
Deep Learning
Lecture 2: Neural networks

Gilles Louppe
g.louppe@uliege.be

1 / 52

Outline
Goal: explain and motivate the basic constructs of neural networks.

From linear discriminant analysis to logistic regresion

Stochastic gradient descent

From logistic regression to the multi-layer perceptron

Vanishing gradients and recti�ed networks

Universal approximation theorem

2 / 52

Neural networks

3 / 52

Threshold Logic Unit
The Threshold Logic Unit (McCulloch and Pitts, 1943) was the �rst mathematical
model for a neuron. Assuming Boolean inputs and outputs, it is de�ned as:

This unit can implement:

Therefore, any Boolean function can be built which such units.

f(x) = 1 { w x +b≥0}∑
i i i

or(a, b) = 1 {a+b−0.5≥0}

and(a, b) = 1 {a+b−1.5≥0}

not(a) = 1 {−a+0.5≥0}

4 / 52

Perceptron
The perceptron (Rosenblatt, 1957) is very similar, except that the inputs are real:

This model was originally motivated by biology, with being synaptic weights

and and �ring rates.

This is a cartoonesque biological model.

f(x) = {
1
0

if w x + b ≥ 0∑i i i

otherwise

w i

x i f

5 / 52

Let us de�ne the activation function:

Therefore, the perceptron classi�cation rule can be rewritten as

σ(x) = {
1
0

if x ≥ 0
otherwise

f(x) = σ(w x+ b).T

6 / 52

Linear discriminant analysis
Consider training data , with

,

.

Assume class populations are Gaussian, with same covariance matrix

(homoscedasticity):

(x, y) ∼ P (X,Y)

x ∈ Rp

y ∈ {0, 1}

Σ

P (x∣y) = exp − (x− μ) Σ (x− μ)
 (2π) ∣Σ∣p

1
(

2
1

y
T −1

y)

7 / 52

Using the Bayes' rule, we have:

P (Y = 1∣x) =

P (x)
P (x∣Y = 1)P (Y = 1)

=

P (x∣Y = 0)P (Y = 0) + P (x∣Y = 1)P (Y = 1)
P (x∣Y = 1)P (Y = 1)

= .
1 + P (x∣Y =1)P (Y =1)

P (x∣Y =0)P (Y =0)

1

8 / 52

Using the Bayes' rule, we have:

It follows that with

we get

P (Y = 1∣x) =

P (x)
P (x∣Y = 1)P (Y = 1)

=

P (x∣Y = 0)P (Y = 0) + P (x∣Y = 1)P (Y = 1)
P (x∣Y = 1)P (Y = 1)

= .
1 + P (x∣Y =1)P (Y =1)

P (x∣Y =0)P (Y =0)

1

σ(x) = ,
1 + exp(−x)

1

P (Y = 1∣x) = σ log + log .(
P (x∣Y = 0)
P (x∣Y = 1)

P (Y = 0)
P (Y = 1)

)

9 / 52

Therefore,

P (Y = 1∣x)

= σ log +

⎝
⎜
⎜
⎛

P (x∣Y = 0)
P (x∣Y = 1)

a

 log

P (Y = 0)
P (Y = 1)

⎠
⎟
⎟
⎞

= σ log P (x∣Y = 1) − log P (x∣Y = 0) + a()

= σ − (x− μ) Σ (x− μ) + (x− μ) Σ (x− μ) + a(
2
1

1
T −1

1 2
1

0
T −1

0)

= σ x+

⎝
⎜
⎛

wT

 (μ − μ) Σ1 0
T −1

b

 (μ Σ μ − μ Σ μ) + a
2
1

0
T −1

0 1
T −1

1

⎠
⎟
⎞

= σ w x+ b(T)

10 / 52

11 / 52

11 / 52

11 / 52

Note that the sigmoid function

looks like a soft heavyside:

Therefore, the overall model is very similar to the

perceptron.

σ(x) =

1 + exp(−x)
1

f(x;w, b) = σ(w x+ b)T

12 / 52

In terms of tensor operations, the computational graph of can be represented as:

where

white nodes correspond to inputs and outputs;

red nodes correspond to model parameters;

blue nodes correspond to intermediate operations, which themselves produce
intermediate output values (not represented).

This unit is the core component all neural networks!

f

13 / 52

Logistic regression
Same model

as for linear discriminant analysis.

But,

ignore model assumptions (Gaussian class populations, homoscedasticity);

instead, �nd that maximizes the likelihood of the data.

