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Course outline

Theory:

e Lecture 1: Fundamentals of machine learning
e Lecture 2: Neural networks

e Lecture 3: Convolutional networks

o Lecture 4: Adversarial attacks and defenses
e Lecture 5: Variational auto-encoders

e Lecture 6: Generative adversarial networks
Practice:

e Building and training neural networks with PyTorch
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Outline

Goal: Set the fundamentals of machine learning.

Why learning?

Learning from data

Empirical risk minimization

Bias-variance dilemma
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Why learning?
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The automatic extraction of semantic information from raw signal is at the core of

many applications (e.g., object recognition, speech processing, natural language
processing, planning, etc).

Can we write a computer program that does that?
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The (human) brain is so good at interpreting visual information that the gap
between raw data and its semantic interpretation is difficult to assess intuitively:

This is a mushroom.
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This is a mushroom.



In [1]: from matplotlib.pyplot import imread
imread("mushroom-small.png")

Out[1l]: array([[[0©.83921569, 0.03529412, 0.02352941, 1. 1.
[6.2509884 , ©.1882353 , 0.20392157, 1. 1.
[0.4117647 , 0.34117648, 0.37254903, 1. 1,
[0.20392157, ©.23529412, 0.17254902, 1. 1,
[6.16470589, ©.18039216, 0.12156863, 1. 1.
[0.18039216, 0.18039216, 0.14117648, 1. 11,

[[0.1254902 , ©.11372549, 0.09411765, 1. 1.
[6.2901961 , ©.2509884 , 0.24765882, 1. 1.
[6.21176471, 8.2 , 0.20392157, 1. 1.
[6.1764706 , ©.24705882, 0.12156863, 1. 1.
[0.10980392, 0.15686275, 0.07843138, 1. 1,
[6.16470589, ©.20784314, 0.11764706, 1. 11.

[[0.14117648, ©.12941177, 0.10980392, 1. 1.
[6.21176471, ©.1882353 , 0.16862746, 1. 1.
[6.14117648, ©.13725491, 0.12941177, 1. 1.
[0.10980392, 0.15686275, 0.08627451, 1. 1,
[6.0627451 , ©.08235294, 0.05098039, 1. 1.
[0.14117648, 0.2 , 0.09803922, 1. 11,

This is a mushroom.



Extracting semantic information requires models of high complexity. Therefore one
cannot write by hand a computer program that reproduces this process.

However, one can write a program that learns the task of extracting semantic
information. A common strategy to solve this issue consists in:

e defining a parametric model with high capacity,

e optimizing its parameters, by "making it work" on the training data.

Learning = tuning the many parameters of a model.
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Applications
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Classification
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Regression
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Object detection and segmentation (He et al, 2017)
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Human pose estimation (Chen et al, 2017)
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Data generation (Arjovsky et al, 2017)
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a tennis player gets two men dressed in a tennis player hits the a male tennis player in a man in white is about

ready to return a serve costumes and holding ball during a match action on the court to serve a tennis ball
tennis rackets

a laptop and a desktop a person is working on a a cup of coffee sitting next  a laptop computer sitting a picture of a computer on
computer sit on a desk computer screen to a laptop on top of a desk next to a a desk

Auto-captioning (Shetty et al, 2017)
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Learning to play at super-human level (Mnih, 2013)



Source

An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre
to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.

Reference

Le privilege d’admission est le droit d’un médecin, en vertu de son statut de membre soignant
d’un hopital, d’admettre un patient dans un hépital ou un centre médical afin d’y délivrer un
diagnostic ou un traitement.

RNNenc-50

Un privilége d’admission est le droit d’'un médecin de reconnaitre un patient a 1’hdpital ou un
centre médical d’un diagnostic ou de prendre un diagnostic en fonction de son état de santé.

RNNsearch-50

Un privilege d’admission est le droit d’un médecin d’admettre un patient a un hopital ou un
centre médical pour effectuer un diagnostic ou une procédure, selon son statut de travailleur des
soins de santé a I’hopital.

