one to one one to many many to one many to many many to many
1 I ‘ I 1 I
Bt - ! Bt i o Bt Bt Bt - Bt
I ! f 1 1 Pt b1 1

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Basic RNN

tanh(Whhht_l + thl‘t)

Why « by

y:

hut

Ar— A— A — A — A

® & o

Q<@
oo
e
@—<+—®
e
e




target chars:

output layer

hidden layer

iInput layer

input chars:

“e” ik “Ir “0”
1.0 0.5 0.1 0.2

92 0.3 0.5 15
-3.0 1.0 1.9 -0.1

4.1 12 11 22
L
0.3 1.0 0.1 |w nhn|-0.3
01— 03 —>-05—> 0.9

0.9 0.1 0.3 0.7

R R R
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0

“h” “e” “I” “l”



[ STM

& Forget
Cell State

New info

Construct output

v

f4» ) :. 'l J‘ ’ |.f'l'7 |~ iiiltl + hr :

t'.t — g Ijl'('.'."l"i"f— r:‘577‘ + b'-}

1

Ci — "'f“'l”:(’{"};_.?'_"'i‘-.'—l..;r.a_ I b

~

= foa Cr =iy O

‘)l- T :' "1-"” : h r—1. £ |- | {).'

frg — op % Lanh (€7



]
A=l

Neural Turing
Machines

have external memaory
that they can read and
write to.

Other RNNs
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Interfaces

allow RNNs to focus on
parts of their input.
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Programmers

can call functions,
building programs as
they run.
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Semi-supervised Learning

* Basic idea: Train network to reproduce the input.

* Example: Auto-encoders input culput
5 code sy

* De-noising auto-encoders: add noise to input only.

» Sparse auto-encoders:

» Sparse latent (code) representation can be exploited for
Compression, Clustering, Similarity testing, ...

dacader
ancoder

Anomaly Detection
 Reconstruction Error

e Quitliers in latent space
Bottleneck Hidden Layer

Transfer Learning L _j\ l /(4

() ()

o oA - o 7 /vv;\"
* Small labeled training sample? /. U, AJ -\
N ‘ -

>

\
/
I

-

 Train auto-encoder on large unlabeled dataset (e.g. data). Q O A~ U

\
{,. N ~/( £
P A P
e Train in latent space on small labeled data. (e.qg. rare j/ \_
signal MC). \_

» Easily think of a dozen applications.
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Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from —1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally 1n (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.

https://arxiv.org/pdf/1606.03657.pdf
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Generative Models



Auto-Encoding Variational Bayes

Diederik P. Kingma Max Welling
Machine Learning Group Machine Learning Group
Universiteit van Amsterdam Universiteit van Amsterdam
dpkingma@gmail.com welling.max@gmail.com
Abstract

How can we perform efficient inference and learning in directed probabilistic
models, in the presence of continuous latent variables with intractable posterior
distributions, and large datasets? We introduce a stochastic variational inference
and learning algorithm that scales to large datasets and, under some mild differ-
entiability conditions, even works in the intractable case. Our contributions is
two-fold. First, we show that a reparameterization of the variational lower bound
yields a lower bound estimator that can be straightforwardly optimized using stan-
dard stochastic gradient methods. Second, we show that for 1.i.d. datasets with
continuous latent variables per datapoint, posterior inference can be made espe-
cially efficient by fitting an approximate inference model (also called a recogni-
tion model) to the intractable posterior using the proposed lower bound estimator.
Theoretical advantages are reflected in experimental results.

https://arxiv.org/abs/1312.6114

Stochastic Backpropagation and Approximate Inference
in Deep Generative Models

Danilo J. Rezende, Shakir Mohamed, Daan Wierstra
{danilor, shakir, daanw}@google.com

Google DeepMind, London

https://arxiv.org/abs/1401.4082




Encoder q(z|x)

Data: x Reconstruction: X

Decoder p,(x|z)

* a probabilistic encoder ¢4 (z].x), approximating the true (but
intractable) posterior distribution p(z|x), and
* agenerative decoder py(x|z), which notably does not rely on any

particular input x.

Both the encoder and decoder are artificial neural networks (i.e.
hierarchical, highly nonlinear functions) with tunable parameters ¢» and @,

respectively.

Learning these conditional distributions is facilitated by enforcing a
plausible mathematically-canvenient prior over the latent variables,
generally a standard spherical Gaussian: z ~ J\"(O, 1).

10, ) = — e (ol [10g P (2:]2)] + K L(gy(2]:)p(2))

http://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and.htm|
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(c) Lighting (d) Wide or Narrow

Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from —1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally 1n (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.

https://arxiv.org/pdf/1606.03657.pdf
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Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio?
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7
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Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution p4 (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping @ = (G(z) imposes the non-uniform distribution p, on
transformed samples. GG contracts in regions of high density and expands in regions of low density of py. (a)
Consider an adversarial pair near convergence: p, 1s similar to pgaa and D 1s a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D*(x) =

-~ Zfiaﬁai?g @) (c) After an update to GG, gradient of D has guided GG(z) to flow to regions that are more likely

to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a

point at which both cannot improve because p; = paaa. The discriminator is unable to differentiate between

the two distributions, i.e. D(x) = =.

