Deep Learning

Lecture 3: Convolutional networks

Gilles Louppe
g.louppe@uliege.be

w LIEGE
universiteée

1/41

Convolutional networks

Cooking recipe

e Get data (loads of them).

e Get good hardware.
e Define the neural network architecture as a composition of differentiable
functions.

o Stick to non-saturating activation function to avoid vanishing gradients.

o Prefer deep over shallow architectures.

o Inthis lecture, we augment our set of differentiable functions with components tailored for
spatial data (images, sequences, etc).

e Optimize with (variants of) stochastic gradient descent.

o Evaluate gradients with automatic differentiation.

3/41

Motivation

Suppose we want to train a fully connected network that takes 200 x 200 RGB
images as input.

1000 hidden units

S

densely connected

200
200

What are the problems with this first layer?

e Too many parameters: 200 x 200 x 3 x 1000 = 120M.
e What if the object in the image shifts a little?

Fully connected layer

T
J

In a fully connected layer, each hidden unit h; = o (W x + b;) is connected to

the entire image.

e |ooking for activations that depend on pixels that are spatially far away is
supposedly a waste of time and resources.

e Longrange correlations can be dealt with in the higher layers.

5/41

Locally connected layer

In a locally connected layer, each hidden unit hj is connected to only a patch of the
image.

o Weights are specialized locally and functionally.
e Reduce the number of parameters.

e What if the object in the image shifts a little?

Convolutional layer

Tied weights

In a convolutional layer, each hidden unit hj is connected to only a patch of the
image, and share its weights with the other units h;.

o Weights are specialized functionally, regardless of spatial location.

e Reduce the number of parameters.

Convolution

For one-dimensional tensors, given an input vector x & R" and a convolutional
kernelu € RY, the discrete convolution x x« uwisavectorofsize W —w + 1
such that

w—1
(x *xu); = Z Lt Uy, -
m=0

Technically, x denotes the cross-correlation operator. However, most machine
learning libraries call it convolution.

8/41

Input
1 4 -1 2 -2 3
€ - >
1 2 -1
Output
9
€ W w1 4

Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.

9/41

Convolutions generalize to multi-dimensional tensors:

e |nits most usual form, a convolution takes as input a 3D tensor x & RCXHXW,
called the input feature map.

e Akernelu € RE*" ¥ glides across the input feature map, along its height and
width. The size h X w is called the receptive field.

e At each location, the element-wise product between the kernel and the input
elements it overlaps is computed and the results are summed up.

10/41

e Thefinal output oisa2Dtensorofsize(H —h + 1) x (W —w + 1)
called the output feature map and such that:

c-1 C—
0ji = bji + Y (Xe*uc)ji = bji +

t
CZO C:O

—
>

—1

=

g

Xec,j+n,i+mUen,m

¥

S
o
3
o

where u and b are shared parameters to learn.

e D convolutions can be applied in the same way to produce a
D x (H —h+1) x (W —w + 1) feature map, where D is the depth.

11/41

Input

w
e
Kernel
w
H h
R
C
—

Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.

OQutput

12/41

In addition to the depth D, the size of the output feature map can be controlled
through the stride and with zero-padding.

e The stride S specifies the size of the step the kernel slides with.

e Zero-padding specifies whether the input volume is pad with zeroes around the
border. This makes it possible to produce an output volume of the same size as
the input. A hyper-parameter P controls the amount of padding.

13/41

No padding (P = 0), Padding (P = 1),
no strides (S = 1). strides (S = 2).

14/41

Equivariance

A function f isequivariantto g if f(g(x)) = g(f(x)).

e Parameter sharing used in a convolutional layer causes the layer to be
equivariant to translation.

e Thatis, if g is any function that translates the input, the convolution function is
equivariantto g.

o E.g., if we move an object in the image, its representation will move the same amount in the
output.

e This property is useful when we know some local function is useful everywhere
(e.g., edge detectors).

e However, convolutions are not equivariant to other operations such as change
in scale or rotation.

15/41

Pooling

When the input volume is large, pooling layers can be used to reduce the input
dimension while preserving its global structure, in a way similar to a down-scaling
operation.

Consider a pooling area of size b X w and a 3D input tensor x € R (rh)x(sw),

e Max-pooling produces atensor o & RE*7%s sych that

()C)jai — max }c(%7ij—%7l,8i—F7Tl‘
n<hm<w

e Average pooling produces atensor 0 & RE*7%s sych that

h—1 w—1

1
Oc,ji — hw E E Xe,rj+n,si+m-

n=0 m=0

Pooling is very similar in its formulation to convolution. Similarly, a pooling layer can
be parameterized in terms of its receptive field, a stride .S and a zero-padding P.

16/41

Input

Qutput

sh

Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.
17/41

Invariance

A function f isinvariantto gif f(g(x)) = f(x).

e Pooling layers can be used for building inner activations that are (slightly)
invariant to small translations of the input.

e |nvariance to local translation is helpful if we care more about the presence of a
pattern rather than its exact position.

18/41

Layer patterns

A convolutional network can often be defined as a composition of convolutional
layers (CONV), pooling layers (POOL), linear rectifiers (RELU) and fully connected

layers (FC).

convolution linear max convolution
rectification pooling

convolution layer pooling layer

19/41

The most common convolutional network architecture follows the pattern:

INPUT — ||CONV — RELU|*N — POOL?|*M — |[FC — RELU|*K — FC

where:

* indicates repetition;

POOL? indicates an optional pooling layer;

N > 0(andusually N < 3),M > 0, K > 0(andusually K < 3);

the last fully connected layer holds the output (e.g., the class scores).