P (Y = 1∣x) = σ w x+ b(T)

w, b

14 / 52

We have,

This loss is an instance of the cross-entropy

for and .

arg P (d∣w, b)
w,b

max

= arg P (Y = y ∣x ,w, b)
w,b

max
x ,y ∈di i

∏ i i

= arg σ(w x + b) (1 − σ(w x + b))
w,b

max
x ,y ∈di i

∏ T
i

y i T
i

1−y i

= arg

w,b
min

L(w,b)= ℓ(y , (x ;w,b))∑
i i ŷ i

 −y log σ(w x + b) − (1 − y) log(1 − σ(w x + b))
x ,y ∈di i

∑ i
T

i i
T

i

H(p, q) = E [− log q]p

p = Y ∣x i q = ∣x Ŷ i

15 / 52

When takes values in , a similar derivation yields the logistic loss

In general, the cross-entropy and the logistic losses do not admit a minimizer
that can be expressed analytically in closed form.

However, a minimizer can be found numerically, using a general minimization
technique such as gradient descent.

Y {−1, 1}

L(w, b) = − log σ y (w x + b)) .
x ,y ∈di i

∑ (i
T

i)

16 / 52

Gradient descent
Let denote a loss function de�ned over model parameters (e.g., and).

To minimize , gradient descent uses local linear information to iteratively move

towards a (local) minimum.

For , a �rst-order approximation around can be de�ned as

L(θ) θ w b

L(θ)

θ ∈ R0
d θ 0

(θ + ϵ) = L(θ) + ϵ ∇ L(θ) + ∣∣ϵ∣∣ .L̂ 0 0
T

θ 0 2γ
1 2

17 / 52

A minimizer of the approximation is given for

which results in the best improvement for the step .

Therefore, model parameters can be updated iteratively using the update rule:

Notes:

 are the initial parameters of the model;

 is the learning rate;

both are critical for the convergence of the update rule.

(θ + ϵ)L̂ 0

∇ (θ + ϵ)ϵL̂ 0 = 0

= ∇ L(θ) + ϵ,θ 0
γ

1

ϵ = −γ∇ L(θ)θ 0

θ = θ − γ∇ L(θ)t+1 t θ t

θ 0

γ

18 / 52

Example 1: Convergence to a local minima

19 / 52

Example 1: Convergence to a local minima

19 / 52

Example 1: Convergence to a local minima

19 / 52

Example 1: Convergence to a local minima

19 / 52

Example 1: Convergence to a local minima

19 / 52

Example 1: Convergence to a local minima

19 / 52

Example 1: Convergence to a local minima

19 / 52

Example 1: Convergence to a local minima

19 / 52

Example 2: Convergence to the global minima

20 / 52

Example 2: Convergence to the global minima

20 / 52

Example 2: Convergence to the global minima

20 / 52

Example 2: Convergence to the global minima

20 / 52

Example 2: Convergence to the global minima

20 / 52

Example 2: Convergence to the global minima

20 / 52

Example 2: Convergence to the global minima

20 / 52

Example 2: Convergence to the global minima

20 / 52

Example 3: Divergence due to a too large learning rate

21 / 52

Example 3: Divergence due to a too large learning rate

21 / 52

Example 3: Divergence due to a too large learning rate

21 / 52

Example 3: Divergence due to a too large learning rate

21 / 52

Example 3: Divergence due to a too large learning rate

21 / 52

Example 3: Divergence due to a too large learning rate

21 / 52

Stochastic gradient descent
In the empirical risk minimization setup, and its gradient decompose as

Therefore, in batch gradient descent the complexity of an update grows linearly
with the size of the dataset.

More importantly, since the empirical risk is already an approximation of the
expected risk, it should not be necessary to carry out the minimization with great
accuracy.

L(θ)

L(θ)

∇L(θ)

= ℓ(y , f(x ; θ))
N

1

x ,y ∈di i

∑ i i

= ∇ℓ(y , f(x ; θ)).
N

1

x ,y ∈di i

∑ i i

N

22 / 52

Instead, stochastic gradient descent uses as update rule:

Iteration complexity is independent of .

The stochastic process depends on the examples picked

randomly at each iteration.

θ = θ − γ∇ℓ(y , f(x ; θ))t+1 t i(t+1) i(t+1) t

N

{θ ∣t = 1, ...}t i(t)

23 / 52

Batch gradient descent Stochastic gradient descent

Instead, stochastic gradient descent uses as update rule:

Iteration complexity is independent of .

The stochastic process depends on the examples picked

randomly at each iteration.