? hitps://arxiv.org/abs/1406.2661
Example: http://cs.stanford.edu/people/karpathy/gan/
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https://arxiv.org/abs/1406.2661

Generative Adversarial
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hitp://www.kdnuggets.com/2017/01/generative-adversarial-

networks-hot-topic-machine-learning.html
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Generared hearooms. Source: “Unsupendsed Representation learming with Deep Convolutional Generative Adversarial Nerwarks”

ntipsAforxiv org/obs/1571.0643dy2

Generoted QAR 10 samples. Source: “improved iechriques for lronimz GANS™ hilps:/Fanav.org/abs/Te06.03498



Generative Models

Electromagnetic
shower (e, y)

» Likelihood Approximation relies simulation
 Most computationally expensive step, so any speedup has huge impact.
» More generally, simulation based on data would be a powerful tool.
o For example, we can build a Hadronization model purely from data.
 DNNs Generative Models enable building simulations purely from examples.

» Generative Adversarial Nets (Goodfellow, et. al. arxiv:1406.2661).
Simultaneously train 2 Networks:

» Discriminator (D) that tries to distinguish output and real example~
« Generator (G) that generate the output that is difficult to distingui:
» Variational Auto-encoders:
» Learn a latent variable probabilistic model of the input dataset.
o Sample latent space and use decoder to generate data.

» Particle showering is slowest part of the micro-physics simulation...

» Various techniqgues for fast showering (e.g. shower template libraries) are : &
common.

 DNN Generative Models are being pursued inside the experiments (K.
Cranmer, G. Louppe, ...) for this task...



Learning Particle Physics by Example:

Location-Aware Generative Adversarial Networks for

Physics Synthesis

Luke de Oliveira®, Michela Pag

“ Lawrence Berkeley National Lab
® Department of Physics, Yale Un

F-mail: 1ukedeoliveira@lbl.

ABSTRACT: W provide a bridg
and simulated physical processe
Adversarial Network (GAN) are
cnergy depositions from particle
the Location- Aware Generative A
from simulated high cnergy partic
span over many orders of magnit
jet mass, n-subjettiness, ete.). W
of image quality and validity of {
a basc for further explorations of

CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic Calorimeters
with Generative Adversarial Networks

Michela Paganini®®, Luke de Oliveira®, and Benjamin Nachman®

[

Liwrence Berkeley Naliond Loboradory, T Cyclotron Bd, Berkeley, CA. 42720, USA
" Department of Phusies, Yale University, New Haven, OT 06520, USA

E-nul: michela.pagenini8yale.edu, lukedeoliveira@lbl.gov, bnachman@cern.ch

ARsTRACT: Simulation is a kev component of physics analysis in particle physics and nuclear physics.
The most computationally expensive siimulation step is the detailed modeling of particle showers inside
calorimeters. Full detector simulations are too slow to meet the growing demands resulting from large
quantities of data; current fast simulations are nat precise enough to serve the entire physics program.
Therefore, we mtroduce CALOGAN, a new fast siinulation based on generalive adversarial neural
networks ((GANs). We apply the CALOGAN to model electromagnetic showers in a longitudinally
sepmented calorimeter. This represents a significant stepping stone toward a full neural network-hased
detector simulation that could save significant computing time and enable many analyses now and
in the future. In particular, the CALOGAN achieves speedup factors comparable to or better than
existing fast sunulation technigues on CPU (100x-1000x) and even faster on GPU (up tu ~ 109x))
and has the capability of faithfully repreducing many aspects of key shower shape variables for & variety

ol particle types.

https://arxiv.org/pdf/1701.05927 . pdf

https://arxiv.org/pdf/1705.02355.pdf
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Qualitative Performance (2)
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Timing

M. Paganini et al., 1705.02355

Generation Method | Hardware | Batch Size | milliseconds/shower
GEANT4 CPU N/A
T
CPU 10 5.11
128 2.19
1024 2.03
CALOGAN 7 A
4 3.68
GPU 128 0.021
512 0.014
1024 0.012 €—




Shower Shapes

(|

Check: does the LAGAN recover the true data distribution as
rojected onto a set of meaningful 1D manifolds”
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Other Useful Techniques

 Parameterized Classifiers
* Adversarial Technigques
 Domain Adaptation

e Pivot



Special Topics



Calorimetry with
Deep Learning



Calorimeter Dataset

* CLIC is a proposed CERN project for a linear accelerator of electrons
and positrons to TeV energies (~ LHC for protons)

 LCD is a detector concept.

* Not a real experiment yet, so we could simulate data and make it
public.

