
Deep Learning
Lecture 1: Fundamentals of machine learning

Gilles Louppe
g.louppe@uliege.be

1 / 53

Course outline
Theory:

Lecture 1: Fundamentals of machine learning

Lecture 2: Neural networks

Lecture 3: Convolutional networks

Lecture 4: Adversarial attacks and defenses

Lecture 5: Variational auto-encoders

Lecture 6: Generative adversarial networks

Practice:

Building and training neural networks with PyTorch

2 / 53

Outline
Goal: Set the fundamentals of machine learning.

Why learning?

Learning from data

Empirical risk minimization

Bias-variance dilemma

3 / 53

Why learning?

4 / 53

5 / 53

The automatic extraction of semantic information from raw signal is at the core of
many applications (e.g., object recognition, speech processing, natural language
processing, planning, etc).

Can we write a computer program that does that?

6 / 53

The (human) brain is so good at interpreting visual information that the gap
between raw data and its semantic interpretation is dif�cult to assess intuitively:

This is a mushroom.

7 / 53

This is a mushroom.

8 / 53

This is a mushroom.

9 / 53

Extracting semantic information requires models of high complexity. Therefore one
cannot write by hand a computer program that reproduces this process.

However, one can write a program that learns the task of extracting semantic
information. A common strategy to solve this issue consists in:

de�ning a parametric model with high capacity,

optimizing its parameters, by "making it work" on the training data.

Learning tuning the many parameters of a model.≈

10 / 53

Applications

11 / 53

Classi�cation

12 / 53

Regression

13 / 53

Object detection and segmentation (He et al, 2017)

14 / 53

Human pose estimation (Chen et al, 2017)

15 / 53

Data generation (Arjovsky et al, 2017)

16 / 53

Auto-captioning (Shetty et al, 2017)

17 / 53

Learning to play at super-human level (Mnih, 2013)

18 / 53

Translation (Bahdanau et al, 2014)

19 / 53

Question answering (Ren et al, 2015)

20 / 53

Learning from data

21 / 53

Data generative model
Consider an unknown joint probability distribution over observations or

values of interest.

Assume training data drawn from this distribution:

with , , .

In most cases,

 is a -dimensional vector of features or descriptors,

 is a scalar (e.g., a category or a real value).

The training data is generated i.i.d.

The training data can be of any �nite size .

In general, we do not have any prior information about .

P (X,Y)

(x , y) ∼ P (X,Y),i i

x ∈ Xi y ∈ Y i = 1, ...,N

x i p

y

N

P (X,Y)

22 / 53

Probability space and random variables interpretation
of the data generative process.

, , (x , y) ∼ P (X,Y) ⇔ ω ∼ P i i i Ω x = X(ω)i i y = Y (ω)i i

23 / 53

Alternatively, the joint distribution can be interpreted as a two-step generative
process such that

where

for :

�rst, we draw

then, generate .

for :

�rst, we draw

then, generate .

P (X,Y) = P (X∣Y)P (Y) = P (Y ∣X)P (X)

P (X∣Y)P (Y)
y ∼ P (Y)

x ∼ P (X∣Y = y)

P (Y ∣X)P (X)
x ∼ P (X)

y ∼ P (Y ∣X = x)

24 / 53

Two-step generative interpretation of as .

e.g., for .

P (X,Y) P (X)P (Y ∣X)

x ∼ P (X), y = f(x) + ϵ ϵ ∼ N

25 / 53

Inference
In supervised learning, we are usually interested in the two following inference
problems:

Classi�cation:

Given , we want to estimate

Regression:

Given , we want to estimate

(x, y) ∈ X × Y = R × {1, ...,C}p

arg P (Y = y∣X = x).
y

max

(x, y) ∈ X × Y = R × Rp

E Y ∣X = x .[]

26 / 53

Classi�cation consists in identifying
a decision boundary between objects of distinct classes.

27 / 53

Regression aims at estimating relationships among variables.

28 / 53

The boundary between these inference problems is fuzzy, as one often reduces to
the other.

Regression enables classi�cation through class scores.

Classi�cation can be viewed as discretized regression.

These inference problems also closely relate to the more general (conditional)
density estimation problem.

29 / 53

Empirical risk minimization
Consider a function produced by some learning algorithm. The

predictions of this function can be evaluated through a loss

such that measures how close is the prediction from .

