Deep Learning

Lecture 2: Neural networks

Gilles Louppe
g.louppe@uliege.be

w LIEGE
universiteée

1/52

Outline

Goal: explain and motivate the basic constructs of neural networks.

e From linear discriminant analysis to logistic regresion

Stochastic gradient descent

From logistic regression to the multi-layer perceptron

Vanishing gradients and rectified networks

Universal approximation theorem

2/52

Neural networks

Threshold Logic Unit

The Threshold Logic Unit (McCulloch and Pitts, 1943) was the first mathematical
model for a neuron. Assuming Boolean inputs and outputs, it is defined as:

f(X) — 1{22 w;z; +b>0}
This unit can implement:
o or(a,b) = l{ap-05>0
« and(a,b) = 1 1p 1550

e not(a) = 1410550

Therefore, any Boolean function can be built which such units.

4/52

Perceptron

The perceptron (Rosenblatt, 1957) is very similar, except that the inputs are real:

0 otherwise

f(x) =

e This model was originally motivated by biology, with w; being synaptic weights
and x; and f firing rates.

e Thisis acartoonesque biological model.

5/52

Let us define the activation function:

1 ifz>0

0 otherwise

o(z) =

10 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

| |
-100 —-75 -50 -25 0.0 25 5.0 75 10.0

Therefore, the perceptron classification rule can be rewritten as

f(x) =o(wix +0).

6/52

Linear discriminant analysis

Consider training data (x,y) ~ P(X,Y),with
e x € R?,

e yc{0,1}.

Assume class populations are Gaussian, with same covariance matrix
(homoscedasticity):

Plxly) = ———exp (30—)75 x -))

Ve T\ 2

7/52

Using the Bayes' rule, we have:

P|Y =1)P(Y =1)
P(x)

B P|Y =1)P(Y =1)

~ P|Y =0)P(Y =0)+P(x|]Y =1)P(Y =1)

1

o P(x|Y=0)P(Y=0) *
1+ =1

PY =1|x) =

8/52

Using the Bayes' rule, we have:

P|Y =1)P(Y =1)
P(x)

B P|Y =1)P(Y =1)

~ P|Y =0)P(Y =0)+P(x|]Y =1)P(Y =1)

1

o P(x|Y=0)P(Y=0) *
1+ =1

PY =1|x) =

It follows that with

1
o) =17 exp(—z)
we get
o P(x|Y =1) P(Y =1)
PY=1x)=o0 (log P(x|Y = 0) + log P(Y = 0)) :

9/52

Therefore,

P(Y = 1/x)
- P(x|Y = 1) P(Y = 1)
=8 by — o) T8 py = 0)

| - g

~~

=0 (log P(x|Y =1) —log P(x]Y =0) + a)

- (—§<x)" e) (e)" S e) +a)

[y

- 1 - -
o | (=) 2 x4 (o2 o — X) +a

\ .

A 7
~~

T
w b

o (wa + b)

10/52

11/52

11/52

Note that the sigmoid function

looks like a soft heavyside:

10 -
0.8 -
0.6 -
0.4 -
0.2 -

0.0 -
| |
-100 75 -50 25 0.0 25 5.0 75 10.0

Therefore, the overall model f(x; w,b) = o(w!x + b) is very similar to the
perceptron.

12/52

In terms of tensor operations, the computational graph of f can be represented as:

dot —» add —» o(:)

where

e white nodes correspond to inputs and outputs;
¢ red nodes correspond to model parameters;

e blue nodes correspond to intermediate operations, which themselves produce
intermediate output values (not represented).

This unit is the core component all neural networks!

13/52

Logistic regression

Same model
PY=1x)=o0 (WTX +b)
as for linear discriminant analysis.

But,

e ignore model assumptions (Gaussian class populations, homoscedasticity);

e instead, find w, b that maximizes the likelihood of the data.

14/52

We have,

arg max P(d|w,b)

w,b
= arg max P(Y = yi|xi,w,b)
w’b xzayied
= arg max o(wlx; +b)¥ (1 — o(wlx; + b)) ¥
bt xi,yi€d
= arg min Z —yilogo(w'x; +b) — (1 —y;)log(1l — o(w'x; +b))
W xlayied

Vs

L(w,b)=3_; £(yi,§(xi;w,b))

This loss is an instance of the cross-entropy

H(p,q) = Ep[—logq]

forp=Y|x; andg = Y|x;.