* The LCD calorimeter is an array of absorber material and silicon
sensors comprising the most granular calorimeter design available

* Data is essentially a 3D image

« With at effective eta/phi resolution of 0.003x0.003, we can down sample
to get ~ ATLAS granularity: 0.025x0.1 (pre-sampler) to 0.2x0.1 Tile D. . , RoC Curve

100+

® Data: 1 million single e, v, 7t+-, 0. 10-500 GeV of energy. =

mmm bcnnl0
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090 || mmm bcnnl0000
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. conv10
conv100
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conv10000
conv2D
conv2D10
conv2D100
conv2D1000
conv2D10000
densel0
densel00
densel000
densel0000
scnnl0
scnnl100
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scnnl10000

Electromagnetic
shower (e, y)

085

Tue Negative Rate

0.80 |-

075}

ARNRRNR

L L L :
0.70 0.75 0.80 085 090 095 100



Calorimetry with Deep Learning: Particle
Classification, Energy Regression, and Simulation for
High-Energy Physics

Federico Carminati, Gulrukh Khattak, Maurizio Pierini Amir Farbin
CERN Univ. of Texas Arlington
Benjamin Hooberman, Wei Wei, and Matt Zhang Vitéria Barin Pacela
Univ. of Illinois at Urbana-Champaign Univ. of Helsinki

California Institute of Technology

Sofia Vallecorsafac Maria Spiropulu and Jean-Roch Vlimant
Gangneung-Wonju National Univ. California Institute of Technology
Abstract

We present studies of the application of Deep Neural Networks and Convolutional
Neural Networks for the classification, energy regression, and simulation of parti-
cles produced in high-energy particle collisions.We train cell-based Neural Nets
that provide significant improvement in performance for particle classification and
energy regression compared to feature-based Neural Nets and Boosted Decision

Trees, and Generative Adversarial Networks that provide reasonable modeling of
several but not all shower features.




1. e/y Particle Identification (Classification)

® Photon/lepton ID requires factor ~10000 jet rejection
e Jet like photon/lepton classification tasks:
® Task 1: Electrons vs Electromagnetic i+~ (HCAL/ECAL Energy < 0.025)
® Task 2: Photons vs Merging i (2v opening angel < 0.01 rad)
o Comparison:
® Feature based BDT and DNN
® (Cell-based DNN (fully connected).

® Significant Improvement with cell-based DNNss.
0

Y VS. T evs. T
Model acc. AUC Aegy ARpke | ace. AUC A6y  ARpkge
BDT 83.1% 89.8% - 93.8% 98.0% - -

DNN (features) | 82.8% 90.2% 0.9% 0.95 93.6% 98.0% -0.1% 0.95
DNN (cells) 872% 93.5% 9.4% 1.63 9.4% 999% 4.9% 151

Table 1: Performance parameters for BDT and DNN classifiers.

ROC curve for y vs. ©t° classifier ROC curve for e vs. n* classifier
5 1.0] 2 1.0] ~
= = [
3 8
2 0.8 9 0.9
= =
2 5
= 0.61 =
20 o0
wn _ ‘T
Z 0.4 g 0.7
0.21 — DNN (cells) 0.6 — DNN (cells)
DNN (features) ' DNN (features)
0.0 —— BDT 05 — BDT
00 02 04 06 08 1.0 T00 01 02 03 04 05

n® background efficiency n* background efficiency



2. Energy Calibration (Regression)

® Energy resolution improves with energy:.

e 0(E)/ E = aNE ® b/IE ® c.

® g =sampling, b = noise, ¢ = leakage.

o Comparison:

e Simple calibration: Sum energies (no noise) and scale.

® CNN calibration: Cells — Particle energy
® Significant Improvement with CNN

Simple Linear Model
Particle Type a b c
Photons 55.5 1.85 1245
Electrons 42.3 131 1037
Neutral pions 55.3 1.71 1222

Charged pions 442 25 11706
CNN Model
Particle Type a b C

Photons 18.3 0.75 131
Electrons 18.7 0.574 111
Neutral pions 19.3  0.45 231
Charged pions 114  1.02 893

102 -

Energy resolution

»- Linear fit: Photons
%+ Linear fit: Electrons
i+ Linear fit: Neutral Pions

Linear fit: Charged Pions

® CNN: Photons

# CNN: Electrons

m CNN: Neutral Pions
CNN: Charged Pions

100 200 300 400

True Energy (GeV)

500



3. Simulation (Generative Model)

® Physics measurements typically require extremely detailed and precise
simulation,

® Software packages (e.g. Geant4) simulated the well understood micro-
physics governing the interaction of particles with matter.

® Generally very CPU intensive

o Example: ATLAS experiment uses half of the experiment’s computing
resources for simulation.

® Task: CNN GAN conditioned on particle energy
® Accelerate simulation by many orders of magnitude.

e Promising start... but not yet faithfully reproducing all commonly used
features extracted from generated images.

— GAN 030] —— GAN
Geant ozs| ’ Geant

. . 3 . 4.
ECAL 2nd y moment [N_;] ECAL 2nd z moment [N ;]



GANSs for (fast) simulation

Sofia Vallecorsa for the GeantV team

DS@HEP. FNAL. Mav 2017
Preliminary

Some Images

O Slice energy spectrum , l

O Start with photons & electrons i



GAN generated electrons
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JET SUBSTRUCTURE

Many scenarios for physics Beyond the Standard Model

include highly boosted W, Z, H bosons or top quarks

Low top pr High top pt

q
W _
g W boost .
t _
b
b

|dentitying these rests on subtle substructure inside jets

e an enormous number of theoretical effort in developing
observables and techniques to tag jets like this

b - /l_;// 0 vt. Rii
N = Y=\t
"\ mass drop ilter f‘.