For example,

for classi�cation:

for regression:

f : X → Y

ℓ : Y × Y → R

ℓ(y, f(x)) ≥ 0 f(x) y

ℓ(y, f(x)) = 1 y≠f(x)

ℓ(y, f(x)) = (y − f(x))2

30 / 53

Let us denote as the hypothesis space, i.e. the set of all functions than can be

produced by the chosen learning algorithm.

We are looking for a function with a small expected risk (or generalization

error)

This means that for a given data generating distribution and for a given hypothesis
space, the optimal model is

F f

f ∈ F

R(f) = E ℓ(y, f(x)) .(x,y)∼P (X,Y) []

f = arg R(f).∗
f∈F
min

31 / 53

Unfortunately, since is unknown, the expected risk cannot be evaluated

and the optimal model cannot be determined.

However, given training data , we can compute an

estimate, the empirical risk (or training error)

This estimate can be used for �nding a good enough approximation of , giving rise

to the empirical risk minimization principle:

P (X,Y)

d = {(x , y)∣i = 1, … ,N}i i

(f ,d) = ℓ(y , f(x)).R̂
N

1

(x ,y)∈di i

∑ i i

f ∗

f = arg (f ,d)∗
d

f∈F
min R̂

32 / 53

Most machine learning algorithms, including neural networks, implement empirical
risk minimization.

Under regularity assumptions, empirical risk minimizers converge:

 f = f

N→∞
lim ∗

d
∗

33 / 53

Polynomial regression

Consider the joint probability distribution induced by the data

generating process

where , and is an unknown polynomial of degree 3.

P (X,Y)

x, y ∼ P (X,Y) ⇔ x ∼ U [−10; 10], ϵ ∼ N (0,σ), y = g(x) + ϵ2

x ∈ R y ∈ R g

34 / 53

Our goal is to �nd a function that makes good predictions on average over

.

Consider the hypothesis space of polynomials of degree 3 de�ned through

their parameters such that

f

P (X,Y)

f ∈ F
w ∈ R4

 ≜ f(x;w) = w xŷ
d=0

∑
3

d
d

35 / 53

For this regression problem, we use the squared error loss

to measure how wrong are the predictions.

Therefore, our goal is to �nd the best value such

ℓ(y, f(x;w)) = (y − f(x;w))2

w ∗

w ∗ = arg R(w)
w

min

= arg E (y − f(x;w))
w

min (x,y)∼P (X,Y) [
2]

36 / 53

Given a large enough training set , the empirical risk

minimization principle tells us that a good estimate of can be found by

minimizing the empirical risk:

d = {(x , y)∣i = 1, … ,N}i i

w ∗
d w ∗

w ∗
d = arg (w,d)

w
min R̂

= arg (y − f(x ;w))
w

min
N

1

(x ,y)∈di i

∑ i i
2

= arg (y − w x)
w

min
N

1

(x ,y)∈di i

∑ i

d=0

∑
3

d i
d 2

= arg −

w
min

N

1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

y

⎝
⎜
⎜
⎛ y 1

y 2

…
y N
⎠
⎟
⎟
⎞

X

⎝
⎜
⎜
⎛ x …x 1

0
1
3

x …x 2
0

2
3

…
x …x N

0
N
3 ⎠
⎟
⎟
⎞

⎝
⎜
⎜
⎛w 0

w 1

w 2

w 3
⎠
⎟
⎟
⎞

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥2

37 / 53

This is ordinary least squares regression, for which the solution is known
analytically:

w = (X X) X y∗
d T −1 T

38 / 53

The expected risk minimizer within our hypothesis space is itself.

Therefore, on this toy problem, we can verify that

as .

g

f(x;w) → f(x;w) = g(x)∗
d

∗

N → ∞

39 / 53

40 / 53

40 / 53

40 / 53

40 / 53

40 / 53

Under-�tting and over-�tting

41 / 53

Under-�tting and over-�tting
What if we consider a hypothesis space in which candidate functions are either

too "simple" or too "complex" with respect to the true data generating process?

F f

42 / 53

 = polynomials of degree 1F

43 / 53

 = polynomials of degree 2F

43 / 53

 = polynomials of degree 3F

43 / 53

 = polynomials of degree 4F

43 / 53

 = polynomials of degree 5F

43 / 53

 = polynomials of degree 10F

43 / 53

Let be the set of all functions .