15/52

When Y takes valuesin {—1, 1}, asimilar derivation yields the logistic loss

L(w,b)=— > logo (yi(w'x; +b))).
x;,Y;€d

e Ingeneral, the cross-entropy and the logistic losses do not admit a minimizer
that can be expressed analytically in closed form.

e However, a minimizer can be found numerically, using a general minimization

technique such as gradient descent.
16/52

Gradient descent

Let £(6) denote a loss function defined over model parameters 6 (e.g., w and b).

To minimize £(6), gradient descent uses local linear information to iteratively move
towards a (local) minimum.

For By € RY, afirst-order approximation around 6, can be defined as

. 1
L0y +€) = L(0y) + €' VoL(0y) + %HEH?‘.

17/52

A minimizer of the approximation 2(90 + €) is given for

VeL(By+€) =0

1
= VoL(6y) + ;e,

which results in the best improvement for the stepe = —yVL(6y).

Therefore, model parameters can be updated iteratively using the update rule:

0ri1 =0, — YV L(6;)
Notes:

e @, are the initial parameters of the model;
e 7 isthelearningrate;

e both are critical for the convergence of the update rule.

18/52

8= —0.50, y = 0.50

|
oo
4

Example 1: Convergence to a local minima

19/52

6= —0.78,y=0.50

|
oo
4

Example 1: Convergence to a local minima

19/52

§,= —1.19,y=0.50

|
oo
4

Example 1: Convergence to a local minima

19/52

f3= —1.76,y = 0.50

|
oo
4

Example 1: Convergence to a local minima

19/52

8= —2.45,y=0.50

|
oo
4

Example 1: Convergence to a local minima

19/52

s = —3.06, y = 0.50

|
oo
4

Example 1: Convergence to a local minima

19/52

85 = —3.33,y=0.50

|
oo
4

Example 1: Convergence to a local minima

19/52

8= —3.36,y=0.50

|
oo
4

Example 1: Convergence to a local minima

19/52

6, =0.25,y=0.50

|
oo
4

Example 2: Convergence to the global minima

20/52

6, =0.40, y=0.50

|
oo
4

Example 2: Convergence to the global minima

20/52

6, =0.64, y=0.50

|
oo
4

Example 2: Convergence to the global minima

20/52

6;=1.02, y=0.50

|
oo
4

Example 2: Convergence to the global minima

20/52

6,=1.62, y=0.50

Example 2: Convergence to the global minima

20/52

65 =2.51, y=0.50

Example 2: Convergence to the global minima

20/52

s =3.60, y=0.50

Example 2: Convergence to the global minima

20/52

6,=4.37,y=0.50

Example 2: Convergence to the global minima

20/52

8= —2.00,y=1.30

|
oo
4

Example 3: Divergence due to a too large learning rate

21/52

6, = —3.80,y=1.30

|
oo
4

Example 3: Divergence due to a too large learning rate

21/52

§,= —2.39,y=1.30

|
oo
4

Example 3: Divergence due to a too large learning rate

21/52

f3= —4.02,y=1.30

Example 3: Divergence due to a too large learning rate

21/52

Bs= —1.72,y=1.30

|
oo
4

Example 3: Divergence due to a too large learning rate

21/52

fs = —3.50,y = 1.30

|
oo
4

Example 3: Divergence due to a too large learning rate

21/52

Stochastic gradient descent

In the empirical risk minimization setup, E(@) and its gradient decompose as

1

L(0) = N Z Ly, f(xi;0))
x;,y;€d
VEO) = = 3 Ve, £(x:0).
x;,y;€d

Therefore, in batch gradient descent the complexity of an update grows linearly
with the size N of the dataset.

More importantly, since the empirical risk is already an approximation of the
expected risk, it should not be necessary to carry out the minimization with great
accuracy.

22/52

Instead, stochastic gradient descent uses as update rule:

01 =0 — ’Yve(yz t+1) 7f(i(t+1)s et))

e Iteration complexity is independent of /V.

e The stochastic process {6;|t = 1, ...} depends on the examples i(t) picked
randomly at each iteration.

23/52

Instead, stochastic gradient descent uses as update rule:

01 =0 — ’)’Vé(yz t+1) 7f(i(t+1)s Ht))

e Iteration complexity is independent of /V.

e The stochastic process {6;|t = 1, ...} depends on the examples i(t) picked
randomly at each iteration.