T
Goal: Find W jets in}
an enormous sea of =
generic g/g jets

x4

W bosons are naturally boosted if they result
from the decay of something even heavier

V Searching for new particles

decaying into boosted W
2 bosons requires looking at the
" radiation pattern inside jets

like a digital image!




the Jet Image

J. Cogan et al. JHEP 02 (2015) 118
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occupancy (number of hit pixels)




Pre-processing & spacetime symmetries

One of the first typical steps is pre-processing

Can help to learn faster & smarter; but must be careful!
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e of the most useful physics-
oired features is the jet mass

¢=0
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energy subjet -
=0 gy subj 5
~rom Translations in ¢ 2
pixels _ —
_ are rotations %
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Why images?

W - qq

there is information encoded in the
physical distance between pixels




Modern Deep NN'’s for Classification

T
S 130~ Boosted W boson
o . L, mass+t,,,
= versus quark/gluon jet
< mass+AR
o
P r — 1,,+AR
E \
& 100" /\:e‘ -~ DNN
A o ...what the DNN
C Random is learning is
T DNN active R&D!
N~ . . .
— ~saevariations -
>0 de Oliviera et al. See also
e 1511.05190
| T o

Pr(label signal | signal)



Exciting New Directions

So far only scratches the surface
...this is a very active field of research!
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Oliveira, et. al arXiv:1511.05190

D E E P I_ E A R N | N G V S . T H E O RY Whiteson, et al arXiv:1603.09349

While the DNN shows a significant improvement with
respect to the jet mass combined with single theory
inspired variable (eg. 21, D3), only a small improvement with
respect to a BDT using several theory-inspired variables

Other Problems: S 10—

| *g,‘) Pile-up <«x>=50 _ DNN(image)

e image-based approach not o — BDT(expert)
easily generalized to non- O 10° — D}, +mass
uniform calorimeters > I — ¢ '¥mass

e not easy to extend to tracks, % 10 —Jetmass
projecting into towers looses m
information 10k

e theory inspired variables work on _
set of 4-vectors & have 1

oo by by b by N
O 02 04 06 08 1

important theoretical properties Signal efficiency



FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

VP

VBG NNS vBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG

Analogy: N

going TO NP

word — particle N\

to DT NN

arsing — jet algorithm
p g J 9 trlle denltist

R —




QCD-INSPIRED RECURSIVE NEURAL NETWORKS

(arXiv:1702.00748)
- e
® . *
- o e . ®
Y . v b e N W o e
. * Each node combines 4-momentum in (E-
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hﬁt{ZH@lfthin®h§+ otherwise scheme recombination of o,) and a non-linear
“— ZR kp TZN O Ug ] ] .
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Ok = {ok(Lk)—l— 0, otherwise hkR € R4O
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% |~ softmax (Wz Eﬂ +bz) e "gating” allows for weighting of information of
| Z V] uy

" L/R children and for to flow directly along one
r; = sigmoid (Wr [h%i] —i—br) braﬂCh




QCD-INSPIRED RECURSIVE NEURAL NETWORKS

1/ Background efficiency
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W-jet tagging example
using data from Dawe, et
al arXiv:1609.00607

down-sampling by
projecting into images
looses information

RNN needs much less
data to train!



Neural Message Passing for Jet Physics

Isaac Henrion, Johann Brehmer, Joan Bruna, Kyunghun Cho, Kyle Cranmer
Center for Data Science
New York University
New York, NY 10012
{henrion% johann.brehmer, bruna, kyunghyun, kyle.cranmer®}@nyu.edu

Gilles Louppe Gaspar Rochette
Department of Computer Science Department of Computer Science
University of Liege Ecole Normale Supérieure
Belgium Paris, France
g.louppe@ulg.ac.be gaspar.rochette@ens.fr
Abstract

Supervised learning has incredible potential for particle physics, and one appli-
cation that has received a great deal of attention involves collimated sprays of
particles called jets. Recent progress for jet physics has leveraged machine learning
techniques based on computer vision and natural language processing. In this work,
we consider message passing on a graph where the nodes are the particles in a
jet. We design variants of a message-passing neural network (MPNN); (1) with a
learnable adjacency matrix, (2) with a learnable symmetric adjacency matrix, and
(3) with a set2set aggregated hidden state and MPNN with an identity adjacency
matrix. We compare these against the previously proposed recursive neural network
with a fixed tree structure and show that the MPNN with a learnable adjacency
matrix and two message-passing iterations outperforms all the others.



Table 1: Summary of classification performance for several approaches.

Network Iterations ROC AUC Re.—_509
RecNN-£; (without gating) [10] 1 0.9185 £ 0.0006 68.3 + 1.8
RecNN-£; (with gating) [10] | 0.9195 + 0.0009 74.3 + 2.4
RecNN-desc-pr (without gating) [10] 1 0.9189 4 0.0009 70.4 + 3.6
RecNN-desc-pr (with gating) [10] 1 0.9212 + 0.0005 83.3 + 3.1
RelNet 1 0.9161 £0.0029 67.69 £ 6.80
MPNN (directed) 1 0.9196 £0.0015 89.35 £ 3.54
MPNN (directed) 2 0.9223 £0.0008 98.26 + 4.28
MPNN (directed) 3 0.9188 4+ 0.0031  85.93 + 8.50
MPNN (undirected) 1 0.9193 £ 0.0015 86.41 4 3.80
MPNN (undirected) 2 0.8949 4+ 0.1004 97.27 +£5.02
MPNN (undirected) 3 0.9185 £ 0.0036  84.53 4 8.64
MPNN (set, directed) 1 0.9189 £ 0.0017  88.23 +=4.53
MPNN (set, directed) 2 0.9191 £0.0046 87.46 £ 14.14
MPNN (set, directed) 3 0.9176 £0.0049 88.33 +£9.84
MPNN (set, undirected) 1 0.9196 £ 0.0014  85.65 + 4.48
MPNN (set, undirected) 2 0.9220 £ 0.0007 94.70 £ 2.95
MPNN (set, undirected) 3 0.9158 £ 0.0054 75.94 4+ 12.54
MPNN (1d) 1 0.9169 4+ 0.0013  74.75 & 2.65
MPNN (1d) 2 0.9162 £0.0020 74.41 £ 3.50
MPNN (1d) 3 0.9158 £0.0029  74.51 £ 5.20