θ = θ − γ∇ℓ(y , f(x ; θ))t+1 t i(t+1) i(t+1) t

N

{θ ∣t = 1, ...}t i(t)

24 / 52

Why is stochastic gradient descent still a good idea?

Informally, averaging the update

over all choices restores batch gradient descent.

Formally, if the gradient estimate is unbiased, e.g., if

then the formal convergence of SGD can be proved, under appropriate
assumptions (see references).

Interestingly, if training examples are received and used in an

online fashion, then SGD directly minimizes the expected risk.

θ = θ − γ∇ℓ(y , f(x ; θ))t+1 t i(t+1) i(t+1) t

i(t + 1)

E [∇ℓ(y , f(x ; θ))]i(t+1) i(t+1) i(t+1) t = ∇ℓ(y , f(x ; θ))
N

1

x ,y ∈di i

∑ i i t

= ∇L(θ)t

x , y ∼ P i i X,Y

25 / 52

When decomposing the excess error in terms of approximation, estimation and
optimization errors, stochastic algorithms yield the best generalization
performance (in terms of expected risk) despite being the worst optimization
algorithms (in terms of empirical risk) (Bottou, 2011).

26 / 52

Layers
So far we considered the logistic unit , where , ,

 and .

These units can be composed in parallel to form a layer with outputs:

where , , , and where is upgraded to the

element-wise sigmoid function.

h = σ w x+ b(T) h ∈ R x ∈ Rp

w ∈ Rp b ∈ R

q

h = σ(W x+ b)T

h ∈ Rq x ∈ Rp W ∈ Rp×q b ∈ Rq σ(⋅)

27 / 52

Multi-layer perceptron
Similarly, layers can be composed in series, such that:

where denotes the model parameters .

This model is the multi-layer perceptron, also known as the fully connected
feedforward network.

Optionally, the last activation can be skipped to produce unbounded output

values .

h 0

h 1

...

h L

f(x; θ)

= x

= σ(W h + b)1
T

0 1

= σ(W h + b)L
T

L−1 L

= h L

θ {W ,b , ...∣k = 1, ...,L}k k

σ

 ∈ Rŷ

28 / 52

29 / 52

To minimize with stochastic gradient descent, we need the gradient .

Therefore, we require the evaluation of the (total) derivatives

of the loss with respect to all model parameters , , for .

These derivatives can be evaluated automatically from the computational graph of

using automatic differentiation.

L(θ) ∇ ℓ(θ)θ t

 ,

dW k

dℓ
db k

dℓ

ℓ W k b k k = 1, ...,L

ℓ

30 / 52

Automatic differentiation
Consider a 1-dimensional output composition , such that

The chain rule of total derivatives states that

Since a neural network is a composition of differentiable functions, the total
derivatives of the loss can be evaluated by applying the chain rule recursively
over its computational graph.

The implementation of this procedure is called (reverse) automatic
differentiation (AD).

AD is not numerical differentiation, nor symbolic differentiation.

f ∘ g

y

u
= f(u)

= g(x) = (g (x), ..., g (x)).1 m

 =

dx
dy

k=1

∑
m

∂u k

∂y

recursive case

dx
du k

31 / 52

As a guiding example, let us consider a simpli�ed 2-layer MLP and the following loss
function:

for , , and .

f(x;W ,W)1 2

ℓ(y, ;W ,W)ŷ 1 2

= σ W σ W x(2
T (1

T))

= cross_ent(y,) + λ ∣∣W ∣∣ + ∣∣W ∣∣ŷ (1 2 2 2)

x ∈ Rp y ∈ RW ∈ R1
p×q W ∈ R2

q

32 / 52

As a guiding example, let us consider a simpli�ed 2-layer MLP and the following loss
function:

for , , and .

f(x;W ,W)1 2

ℓ(y, ;W ,W)ŷ 1 2

= σ W σ W x(2
T (1

T))

= cross_ent(y,) + λ ∣∣W ∣∣ + ∣∣W ∣∣ŷ (1 2 2 2)

x ∈ Rp y ∈ RW ∈ R1
p×q W ∈ R2

q

33 / 52

The total derivative can be computed backward, by walking through all paths

from to in the computational graph and accumulating the terms:
dW 1

dℓ

ℓ W 1

dW 1

dℓ

dW 1

du 8

= +

∂u 8

∂ℓ
dW 1

du 8

∂u 4

∂ℓ
dW 1

du 4

= ...

34 / 52

This algorithm is known as reverse-mode automatic differentiation, also called
backpropagation.