Google
Translate

Un privilege admettre est le droit d’un médecin d’admettre un patient dans un hopital ou un
centre médical pour effectuer un diagnostic ou une procédure, fondée sur sa situation en tant
que travailleur de soins de santé dans un hopital.

Translation (Bahdanau et al, 2014)



COCOQA 33827

What is the color of the cat?
Ground truth: black
IMG+BOW: black (0.55)
2-VIS+LSTM: black (0.73)
BOW: gray (0.40)

COCOQA 33827a

What is the color of the couch?
Ground truth: red

IMG+BOW: red (0.65)
2-VIS+LSTM: black (0.44)
BOW: red (0.39)

DAQUAR 1522

How many chairs are there?
Ground truth: two
IMG+BOW: four (0.24)
2-VIS+BLSTM: one (0.29)
LSTM: four (0.19)

DAQUAR 1520

How many shelves are there?
Ground truth: three
IMG+BOW: three (0.25)
2-VIS+BLSTM: two (0.48)
LSTM: two (0.21)

COCOQA 14855

Where are the ripe bananas sitting?
Ground truth: basket

IMG+BOW: hasket (0.97)
2-VIS+BLSTM: basket (0.58)

BOW: bowl (0.48)

COCOQA 14855a

‘What are in the basket?
Ground truth: bananas
IMG+BOW: bananas (0.98)
2-VIS+BLSTM: bananas (0.68)
BOW: bananas (0.14)

Question answering (Ren et al, 2015)

DAQUAR 585

What is the object on the chair?
Ground truth: pillow
IMG+BOW: clothes (0.37)
2-VIS+BLSTM: pillow (0.65)
LSTM: clothes (0.40)

DAQUAR 5852

Where is the pillow found?
Ground truth: chair
IMG+BOW: bed (0.13)
2-VIS+BLSTM: chair (0.17)
LSTM: cabinet (0.79)
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Learning from data
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Data generative model

Consider an unknown joint probability distribution P(X, Y') over observations or

values of interest.
Assume training data drawn from this distribution:

(Xiayi) ~ P(X’Y)7
withx; €e X,y e Y, i =1, ..., N.

e |n most cases,

o X;isap-dimensional vector of features or descriptors,

o yisascalar (e.g., acategory or areal value).

The training data is generated i.i.d.

The training data can be of any finite size IV.

In general, we do not have any prior information about P( X, Y").

22/583



Probability space and random variables interpretation
of the data generative process.

(Xi,yi) ~ P(X,Y) S wp~ Po,x; = X(wi),yz- = Y(wz)



Alternatively, the joint distribution can be interpreted as a two-step generative
process such that

P(X,Y) = P(X]Y)P(Y) = P(Y\X)P(X)
where

e for P(X|Y)P(Y):

o first,wedrawy ~ P(Y")

o then,generatex ~ P(X|Y =y).
e for P(Y|X)P(X):

o first,wedrawx ~ P(X)

o then,generatey ~ P(Y|X = x).
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Two-step generative interpretation of P(X,Y ) as P(X)P (Y| X).

eg.x ~ P(X),y = f(x) + efore ~ N.



Inference

In supervised learning, we are usually interested in the two following inference
problems:

e Classification:
Given (x,y) € X x Y = RP x {1, ..., C},wewant to estimate

argmax P(Y = y|X = x).
y

e Regression:
Given (x,y) € X x Y = RP x R, we want to estimate

E[Y]|X = x].
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Classification consists in identifying

a decision boundary between objects of distinct classes.
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Regression aims at estimating relationships among variables.
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The boundary between these inference problems is fuzzy, as one often reduces to
the other.

e Regression enables classification through class scores.

e Classification can be viewed as discretized regression.