Hands on...



Example Datasets



Public Datasets

* Biggest obstacles to DNN research is Data accessibility.
» Detector level studies require CPU intensive simulations.
 DNNs require large training sets with full level of detail (i.e. not 4-vectors).

* Experiments have such samples, but they are not easily accessible and not public.
 Difficult to collaborate with DL community or other experiments.
* Public datasets:

« Jet Images, SUSY/Higgs, HiggsML, ...

« LArTPC (Sepideh Shahsavarani, AF): LArIAT detector. 1 M of every particle species
(including neutrinos).

» Challenges: Particle/Neutrino Classification and Energy Reco, Noise Suppression,
2D->3D.

o Calorimetry (Maurizio Pierini, Jean-Roch Vlimant, Nikita Smirnov, AF): LCD Calorimeter.

« Challenges: PID/Energy Reco. Simulation.



Calorimeter Dataset

 CLIC is a proposed CERN project for a linear accelerator of
electrons and positrons to TeV energies (~ LHC for protons)

e LCD is a detector concept.

* Not a real experiment yet, so we could simulate data and make
it public.

 The LCD calorimeter is an array of absorber material and silicon
sensors comprising the most granular calorimeter design available

e Data is essentially a 3D image

» With at effective eta/phi resolution of 0.003x0.003, we can down | | ROC Curve
sample to get ~ ATLAS granularity: 0.025x0.1 (pre-sampler) to
0.2x0.1 Tile D. —

0.95 eeeeeeennnnns .~ S rassasnaesnereeS ——

. = bcnnl0
Hadronic shower m bcnn100
mmm bcnnl000
090 || mmm bcnnl0000
B big_conv
. conv10
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conv1000
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conv2D10
conv2D100
conv2D1000
conv2D10000
o denselO
mmm densel00
B densel000
0.75 || ™™m densel0000
s scnnl0
Emm scnnl00
EEm scnnl000
EEm scnnl0000

Electromagnetic
shower (e, y)
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Images:

| CD Data Detalls

4 particle types, separate into directories. Needs to be mixed for training.

o« ECAL: 25x25x25 cell section of calorimeter around particle.

 HCAL: 5x5x60 cell section of calorimeter around particle.

True Energy and PDG ID

Features:

« 'ECALMeasuredEnergy’, 'ECALNumberOfHits’,

'ECAL_ratioFirstLa
oment1X',
omentboX’,
oment3Y’,
omentl1/Z,

ECAL
ECAL
ECAL
ECAL
ECAL

=

omentb/',

ECA
ECA
ECA
ECA

ECAL

'ECAL_HCAL_ nHitsRatio’

V]

V]
V]
V]
W

oment2X', 'ECA

omentoX’,
oment4Y',

oment2/',
omente/’,

ECA
ECA
ECA
'ECA

V]

W
V]
V]

ECA
ECA
ECA
ECA

| HCAL_ERatio’,

VY

V]
V]
VY

verToTotalE', 'ECAL_ratioFirstLayerToSecondlLayerE',
oment3X',
oment1Y’,
omentbY'
oment3/Z',

oment4 X',
oment2Y',
omentoeY’,
oment4./',



True Positive Rate

DNN vs BD |

The classification problem, as setup, ends up being very

simple.

* The real backgrounds are jets, not single particles.

e V2 of dataset will address this shortcoming

Comparison to BDT trained on features

s Pi0 (area = 0.97)

Ele (area = 0.99)
ChPi (area = 1.00)
Gamma (area = 0.97)

naAa NA nea
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| CD Dataset Challenges/
lasks

1. Classification
« With existing setup, get excellent performance with simple DNN (not even a CNN).
 |t's not hard to get good performance here.
2. Energy Regression
e Really just starting...
e |nteresting issues, e.g. accounting for known calorimetric resolution.
3. Generative Models
* One of the primary challenges in HEP.
* Early work very promising.

e Sophia GAN work is based on LCD dataset...



L ArTPC Dataset

Lo 0 Lo -y ]
Ll T Padse Padsn Pads
Pt P L) L]

;,.qf, * Flat Energy distribution.

07 * Note that though this data is large, LArIAT is the
- smallest LArTPC detector with 2 x 240 wires.

* Training samples have been at best ~100k
examples.... usually much less.

« My students (S. Shahsavarani and G. Hilliard)
simulated a huge sample of LArTPC events

(LArIAT Detector).