An equivalent procedure can be de�ned to evaluate the derivatives in forward
mode, from inputs to outputs.

Automatic differentiation generalizes to inputs and outputs.

if , reverse-mode automatic differentiation is computationally more ef�cient.

otherwise, if , forward automatic differentiation is better.

Since differentiation is a linear operator, AD can be implemented ef�ciently in
terms of matrix operations.

N M

N ≫M

M ≫ N

35 / 52

Vanishing gradients
Training deep MLPs with many layers has for long (pre-2011) been very dif�cult due
to the vanishing gradient problem.

Small gradients slow down, and eventually block, stochastic gradient descent.

This results in a limited capacity of learning.

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.

36 / 52

Consider a simpli�ed 3-layer MLP, with , such that

Under the hood, this would be evaluated as

and its derivative as

x,w ,w ,w ∈ R1 2 3

f(x;w ,w ,w) = σ w σ w σ w x .1 2 3 (3 (2 (1)))

u 1

u 2

u 3

u 4

u 5

 ŷ

= w x1

= σ(u)1

= w u 2 2

= σ(u)3

= w u 3 4

= σ(u)5

 dw 1

d ŷ

dw 1

d ŷ
=

∂u 5

∂ ŷ

∂u 4

∂u 5

∂u 3

∂u 4

∂u 2

∂u 3

∂u 1

∂u 2

∂w 1

∂u 1

= w w x
∂u 5

∂σ(u)5
3 ∂u 3

∂σ(u)3
2 ∂u 1

∂σ(u)1

37 / 52

The derivative of the sigmoid activation function is:

Notice that for all .

σ

 (x) = σ(x)(1 − σ(x))
dx
dσ

0 ≤ (x) ≤ dx
dσ

4
1 x

38 / 52

Assume that weights are initialized randomly from a Gaussian with

zero-mean and small variance, such that with high probability .

Then,

This implies that the gradient exponentially shrinks to zero as the number of

layers in the network increases.

Hence the vanishing gradient problem.

In general, bounded activation functions (sigmoid, tanh, etc) are prone to the
vanishing gradient problem.

Note the importance of a proper initialization scheme.

w ,w ,w 1 2 3

−1 ≤ w ≤ 1i

 = x
dw 1

d ŷ

≤ 4
1

∂u 5

∂σ(u)5

≤1

 w 3

≤ 4
1

∂u 3

∂σ(u)3

≤1

 w 2

≤ 4
1

∂u 1

σ(u)1

 dw 1

d ŷ

39 / 52

Recti�ed linear units
Instead of the sigmoid activation function, modern neural networks are for most
based on recti�ed linear units (ReLU) (Glorot et al, 2011):

ReLU(x) = max(0,x)

40 / 52

Note that the derivative of the ReLU function is

For , the derivative is unde�ned. In practice, it is set to zero.

 ReLU(x) =

dx
d

{
0
1

if x ≤ 0
otherwise

x = 0

41 / 52

Therefore,

This solves the vanishing gradient problem, even for deep networks! (provided
proper initialization)

Note that:

The ReLU unit dies when its input is negative, which might block gradient
descent.

This is actually a useful property to induce sparsity.

This issue can also be solved using leaky ReLUs, de�ned as

for a small (e.g.,).

 = w w x
dw 1

d ŷ

=1

∂u 5

∂σ(u)5
3

=1

∂u 3

∂σ(u)3
2

=1

∂u 1

∂σ(u)1

LeakyReLU(x) = max(αx,x)

α ∈ R+ α = 0.1

42 / 52

Universal approximation
Theorem. (Cybenko 1989; Hornik et al, 1991) Let be a bounded, non-constant

continuous function. Let denote the -dimensional hypercube, and

denote the space of continuous functions on . Given any and ,

there exists and such that

satis�es

It guarantees that even a single hidden-layer network can represent any
classi�cation problem in which the boundary is locally linear (smooth);

It does not inform about good/bad architectures, nor how they relate to the
optimization procedure.

The universal approximation theorem generalizes to any non-polynomial
(possibly unbounded) activation function, including the ReLU (Leshno, 1993).

σ(⋅)
I p p C(I)p

I p f ∈ C(I)p ϵ > 0
q > 0 v ,w , b , i = 1, ..., qi i i

F (x) = v σ(w x + b)
i≤q

∑ i i
T

i

 ∣f(x) − F (x)∣ < ϵ.
x∈I p

sup

43 / 52

Theorem (Barron, 1992) The mean integrated square error between the estimated

network and the target function is bounded by

where is the number of training points, is the number of neurons, is the input

dimension, and measures the global smoothness of .