We de�ne the Bayes risk as the minimal expected risk over all possible functions,

and call Bayes model the model that achieves this minimum.

No model can perform better than .

YX f : X → Y

R = R(f),B
f∈YX
min

f B

f f B

44 / 53

The capacity of an hypothesis space induced by a learning algorithm intuitively
represents the ability to �nd a good model for any function, regardless of its

complexity.

If the capacity of is low, then and is large for any

, including and . Such models are said to under�t the data.

If the capacity of is high, then or is small.

However, because of the high capacity of the hypothesis space, the empirical
risk minimizer could �t the training data arbitrarily well such that

In this situation, becomes too complex with respect to the true data

generating process and a large reduction of the empirical risk (often) comes at
the price of an increase of the expected risk of the empirical risk minimizer

. In this situation, is said to over�t the data.

f ∈ F

F f ∉ FB R(f) − R B

f ∈ F f ∗ f ∗
d f

F f ∈ FB R(f) − R ∗ B

f ∗
d

R(f) ≥ R ≥ (f ,d) ≥ 0.B R̂ ∗
d

f ∗
d

R(f)∗
d f ∗

d

45 / 53

Therefore, our goal is to adjust the capacity of the hypothesis space such that the
expected risk of the empirical risk minimizer gets as low as possible.

46 / 53

In practice, the capacity of the hypothesis space can be controlled through hyper-
parameters of the learning algorithm. For example:

The degree of polynomials;

The number of layers in a neural network;

The number of training iterations;

Regularization terms.

47 / 53

When over�tting,

This indicates that the empirical risk is a poor estimator of the expected

risk .

Nevertheless, an unbiased estimate of the expected risk can be obtained by

evaluating on data independent from the training samples :

This test error estimate can be used to evaluate the actual performance of model.
However, it should not be used, at the same time, for model selection.

R(f) ≥ R ≥ (f ,d) ≥ 0.B R̂ ∗
d

(f ,d)R̂ ∗
d

R(f)∗
d

f ∗
d d test d

(f ,d) = ℓ(y , f (x))R̂ ∗
d

test
N

1

(x ,y)∈d i i test

∑ i ∗
d

i

48 / 53

Bias-variance decomposition
Consider a �xed point and the prediction of the empirical risk

minimizer at .

Then the local expected risk of is

where

 is the local expected risk of the Bayes model. This term cannot be

reduced.

 represents the discrepancy between and .

x = f (x)Ŷ ∗
d

x

f ∗
d

R(f ∣x)∗
d = E (y − f (x))y∼P (Y ∣x) [∗

d 2]

= E (y − f (x) + f (x) − f (x))y∼P (Y ∣x) [B B ∗
d 2]

= E (y − f (x)) + E (f (x) − f (x))y∼P (Y ∣x) [B
2] y∼P (Y ∣x) [B ∗

d 2]

= R(f ∣x) + (f (x) − f (x))B B ∗
d 2

R(f ∣x)B

(f (x) − f (x))B ∗
d 2 f B f ∗

d

49 / 53

If is itself considered as a random variable, then is also a random

variable, along with its predictions .

d ∼ P (X,Y) f ∗
d

Ŷ

50 / 53

51 / 53

51 / 53

51 / 53

51 / 53

51 / 53

Formally, the expected local expected risk yields to:

This decomposition is known as the bias-variance decomposition.

The noise term quantities the irreducible part of the expected risk.

The bias term measures the discrepancy between the average model and the
Bayes model.

The variance term quantities the variability of the predictions.

Typically,

Models of low capacity have low variance but high bias.

Models of high capacity how high variance but low bias.

E R(f ∣x)d [∗
d]

= E R(f ∣x) + (f (x) − f (x))d [B B ∗
d 2]

= R(f ∣x) + E (f (x) − f (x))B d [B ∗
d 2]

= + +

noise(x)

 R(f ∣x)B

bias (x)2

 (f (x) − E f (x))B d [∗
d] 2

var(x)

 E (E f (x) − f (x))d [d [∗
d] ∗

d 2]

52 / 53

The end.

52 / 53

References
EE-559 Deep learning (Francois Fleuret, EPFL)

Understanding Random Forests: From Theory to Practice (Louppe, 2014)

53 / 53