 Necessitated by Energy Regression studies.

1 M of every particle species: e+, p*, K+, 11#,
TTO; Ljia \h \/91 \/U’ \/T

(i
=5
b

e DUNE will have 1 M wires.

04

0.3

* Have been working with P. Sadowski (UCI) to
02 build inception-based CNN.

— ¢ vs = (AUC-0.06Y)

a1
co 0.2 c.c C6 03 10



| ArTPC Data Detalls

* 1 M of each particle type. Separate files for each files for each particle type.

* For training they need to be mixed.

* Images are large, so they are usually down-sampled. 0 0

50

* Subset today... about 2.2 TB.

100 100

150 150

» Each “event” is two types of files:

200 200

e 2D: LArTPC Reconstruction + True Info
0 1000 2000 3000 4000 O 1000 2000 3000 4000
* images: (NEvents, 2, 240, 4096)
e True: Energy, Px, Py, Pz,
* Neutrino Truth: lep_mom_truth, nu_energy_truth, mode_truth
* Track_length
* 3D: Truth only

* trajectory/C: x,y,z of charge deposits

* trajectory/V: deposited charge




| ArTPC Challenges/Tasks

1. Classification:

Automatic reconstruction has proven to be very challenging

0 50 100 150 00
* CNNs have shown to perform better on classification... on down sampled data. nm%_ ,' _§
» Neither has achieved the performance assumed to be achievable for DUNE to mé_ - _5
achieve 1500 AR
1000 - =
» Particles: ~90% efficiency, 1% fake = E
* Neutrino: ~80% efficiency, 1% fake = i : : : =
« Scaling to full detector resolution (and 1M wire detector) is a challenge. (mi_ 7 + E
2. Energy Regression PO E
1000 — 3
« Our first attempts didn’t give good result. oo E

» Models should estimate error. Account for
3. 2D to 3D

» Full Pixelized readout would give ~ N2 datapoint/time slice while wire readout give
~2N datapoint/time

» Information loss is “recovered” in reconstruction by assuming particle interaction
topologies (track, shower, ...)

* Tomographic approach (Wirecell) “resolves” ambiguities through costly Markov Chain
MC

» Perhaps a DNN can learn the topologies and infer a 3D image... input to
classification/regression?

4. Noise suppression / data compression / background filtering



DL Software and
Technical Challenges



numpy, [heano, Keras

 Numpy
* Provides a tensor representation.
» It's interface has been adopted by everyone.
* e.g. HDF5, Then, TensorFlow, ... all have their own tensors.
* You can use other tensors, for the most part interchangeably with numpy.
* Provides extensive library of tensor operations.
« D=A*B + C, immediately computes the product of A and B matrices, and then computes the sum with C.
e Theano
* Allows you write tensor expressions symbolically.
« A*B + Cis an expression.
« Compiles the expression into fast executing code on CPU/GPU: F(A,B,C)
* You apply the Compiled function to data get at a result.
« D=F(A,B,C)
» Keras
* Neutral Networks can be written as a Tensor mathematical expression.

» Keras writes the expression for you.



DNN Software

* Basic steps

* Prepare data

« Build Model
» Define Cost/Loss Function
e Run training (most commonly Gradient Decent) ‘
* Assess performance. [ Rety )
* Run lots of experiments... ( Add )
» 2 Classes of DNN Software: (Both build everything at runtime) ﬁ T
« Hep-Framework-Like: e.g. Torch, Caffe, ... [MatMuI)
« C++ Layers (i.e. Algorithms) steered/configured via interpreted script: 6 ‘b

e General Computation Frameworks: Theano and TensorFlow

Everything build by building mathematical expression for Model, Loss, Training from primitive ops on
Tensors

Symbolic derivatives for the Gradient Decent

Builds Directed Acyclic Graph of the computation, performs optimizations

Theano-based High-level tools make this look like HEP Frameworks (e.g. pylearn2, Lasagna, Keras, ...)



Technical Challenges

Datasets are too large to fit in memory.

Data comes as many hb files, each containing O(1000)
events, organized into directories by particle type.

For training, data needs to be read, mixed, “labeled”,
possibly augmented, and normalized.... can be time
consuming.

Very difficult to keep the GPU fed with data. GPU
utilization often < 10%, rarely > 50%.

Keras python multi-process generator mechanism has
imitations...



“Sample Specification”:

[ [ File [Dataset keys] Label Rate],
[ File [Dataset keys] Label Rate],

]

Filler
Process

Filler

¢ Reads a “Sample
Specification”

e Opens files.

e Applies filter.

¢ Not parallel so
not ideal.

e But typically fast
because on
simple quantities
in smaller tensor
in file.

e For each batch:

e Determines how
many events to
read from each
file.

e (enerates a “Batch

Specification”

—
—
“Batch
specification”:
e [oreach
class: a list of
File by index
and Indices O
to read from D)
file. )]
2| —
Readers:

Data Providers

Share Memory

Reference
Reader >
Shared
Process™ vemary | — |
Reader — >
are
ProcessT™ vemory | =
®
®
®
Reader
- Shared
Process ‘Memory
Shared
Memory:

e Fetch Data From files.

e |abel and shuffle.

e Apply a process function

e May produce completely
different tensors.

e (Caches File handles

)

\

» Store Tensors

e Shape known
until first
batch comes

through

( QueD@\

Generator

Model

Model

Generator

Model

Generator

Generator:

e Pull Share Memory Reference
from Queue.

e (Gets tensor from Shared

Memory (no copy)

Applies a “delivery function”,

building the data structure

expected by DL framework.