Combines approximation and estimation errors.

Provided enough data, it guarantees that adding more neurons will result in a
better approximation.

F̂ f

O + log N(
q

C f
2

N

qp
)

N q p

C f f

44 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

Consider the 1-layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w ReLU(x + b).∑ i i

45 / 52

(Bayesian) In�nite networks
What if ?

Consider the 1-layer MLP with a hidden layer of size and a bounded activation

function :

Assume Gaussian priors , , and

.

q → ∞

q

σ

f(x)

h (x)j

= b + v h (x)
j=1

∑
q

j j

= σ a + u x (j

i=1

∑
p

i,j i)

v ∼ N (0,σ)j v
2 b ∼ N (0,σ)b

2 u ∼ N (0,σ)i,j u
2

a ∼ N (0,σ)j a
2

46 / 52

For a �xed value , let us consider the prior distribution of implied by the

prior distributions for the weights and biases.

We have

since and are statistically independent and has zero mean by

hypothesis.

The variance of the contribution of each hidden unit is

which must be �nite since is bounded by its activation function.

We de�ne , and is the same for all .

x(1) f(x)(1)

E[v h (x)] = E[v]E[h (x)] = 0,j j
(1)

j j
(1)

v j h (x)j
(1) v j

h j

V[v h (x)]j j
(1) = E[(v h (x))] − E[v h (x)]j j

(1) 2
j j

(1) 2

= E[v]E[h (x)]j
2

j
(1) 2

= σ E[h (x)],v
2

j
(1) 2

h j

V (x) = E[h (x)](1)
j

(1) 2 j

47 / 52

By the Central Limit Theorem, as , the total contribution of the hidden

units, , to the value of becomes a Gaussian with variance

.

The bias is also Gaussian, of variance , so for large , the prior distribution

 is a Gaussian of variance .

Accordingly, for , for some �xed , the prior converges to a

Gaussian of mean zero and variance as .

For two or more �xed values , a similar argument shows that, as

, the joint distribution of the outputs converges to a multivariate Gaussian

with means of zero and covariances of

where and is the same for all .

q → ∞
 v h (x)∑j=1

q
j j f(x)(1)

qσ V (x)v
2 (1)

b σ b
2 q

f(x)(1) σ + qσ V (x)b
2

v
2 (1)

σ = ω qv v
− 2

1
ω v f(x)(1)

σ + ω σ V (x)b
2

v
2

v
2 (1) q → ∞

x ,x , ...(1) (2)

q → ∞

E[f(x)f(x)](1) (2) = σ + σ E[h (x)h (x)]b
2

j=1

∑
q

v
2

j
(1)

j
(2)

= σ + ω C(x ,x)b
2

v
2 (1) (2)

C(x ,x) = E[h (x)h (x)](1) (2)
j

(1)
j

(2) j

48 / 52

This result states that for any set of �xed points , the joint distribution

of is a multivariate Gaussian.

In other words, the in�nitely wide 1-layer MLP converges towards a Gaussian
process.

(Neal, 1995)

x ,x , ...(1) (2)

f(x), f(x), ...(1) (2)

49 / 52

Effect of depth
Theorem (Montúfar et al, 2014) A recti�er neural network with input units and

hidden layers of width can compute functions that have

linear regions.

That is, the number of linear regions of deep models grows exponentially in

and polynomially in .

Even for small values of and , deep recti�er models are able to produce

substantially more linear regions than shallow recti�er models.

p L

q ≥ p Ω(() q)
p
q (L−1)p p

L

q

L q

50 / 52

Cooking recipe
Get data (loads of them).

Get good hardware.

De�ne the neural network architecture as a composition of differentiable
functions.

Stick to non-saturating activation function to avoid vanishing gradients.

Prefer deep over shallow architectures.

Optimize with (variants of) stochastic gradient descent.

Evaluate gradients with automatic differentiation.

51 / 52

The end.

51 / 52

References
Materials from the �rst part of the lecture are inspired from the excellent Deep
Learning Course by Francois Fleuret (EPFL, 2018).

Lecture 3a: Linear classi�ers, perceptron

Lecture 3b: Multi-layer perceptron

Further references:

Introduction to ML and Stochastic optimization (Gower, 2017)

Why are deep neural networks hard to train? (Nielsen, 2017)

Automatic differentiation in machine learning: a survey (Baydin, 2015)

52 / 52