==

Batch gradient descent Stochastic gradient descent

Why is stochastic gradient descent still a good idea?

e Informally, averaging the update

Orr1 = 0y — YVL(Yie11), F(Xigs1); 0¢))
over all choices i(t + 1) restores batch gradient descent.

e Formally, if the gradient estimate is unbiased, e.g., if

1
Ei+1) [V Y1)y f(XKie41)30¢))] = N Z Ve(y;, f(x4;6;))

Xi,Yi ed

= VL(6,)

then the formal convergence of SGD can be proved, under appropriate
assumptions (see references).

e Interestingly, if training examples x;, y; ~ PX,Y are received and used in an
online fashion, then SGD directly minimizes the expected risk.

25/52

When decomposing the excess error in terms of approximation, estimation and
optimization errors, stochastic algorithms yield the best generalization
performance (in terms of expected risk) despite being the worst optimization
algorithms (in terms of empirical risk) (Bottou, 2011).

26/52

Layers

So far we considered the logisticunit h = o (WTX -+ b),where h e R x € RP,

w € RPandb € R.

These units can be composed in parallel to form a layer with q outputs:
h=0(W'x +b)

whereh € R?,x € RP, W € RP*? b € R? and where o (-) is upgraded to the

element-wise sigmoid function.

Y9

matmul

ad

27/52

Multi-layer perceptron

Similarly, layers can be composed in series, such that:

h() =X
h; = o(W'Thy + b))

hL — O'(W%hL_l + bL)
f(x; 9) = hL

where 6 denotes the model parameters { W, by, ...k = 1, ..., L}.

e This model is the multi-layer perceptron, also known as the fully connected
feedforward network.

e Optionally, the last activation o can be skipped to produce unbounded output
values y € R.

28/52

matmul

—

add

matmul

—

add

- —>

matmul

—

add

a(-)

29/52

To minimize £ () with stochastic gradient descent, we need the gradient V¢£(6;).

Therefore, we require the evaluation of the (total) derivatives

d¢ d¢
dW}.’ dby

of the loss £ with respect to all model parameters W, by, fork =1, ..., L.

These derivatives can be evaluated automatically from the computational graph of £
using automatic differentiation.

30/52

Automatic differentiation

Consider a 1-dimensional output composition f o g, such that

y = f(u)
u=g(z)=(9:1(x), ., gm(x))

The chain rule of total derivatives states that

dy i Oy duy
de Ou, dzx
—~—

recursive case

e Since a neural network is a composition of differentiable functions, the total
derivatives of the loss can be evaluated by applying the chain rule recursively
over its computational graph.

e The implementation of this procedure is called (reverse) automatic
differentiation (AD).

e AD is not numerical differentiation, nor symbolic differentiation.

31/52

As a guiding example, let us consider a simplified 2-layer MLP and the following loss
function:

f(x; W1, W2) = 0 (W30 (W)x))
Uy, J; W1, Wy) = cross_ent(y, §) + A (|[Wi||2 + |[W3]|2)

forx € RP,y € R,W; € RP*7and W3 € R,

32/52

As a guiding example, let us consider a simplified 2-layer MLP and the following loss
function:

f(x; W1, W2) = 0 (W30 (W)x))
Uy, J; W1, Wy) = cross_ent(y, §) + A (|[Wi||2 + |[W3]|2)

forx € RP,y € R,W; € RP*7and W3 € R,

@ us

P
O

Y

@——) matmul o(+) 4,@—> matmul

33/52

The total derivative % can be computed backward, by walking through all paths

from £ to W1 in the computational graph and accumulating the terms:

d/¢ 0¢ dug 0¢ duy

dW: Ous AW: | 9ug dWH
d’LLg o
W

mul
<

O
4_‘<_ 1l
(-

@—) matmul a (:)

matmul (——)@S a() \ ¥

cross_ent

34/52

This algorithm is known as reverse-mode automatic differentiation, also called
backpropagation.

An equivalent procedure can be defined to evaluate the derivatives in forward
mode, from inputs to outputs.

Automatic differentiation generalizes to /N inputs and M outputs.
o if N > M, reverse-mode automatic differentiation is computationally more efficient.

o otherwise,if M > N, forward automatic differentiation is better.

Since differentiation is a linear operator, AD can be implemented efficiently in
terms of matrix operations.