Delivers batch to model.

Processing happens on First Epoch Only!

Data Cached into file during first epoch.

e All of the processing only needs to be done
once.

Automatically use another instance of data

providers to read cache file for all other epochs.

Note that for now, we have both train and test data

providers... better use of resources if we merge.
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_Jupyter AnalyzeScan tatosed) Logou
File Edit View Insest Call Keme Help Python2 O
B+ x A 6B &4 3 N B C  Ceee ¢ & Cellloobar
ace', 'All (istorv.less',6 'AlLl Distory.val loss', "all Uistspy.ace’, 'All Depth')
Iu [d4): # Getl a List o! all numbers stored io MelLaData
print "Availablo Paramoters:”, CotCoadParams(MyModols)
Avallakle parameters: ['Ele AUC', Wideta', 'Dep=h , 'piC_ALl', 'Zpschs’, 'Gamma_aUC', 'Chri ALl
Tn (8] # Meke & Table of all relevant parameters, sort by 1,3, then 0 coluas.
# Note: Parametera are aptional... but the calumns and rowzs will be not aprimally sartad.
SoanTabla(MyModels, [ "Model Name', 'Wodth', 'Depth', 'Epochs', 'Ele ADC', 'Pi0 AUC', 'CLEi ADC', ‘'Camsa ADC*),[1,2,C])
Mod2]l Name wideh penth Spochs Ele_auc rio_nuc Chri_aoc Gamma_AUC
Wideh=32 Depth=1 32 1 228 0.9:63 0.B357 0.9%4%148 €.B233
Wickta=22 Depih=2 2 2 335 0.93C4 0.BJg2 0.2£85 C.e282
Wideh=32 Depth=3 32 3 208 0.9404 0.8979 0.9¢62 ¢.B=72
Wicka=32 Depih=4 32 4 Jz0 0.9.39 0.B379 0.9219 C.BZ39
Wideh=64¢ Dopth=1 64 1 251 0,922 0.8712 0.94861 ¢.9C22
Wicth=64 Depih=2 64 2 304 0.93:0 0.9015 0.%2¢87 c.3C78
Wideh=64 Dopth=3 64 3 432 0.93£8 0.9164 0.9422 ¢.B8186
Wickth=64 Depih=4 64 4 J3¢ 0.9B(8 0.9372 0.92¢83 €.3314
Wideh=223 Depth=1 128 1 342 0.a971s 0.9154 0.9%4964 ¢.9387
Wickh=129 Deptia=2 128 2 213 0.950¢ 0.B5S0 0.9554 €.5C83
Wideh=223 Depth=2 128 3 318 0.9627 0.95322 0.54932 C.9262
Width=.29 Depta=4 128 4 390 0.9879 0.91%8 0.9%84% €.9335
Wideh=255 Depth=1 256 1 308 0.9763 a.914a2 0.%473 €.%436
Wicta=250 Deptia=2 256 2 308 0.9472 0.9199 0.9513 C.3103
Wideh=255 Depth=2 256 3 837 0.a9748 0.9544 0.9469 ¢.9%70
Wicta=250 Deptia=4 256 4 294 0.927¢ 0.9025 0.9¢59 €.9C34
Wideh=512 Depth=1 $12 1 202 0.9347 0.87727 0.9£53 C.9C87
Wicth=5l2 Depta=2 sS4z 2 Jas 0.95¢68 0.9355 0.9¢639 C.9224
Wideh=512 Depth=2 12 3 236 0.97€2 0.9%339 0.9472 ¢.9%14as
Width=LLl2 Depta=4 Sd2 4 J0E 0.93499 0.8J10 0.9521 C.B36.
Tn [6): 2 Plor Fistoriecal MotabBata... pot £ models ponr plot
#PlolMelaDalaMsoy(MyModels, &, [ "*Aistory", 'vel_loss” |,loc="cenler lefl’')
PlotMotaNataMany(HyModaels, 2, T"A171 Fistory.val ace” ), loc="ocortor Taoft”)
0.9
' ! .‘ ' ! ’J l' 3 'J' vl
08 I | . ""lnl‘ ’ ‘1 ' |" ‘ '
. 1 " I l |/ |
0.7
= Width=253 Degth=J
Wiath o Depthal
0.6 — Width=25G Dugth=1
- Wit =512 Decthi =4
0.5 Lsof
0.4
Ino [7]: # Compare Number of Lpzchs each model x»an fonly last xua)

F_oLMalLalalatH¥vModals.l Egochs 1)
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& Aleu performs infoerecsse ou the fest data, returuing the reselis
from DLAnalysis.Classification import *

rasult NewMetaDarta=Nulticlasaificationanalysis(MyModel , [Test X BCAL,Test X HCAL),Test ¥, ,Batcheize,

# Lupoul
20 # |Phonz @

IndexMap={0: Pi0', 2:'Chri’', J:'Garma', Ll:'E.e"'}}

In [4]):

m 5]