These inference problems also closely relate to the more general (conditional)
density estimation problem.
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Empirical risk minimization

Consider a function f : X — ) produced by some learning algorithm. The
predictions of this function can be evaluated through a loss

L:Yx)Y—-R

such that £(y, f(x)) > 0 measures how close is the prediction f(x) from y.

For example,

e for classification:
Uy, f(x)) = Lyzp(x)

e for regression:

Uy, f(x)) = (y — f(x))?
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Let us denote as F the hypothesis space, i.e. the set of all functions f than can be
produced by the chosen learning algorithm.

We are looking for a function f € JF with a small expected risk (or generalization
error)

R(f) = Exy)~prx,y) (Y, f(x))]-

This means that for a given data generating distribution and for a given hypothesis
space, the optimal model is

f« = arg 1}161;1 R(f).
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Unfortunately, since P( X, Y") is unknown, the expected risk cannot be evaluated
and the optimal model cannot be determined.

However, given trainingdatad = {(x;,y;)|? = 1, ..., N}, we can compute an
estimate, the empirical risk (or training error)
~ 1
R(f,d) =~ > Ly f(x:).
(xiayi)ed

This estimate can be used for finding a good enough approximation of f,, giving rise
to the empirical risk minimization principle:

d _ R
fi = argmin R(f,d)
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Most machine learning algorithms, including neural networks, implement empirical
risk minimization.

Under regularity assumptions, empirical risk minimizers converge:

1 d_ r
leéof* /
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Polynomial regression

— gix)
- o yv=gix)+£

i i i i
-100 -75 50 -25 00 25 5.0 15 10.0

Consider the joint probability distribution P(X, Y") induced by the data
generating process

w7yNP(X7Y) & T~ U[—lO;lO],ENN(O,O‘2),y:g($)—|-6

wherex € R,y € R and gis an unknown polynomial of degree 3.
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Our goal is to find a function f that makes good predictions on average over

P(X,Y).

Consider the hypothesis space f € JF of polynomials of degree 3 defined through
their parameters w & R* such that

g = f dew
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For this regression problem, we use the squared error loss
Uy, f(z;w)) = (y — flz;w))
to measure how wrong are the predictions.
Therefore, our goal is to find the best value w, such
w, = arg min R(w)

w

— arg m“i’n E(a;,y)wp(x,y) [(y — f(=; W))ﬂ
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Given a large enough trainingsetd = {(z;,v:)|i = 1,..., N }, the empirical risk
minimization principle tells us that a good estimate Wf of W can be found by
minimizing the empirical risk:

w9 = arg min R(w, d)
W
o1
= argmin Z (y; — f(zi;w))?
(a%7yi)€(i
] 3
: dy2
=argmin — Y (y; — ) wgz})
(zi,yi)ed d=0
2
Y1 ... 3 Wy
.1 Y2 Ty ... T3 w1
— arg min — —
W cee cee wo
Yn Tl ... T w3
N — N ~ J/
y X
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This is ordinary least squares regression, for which the solution is known
analytically:

wd = (XTX) X"y

degree = 3, R(f,d) =33.97

m_
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— ¥=1ix)

& y=gix+e

BO -
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The expected risk minimizer within our hypothesis space is g itself.

Therefore, on this toy problem, we can verify that f(z; wd) — f(z; w,) = g(z)
as N — oo.
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A0 -
— gix]
o — j=fix]
. o y=gix+e

a0 -

20 -

o-
—20 - | om L ]

T i i i
=100 -75 50 25 Q0 25 5.0 75 1040

40/53



N = 500
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Under-fitting and over-fitting
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Under-fitting and over-fitting

What if we consider a hypothesis space F in which candidate functions f are either
too "simple" or too "complex" with respect to the true data generating process?
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degree = 1, R(f.d) =136.77

BD -
— glx]
b — V=)
® y¥=gix)te
A0 -
20 - ap
L
[ ]
'D— \/
=20 - i

i
-100 -75 50 -25 00 25 5.0 15 10.0

F = polynomials of degree 1
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degree = 2, R(f,d) =129.06
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JF =polynomials of degree 2

43/53



degree = 3, R(f.d) =33.97
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F = polynomials of degree 3
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degree = 4, R(f.d) =33.01
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JF =polynomials of degree 4
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degree = 5, R(f,d) =25.89
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F = polynomials of degree 5
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degree = 10, R(f, d) = 16.38
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J = polynomials of degree 10
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Let Y% be the set of all functions f : X — .