35/52

Vanishing gradients

Training deep MLPs with many layers has for long (pre-2011) been very difficult due
to the vanishing gradient problem.

e Small gradients slow down, and eventually block, stochastic gradient descent.

e Thisresultsin alimited capacity of learning.

100 | 5 ! . : ! '
| 1: L | ‘ ? —Layer 1
— Layer2
| : : | : — Layer 3
SOp e """""""""""""" """"""""""""" — Layer 4|
: | | | Layer 5
0 | j s ' i J
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Backpropagated gradients

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.

36/52

Consider a simplified 3-layer MLP, with x, w1, w2, w3 € R, such that

f(x;wy, wy, ws3) = o (w3 (weo (wyx))) .

Under the hood, this would be evaluated as

U] = WiT
us = o(uy)
U3 = Wl
uy = o(u3)
Us = W3 Uy
g = o(us)

) o dg
and its derivative dw; S

dy 0y Ous Oug Ous Ouy Ouq

dw1 B 811,5 8’u,4 8’&3 8’u,2 8u1 a’w1
B 80’(’&5) 80’(’&3) 80’(’&1)
N 8u5 ws 8’&3 w2 8u1 v

37/52

The derivative of the sigmoid activation function o is:

0.25 -
0.20 -
015 -
010 -
0.05 -

0.00 -
| |
-10.0 —-7.5 -50 -25 0.0 2.5 2.0 1.5 10.0

do
1, @) = o@)(1—o(z))

Notice that 0 < j—g(m) < forall .

38/52

Assume that weights w1, wo, w3 are initialized randomly from a Gaussian with
zero-mean and small variance, such that with high probability —1 < w; < 1.

Then,

dg Oo(us) do(uy) o(w)

— w3 w2 T
dw 8u5 8u3 8u1
<% <i <3

This implies that the gradient (f—lfl exponentially shrinks to zero as the number of

layers in the network increases.
Hence the vanishing gradient problem.

e |n general, bounded activation functions (sigmoid, tanh, etc) are prone to the
vanishing gradient problem.

e Note the importance of a proper initialization scheme.

39/52

Rectified linear units

Instead of the sigmoid activation function, modern neural networks are for most
based on rectified linear units (ReLU) (Glorot et al, 2011):

ReLU(x) = max(0, x)

i i | | I I I I !
-1g0.0 -75 -50 25 0.0 2.5 5.0 7.5 10.0

40/52

Note that the derivative of the ReLU function is

d 0 ifz<0
—ReLU(z) = =

dz 1 otherwise

10 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

| |
-100 —-75 -50 -25 0.0 25 5.0 75 10.0

For x = 0, the derivative is undefined. In practice, it is set to zero.

41/52

Therefore,

d’g B 80‘(’11,5) (90'(’11,3) 80‘(11,1)

= w3 w2 I
dw1 8’LL5 8’&3 8u1
A\ 7 A\ ~~ 7 A\ ~~ 7

This solves the vanishing gradient problem, even for deep networks! (provided
proper initialization)

Note that:

e The RelLU unit dies when its input is negative, which might block gradient
descent.

e Thisis actually a useful property to induce sparsity.

e Thisissue can also be solved using leaky ReLUs, defined as
LeakyReLU(x) = max(ax, x)

forasmallaa € R" (e.g, a0 = 0.1).

42/52

Universal approximation

Theorem. (Cybenko 1989; Hornik et al, 1991) Let a(-) be a bounded, non-constant
continuous function. Let I,, denote the p-dimensional hypercube, and C'(1,,)
denote the space of continuous functions on I,,. Givenany f € C(I,)ande > 0,
there exists ¢ > O andv;, w;, b;,2 = 1, ..., g such that

F(z) = Zvia(w;‘rm +b;)

1<q
satisfies

sup |f(z) — F(z)| <e.

zcly

e |t guarantees that even a single hidden-layer network can represent any
classification problem in which the boundary is locally linear (smooth);

¢ |t does not inform about good/bad architectures, nor how they relate to the
optimization procedure.

e The universal approximation theorem generalizes to any non-polynomial
(possibly unbounded) activation function, including the ReLU (Leshno, 1993).

43/52

Theorem (Barron, 1992) The mean integrated square error between the estimated

A

network F' and the target function f is bounded by

Ci gp
Ol —+ = log N
q+Nog

where IV is the number of training points, g is the number of neurons, p is the input
dimension, and C't measures the global smoothness of f.

e Combines approximation and estimation errors.

e Provided enough data, it guarantees that adding more neurons will result in a
better approximation.