1.0

”~
-
-
o’
0.8 o7 i}
r
S .7
m -
v 06 -7 ]
“ -
2 -
v 04t e’ _
g Le” — Pi0 (area = 0.97)
Pie — Ele (area = 0.99)
02} * . !
' ‘..‘ ~— ChPi (area = 1.00)
',‘ ~— Gamma (area = 0.97)
O(A)\: Al-s ﬂl-l nlu Alo 1a

# Ban the data

Eneragy=target[:,:,2].f at=en()

daf ADCYREnerqy(BE_min=10. ,E_max=51C.,3_bina=100.):
BD,E binving=BinDatalndex(Eneryy, E mia, E max, E bine)
# Run the Classification Analysis in Eins

return BinMultiClasaificationfnalysis(Mytcdel, Test _Y=Test ¥,V binning=E_bhinninq,

# rull EBrergy Rasge

Roag=Avnhnergy( 10.,5810. ,580.)

bin indeciew~BD, result-result,

IncexMap={0: ' PiC', 2:'ChF.', J:'Gamma', l:'Ele"}]

In [6]:

1.00

0.98

0.96

0.94

0.92

- M AlLC

© ChA_ AL

= B¢ ALC
Gamma_AUC

090L :

# 17 Lo 1UU GeV

Cm—— e -




DL Model
Components



Keras

hitps://keras.io/



Activations

e Vanishing Gradients
e Sigmoid

e Saturate

e non-Zero centered
e Relu

e Larger Gradient

e Simple to compute

e [f learning rate too high, neurons can
“Die” (never activate)

* Leaky Relu

-6 -4 -2 0 2 4 6

15
tanh(z) = —
10 tanh(z) = -1 @
l1+e 2
0.5
0.0
-05
tanh

-1.0
-15

-6 -4 -2 0 2 4 6




Output

* Classification: One-hot representation
« SoftMax
» Boltzmann distribution: e -EkT
* Takes vector of arbitrary values and maps to
* vector with values in range O to 1
* vector components sumto 1.

The softmax layer

e Uses:

« Prob output from Multiclass classification > The output from the softmax layer is a set of probability distribution,

positive numbers which sum up to 1.
* Normalization of data.

eos ——— 784 pixels ——

pixels
— HINNNENEEN - =

SOftmaX Q Q Q ". Q
neuron outputs 0 1 2 )

\\ pixels + biases
softmax (z,) = Zexj; E)Zé ) /
j J

weighted sum of all




Cost/Loss

e MSE- Means square error.
e Proven to give right y for given x.
e MSE-
e Proven to give right median y for given x.
e Often train poorly: saturating outputs give small gradients.

e Use cross-entropy for classification



Cost Functions

a=o(z) Z = Zj WiX; + b

— = (a—y)o'(@)x = ac’(2)

ow

Mj—( )6'(z) = ac’(

5 a—vy)o'(z) =aoc (2),
c ] xj(0(z) —y)
o = ‘. xi(0(z) — ).

_ 1 | o B oC 1 i
C=-—) [yina+(1 -y -a) E:Ezm@ﬂy



The Cross-Entropy Cost Function

> For classification problems, the Cross-Entropy cost function works
better than quadratic cost function.

> We define the cross-entropy cost function for the neural network by:

©|l 06| 606|06|0606|06|1|06 |00

Cross entropy “one-hot” encoded ground truth

N

C=-), v -log()

thisisa “6”
computed probabilities )

\
0.01 | 0.01 | 0.01 | 0.01 | ©0.01 | ©.01 | .90 | ©0.01 | .02 | ©.01

i
o 1 2 3 4 5 6 7 8 9

H(p,q) = — ) p(z) logq(z).

 In information theory, the cross entropy between two probability
distributions p and g over the same underlying set of events measures
the average number of bits needed to identity an event drawn from the
set, if a coding scheme is used that is optimized for an "unnatural”
probability distribution g rather than the "true” distribution p




Over Fitting

» Overfitting occurs when a model is excessively complex, such as
having too many parameters relative to the number of observations. A
model that has been overfit has poor predictive performance, as it
overreacts to minor fluctuations in the training data.

Classification:

Appropriate-fitting Over-fitting
Regression: = = %
Size Size Size
Oy + 0z 0o + 01z + G522 0o + 012 + O2x? + 0323 + O42*
High bias “Just right” High variance

(underfit) (overfit)



Accuracy
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Regularization - Dropout

> Dropout is an extremely effective, simple and recently introduced
regularization technique by Srivastava et al (2014).

a) Standard Neural Net (b) After applying dropout.

» While training, dropout is implemented by only keeping a neuron
active with some probability p (a hyperparameter), or setting it to zerc
otherwise.

> Itis quite simple to apply dropout in Keras.

# apply a dropout rate 0.25 (drop 25% of the neurons)
model.add(Dropout(9.25))

1.00 Accuracy ‘ 0.9 _Cross gntrophy loss |
— training loss
0.8 — testloss
0.95}
0.7
0.901 98.26% | °°
9 test accuracy | o.s] | o P )
@© (V)]
S 0.85 |2
5 = 0.4} ,
10 20 30 4 50
0.80 : : . 0.3} : epoch
0.75
— test acc
— training acc
0-70 10 20 30 40 50

epoch epoch