We define the Bayes risk as the minimal expected risk over all possible functions,

Rp = min R(f),
5 = min R(f)

and call Bayes model the model fp that achieves this minimum.

No model f can perform better than fp.
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The capacity of an hypothesis space induced by a learning algorithm intuitively
represents the ability to find a good model f € F for any function, regardless of its

complexity.

e If the capacity of F islow, then fg ¢ F and R(f) — Rp is large for any
f € F,including f. and £<.Such models f are said to underfit the data.

e If the capacity of F is high, then fg € For R(f,) — Rp issmall.
However, because of the high capacity of the hypothesis space, the empirical
risk minimizer £ could fit the training data arbitrarily well such that

R(f) > Rg > R(f3,d) > 0.

In this situation, ff becomes too complex with respect to the true data

generating process and a large reduction of the empirical risk (often) comes at
the price of an increase of the expected risk of the empirical risk minimizer
R(f9). Inthis situation, f& is said to overfit the data.
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Therefore, our goal is to adjust the capacity of the hypothesis space such that the
expected risk of the empirical risk minimizer gets as low as possible.

Error
A

Underfitting zone Overfitting zone

generalization

ini error —%
training " optimism
error ;
Y
'. >
optimal Capacity

capacity
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In practice, the capacity of the hypothesis space can be controlled through hyper-
parameters of the learning algorithm. For example:

e The degree of polynomials;
e The number of layers in a neural network;
e The number of training iterations;

e Regularization terms.
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When overfitting,
R(f) > Rp > R(f%,d) > 0.

This indicates that the empirical risk R( f, d) is a poor estimator of the expected

risk R(f3).

Nevertheless, an unbiased estimate of the expected risk can be obtained by
evaluating ff on data d.y; independent from the training samples d:

R(ff,dtest) = i Z é(yia ff(xz))
N

(xi 'Yi ) edtes‘c

This test error estimate can be used to evaluate the actual performance of model.
However, it should not be used, at the same time, for model selection.

48/53



Bias-variance decomposition

Consider a fixed point 2 and the prediction Y = fd(z) of the empirical risk

minimizer at x.

Then the local expected risk of f:l is

R(fiz) = Eyupyia)
= By p(viz)

= Ky pvie)

= R(fpl|z) +

where

(y — fd(2))?]
(y — fB(2) + f8(2) — £2(2))’]

(y— f5(2)*] +Eyupiv) [(fB(2) — f2(2))?]
(f8(z) — fi(z))’

e R(fp|x) isthelocal expected risk of the Bayes model. This term cannot be

reduced.

o (f(z) — fd(x))? represents the discrepancy between f and f9.
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Ifd ~ P(X,Y)isitself considered as a random variable, then f< is also a random
variable, along with its predictions Y.
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degree =1, N =15
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degree = 2, N =15
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degree =3, N=15
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degree =4, N =15
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degree =5, N =15
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Formally, the expected local expected risk yields to:

R
— R(f5]z) + (f5(z) — Ea [

7/ N ‘/ N /

noise(z) bias?(x) var(z)

This decomposition is known as the bias-variance decomposition.

e The noise term quantities the irreducible part of the expected risk.

e The bias term measures the discrepancy between the average model and the
Bayes model.

e The variance term quantities the variability of the predictions.
Typically,

e Models of low capacity have low variance but high bias.

e Models of high capacity how high variance but low bias.
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The end.
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