44/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

45/52

Consider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This model can approximate any smooth 1D function, provided enough hidden
units.

oo
4 - === fi-1
- hr
2- _— fr=ﬁ;—1+hr

45/52

(Bayesian) Infinite networks

Whatif g — 00?

Consider the 1-layer MLP with a hidden layer of size ¢ and a bounded activation
function o

f(@) = b+ vih;(@)

p
hj(z) =0 (aj + Z%ﬂ%)
i=1

Assume Gaussian priorsv; ~ N (0,02),b ~ N (0,07),u;; ~ N(0,02) and
aj ~ N(0,02).

46/52

For a fixed value zc(l), let us consider the prior distribution of f(zc(l)) implied by the
prior distributions for the weights and biases.

We have
E[v;h;(z™)] = E[v;]E[h; ()] =0,

since v; and hj (:13(1)) are statistically independent and v; has zero mean by
hypothesis.

The variance of the contribution of each hidden unit hj is

Viv;h;(@)] = E[(v;h; (2))?] — E[v;h; (™))
= E[v}]E[h;(z")?]
= o2E[h; (zM)?],

which must be finite since hj is bounded by its activation function.

We define V (z1)) = E[h;(zM))?],and is the same for all 5.

47/52

By the Central Limit Theorem, as ¢ — 00, the total contribution of the hidden

units, ;]-:1 v;hj(x),to the value of f((!)) becomes a Gaussian with variance
g2V (zW).

The bias b is also Gaussian, of variance O'g, so for large g, the prior distribution

£(zW) is a Gaussian of variance o2 + qo2V (z(1)).

1
Accordingly, for o, = w, g~ 7, for some fixed w,, the prior f(z})) converges to a
Gaussian of mean zero and variance o7 + w22V (z!)) as ¢ — oc.

2)

For two or more fixed values a:(l) ; a:(, ..., @ similar argument shows that, as

qg — 00, the joint distribution of the outputs converges to a multivariate Gaussian
with means of zero and covariances of

E[f(e) (@) = of + 3 o2E[h; (") ()

= 02 + w2C(zW, 2?)

where C(zV), 2(2)) = E[h; (M) h;(2?)] and is the same for all §.

48/52

This result states that for any set of fixed points 2 (1) ; z(2) , ..., the joint distribution
of f(xM), f(2?), ... is amultivariate Gaussian.

In other words, the infinitely wide 1-layer MLP converges towards a Gaussian
process.

+1 - +1 -

0 - 0 -

-1 - -1 -
I | | | | I
-1 0 +1 -1 0 +1

Figure 2.2: Functions drawn from Gaussian priors for a network with 10000 tanh hidden units. Two
functions drawn from a prior with &, = 5 are shown on the left, two from a prior with &, = 20
on the right. In both cases, o,/¢, = 1 and o3 = w, = 1. The functions with different o, were
generated using the same random number seed, the same as that used to generate the functions in
the lower-right of Figure 2.1. This allows a direct evaluation of the effect of changing o,. (Use of a
step function is equivalent to letting ¢, go to infinity, while keeping o, /¢, fixed.)

(Neal, 1995)

49/52

Effect of depth

Theorem (Montufar et al, 2014) A rectifier neural network with p input units and L

hidden layers of width ¢ > p can compute functions that have ﬂ((%)(L_l)pqp)
linear regions.

e Thatis, the number of linear regions of deep models grows exponentially in L
and polynomially in q.

e Even for small values of L and g, deep rectifier models are able to produce
substantially more linear regions than shallow rectifier models.

50/52

Cooking recipe

Get data (loads of them).

Get good hardware.

Define the neural network architecture as a composition of differentiable
functions.

o Stick to non-saturating activation function to avoid vanishing gradients.

o Prefer deep over shallow architectures.

Optimize with (variants of) stochastic gradient descent.

o Evaluate gradients with automatic differentiation.

51/52

The end.

51/52

References

Materials from the first part of the lecture are inspired from the excellent Deep
Learning Course by Francois Fleuret (EPFL, 2018).

e |ecture 3a: Linear classifiers, perceptron

e Lecture 3b: Multi-layer perceptron
Further references:

e Introduction to ML and Stochastic optimization (Gower, 2017)
e \Why are deep neural networks hard to train? (Nielsen, 2017)

e Automatic differentiation in machine learning: a survey (Baydin, 2015)

52/52