20/41

Some common architectures for convolutional networks following this pattern
include:

e INPUT — FC,whichimplements a linear classifier (N = M = K = ().

INPUT — |[FC — RELU|*K — FC,whichimplements a K -layer MLP.
INPUT — CONV — RELU — FC.

INPUT — [CONV — RELU — POOL|*2 — FC — RELU — FC.

INPUT — [[CONV — RELU]*2 — POOL]*3 — [FC — RELU]*2 — FC.

Note that for the last architecture, two CONV layers are stacked before every POOL

layer. This is generally a good idea for larger and deeper networks, because multiple
stacked CONV layers can develop more complex features of the input volume before

the destructive pooling operation.

21/41

SIS IR 5 R

N

pett J 1 ERECI

LeNet-1

(LeCunetal, 1993)

LeNet-5

C3: f. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT 28x2
6@28x28 S2: f. maps r

T

‘ Full conrllection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

C5: layer g jlayer OUTPUT

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

(LeCun et al, 1998)

24/41

AlexNet

48 192 192 128 2048 2025 \(lense
13 \ 13
il ﬁ F 3[>
S 13 13 dense dense
1000
192 192 128 Max L
Mo _ o pooling 2048 2048
pooling pooling

48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—
4096-4096-1000.

(Krizhevsky et al, 2012)

GooglLeNet

(Szegedy et al, 2014)

26/41

VGGNet

224 %224 =3 234 % 224 x Gd

E] convolution+ReLlLT

X |)I:J(I]il:l;|.l|
| fully connected+4+Rel.U

] softmax

(Simonyan and Zisserman, 2014)

27/41

ResNet

(He et al, 2015)

nnnannennennaE AN annon AR nnEan AR TN AN

28/41

Object recognition

ens cap
reflex camera
Polaroid camera cock
pencil sharpener space bar ground beetle cocker spaniel
switch| | computer keyboard common newt partridge
combination lock accordion English setter
T

¥ ¥y
i
|
! | v
cham na us

rille Madagascar cat T T P . T
E‘h‘n m“':"“"‘ [daimatian| — T lampshade ular teleph
oo = ger cat throne slot dome
pickup jelly fungus elderberry titi tabby goblet reflex camera mosque

beach wagon gill fungus hire buliterrier indri
= e £ — = boxer table lamp dial telephone radio telescope
fire dead-man currant EainEarnard T

iPod steel arch bridg

The ImageNet challenge:

e 1000 object classes
e 1200000 training examples
e 100000 test examples

29/41

28.2

152 layers

\
\
\
‘ 22 layers 1 ‘ 19 Iavers ’

3 57 I_ I 8 Iayers 8 layers ‘ shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

30/41

Model

Xception

VGG16

VGG19

ResNet50
InceptionV3
InceptionResNetV2
MobileNet
DenseNet121
DenseNet169

DenseNet201

Credits: Keras documentation

Size Top-1Accuracy Top-5Accuracy Parameters Depth

88 MB
528 MB
549 MB

99 MB

92 MB
215MB

17 MB

33MB

57 MB

80 MB

0.790
0.715
0.727
0.759
0.788
0.804
0.665
0.745
0.759
0.770

0.945
0.901
0.910
0.929
0.944
0.953
0.871
0.918
0.928
0.933

22,910,480
138,357,544
143,667,240
25,636,712
23,851,784
55,873,736
4,253,864
8,062,504
14,307,880

20,242,984

126
23
26

168

159

572
88

121

169

201

31/41

Maximum response samples

What does a convolutional network see?

Convolutional networks can be inspected by looking for input images X that

maximize the activation hy 4 (x) of a chosen convolutional kernel u at layer £ and
index d in the layer filter bank.

Such images can be found by gradient ascent on the input space:

Lyqa(x) = ||hgq(x)|]2
Xg ~ U[O, 1]C><H><W

Xt+1 = Xt + YVxLod(Xt)

32/41

VGG16, convolutional layer 1-1, a few of the 64 filters

Credits: How convolutional neural networks see the world

33/41

VGG16, convolutional layer 2-1, a few of the 128 filters

Credits: How convolutional neural networks see the world

34/41

VGG16, convolutional layer 3-1, a few of the 256 filters

Credits: How convolutional neural networks see the world

35/41

VGG16, convolutional layer 4-1, a few of the 512 filters

Credits: How convolutional neural networks see the world

36/41

VGG16, convolutional layer 5-1, a few of the 512 filters

Credits: How convolutional neural networks see the world

37/41

Some observations:

e The first layers appear to encode direction and color.
e Thedirection and color filters get combined into grid and spot textures.

e These textures gradually get combined into increasingly complex patterns.

In other words, the network appears to learn a hierarchical composition of patterns.

Low-Level Mid-Level| |High-Level Trainable
— — —
Feature Feature Feature Classifier
" .

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 20131

38/41

What if we build images that maximize the activation of a chosen class output?

The left image is predicted with 99.9% confidence as a magpie.

Credits: How convolutional neural networks see the world

39/41

Deep Dream

Start from an image X;, offset the image by a random jitter, enhance some layer
activation at multiple scales, zoom in, repeat on the produced image x; 1.

The end.

40/41

References

e CS231n Convolutional networks (Fei-Fei Li et al, Stanford)
e EE-559 Deep learning (Francois Fleuret, EPFL)

Further readings:

e Feature Visualization (Olah et al, 2017)
e The Building Blocks of Interpretability (Olah et al, 2018)

41/41

