
Deep Learning
Lecture 3: Convolutional networks

Gilles Louppe
g.louppe@uliege.be

1 / 41

Convolutional networks

2 / 41

Cooking recipe
Get data (loads of them).

Get good hardware.

De�ne the neural network architecture as a composition of differentiable
functions.

Stick to non-saturating activation function to avoid vanishing gradients.

Prefer deep over shallow architectures.

In this lecture, we augment our set of differentiable functions with components tailored for
spatial data (images, sequences, etc).

Optimize with (variants of) stochastic gradient descent.

Evaluate gradients with automatic differentiation.

3 / 41

Motivation
Suppose we want to train a fully connected network that takes RGB

images as input.

What are the problems with this �rst layer?

Too many parameters: .

What if the object in the image shifts a little?

200 × 200

200 × 200 × 3 × 1000 = 120M

4 / 41

Fully connected layer

In a fully connected layer, each hidden unit is connected to

the entire image.

Looking for activations that depend on pixels that are spatially far away is
supposedly a waste of time and resources.

Long range correlations can be dealt with in the higher layers.

h = σ(w x+ b)j j
T

j

5 / 41

Locally connected layer

In a locally connected layer, each hidden unit is connected to only a patch of the

image.

Weights are specialized locally and functionally.

Reduce the number of parameters.

What if the object in the image shifts a little?

h j

6 / 41

Convolutional layer

In a convolutional layer, each hidden unit is connected to only a patch of the

image, and share its weights with the other units .

Weights are specialized functionally, regardless of spatial location.

Reduce the number of parameters.

h j

h i

7 / 41

Convolution
For one-dimensional tensors, given an input vector and a convolutional

kernel , the discrete convolution is a vector of size

such that

Technically, denotes the cross-correlation operator. However, most machine

learning libraries call it convolution.

x ∈ RW

u ∈ Rw x ⋆ u W − w + 1

(x ⋆ u) i = x u .
m=0

∑
w−1

i+m m

⋆

8 / 41

Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.

9 / 41

Convolutions generalize to multi-dimensional tensors:

In its most usual form, a convolution takes as input a 3D tensor ,

called the input feature map.

A kernel slides across the input feature map, along its height and

width. The size is called the receptive �eld.

At each location, the element-wise product between the kernel and the input
elements it overlaps is computed and the results are summed up.

x ∈ RC×H×W

u ∈ RC×h×w

h× w

10 / 41

The �nal output is a 2D tensor of size

called the output feature map and such that:

where and are shared parameters to learn.

 convolutions can be applied in the same way to produce a

 feature map, where is the depth.

o (H − h + 1) × (W − w + 1)

oj,i = b + (x ⋆ u) = b + x u j,i

c=0

∑
C−1

c c j,i j,i

c=0

∑
C−1

n=0

∑
h−1

m=0

∑
w−1

c,j+n,i+m c,n,m

u b

D

D × (H − h + 1) × (W − w + 1) D

11 / 41

Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.

12 / 41

In addition to the depth , the size of the output feature map can be controlled

through the stride and with zero-padding.

The stride speci�es the size of the step the kernel slides with.

Zero-padding speci�es whether the input volume is pad with zeroes around the
border. This makes it possible to produce an output volume of the same size as
the input. A hyper-parameter controls the amount of padding.

D

S

P

13 / 41

No padding (),

no strides ().

Padding (),

strides ().

P = 0
S = 1

P = 1
S = 2

14 / 41

Equivariance
A function is equivariant to if .

Parameter sharing used in a convolutional layer causes the layer to be
equivariant to translation.

That is, if is any function that translates the input, the convolution function is

equivariant to .

E.g., if we move an object in the image, its representation will move the same amount in the
output.

This property is useful when we know some local function is useful everywhere
(e.g., edge detectors).

However, convolutions are not equivariant to other operations such as change
in scale or rotation.

f g f(g(x)) = g(f(x))

g

g

15 / 41

Pooling
When the input volume is large, pooling layers can be used to reduce the input
dimension while preserving its global structure, in a way similar to a down-scaling
operation.

Consider a pooling area of size and a 3D input tensor .

Max-pooling produces a tensor such that

Average pooling produces a tensor such that

Pooling is very similar in its formulation to convolution. Similarly, a pooling layer can
be parameterized in terms of its receptive �eld, a stride and a zero-padding .

h × w x ∈ RC×(rh)×(sw)

o ∈ RC×r×s

o = x .c,j,i
n<h,m<w

max c,rj+n,si+m

o ∈ RC×r×s

o = x .c,j,i
hw

1

n=0

∑
h−1

m=0

∑
w−1

c,rj+n,si+m

S P

16 / 41

Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.

17 / 41

Invariance
A function is invariant to if .

Pooling layers can be used for building inner activations that are (slightly)
invariant to small translations of the input.

Invariance to local translation is helpful if we care more about the presence of a
pattern rather than its exact position.

f g f(g(x)) = f(x)

18 / 41

Layer patterns
A convolutional network can often be de�ned as a composition of convolutional
layers (), pooling layers (), linear recti�ers () and fully connected

layers ().

CONV POOL RELU

FC

19 / 41

The most common convolutional network architecture follows the pattern:

where:

 indicates repetition;

 indicates an optional pooling layer;

 (and usually), , (and usually);

the last fully connected layer holds the output (e.g., the class scores).

INPUT→ [[CONV→ RELU]*N → POOL?]*M → [FC→ RELU]*K → FC

*

POOL?

N ≥ 0 N ≤ 3 M ≥ 0 K ≥ 0 K < 3

20 / 41

Some common architectures for convolutional networks following this pattern
include:

, which implements a linear classi�er ().

, which implements a -layer MLP.

.

.

.

Note that for the last architecture, two layers are stacked before every

layer. This is generally a good idea for larger and deeper networks, because multiple
stacked layers can develop more complex features of the input volume before

the destructive pooling operation.

INPUT→ FC N =M = K = 0

INPUT→ [FC→ RELU]∗K → FC K

INPUT→ CONV→ RELU→ FC

INPUT→ [CONV→ RELU→ POOL]*2→ FC→ RELU→ FC

INPUT→ [[CONV→ RELU]*2→ POOL]*3→ [FC→ RELU]*2→ FC

CONV POOL

CONV

21 / 41

22 / 41

LeNet-1

Convolutional Network Demo from 1993

(LeCun et al, 1993)
23 / 41

LeNet-5

(LeCun et al, 1998)

24 / 41

AlexNet

(Krizhevsky et al, 2012)

25 / 41

GoogLeNet

(Szegedy et al, 2014)

26 / 41

VGGNet

(Simonyan and Zisserman, 2014)

27 / 41

ResNet

(He et al, 2015)

28 / 41

Object recognition

The ImageNet challenge:

 object classes

 training examples

 test examples

1000

1200000

100000

29 / 41

30 / 41

 Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth

Xception 88 MB 0.790 0.945 22,910,480 126

VGG16 528 MB 0.715 0.901 138,357,544 23

VGG19 549 MB 0.727 0.910 143,667,240 26

ResNet50 99 MB 0.759 0.929 25,636,712 168

InceptionV3 92 MB 0.788 0.944 23,851,784 159

InceptionResNetV2 215 MB 0.804 0.953 55,873,736 572

MobileNet 17 MB 0.665 0.871 4,253,864 88

DenseNet121 33 MB 0.745 0.918 8,062,504 121

DenseNet169 57 MB 0.759 0.928 14,307,880 169

DenseNet201 80 MB 0.770 0.933 20,242,984 201

Credits: Keras documentation

31 / 41

Maximum response samples
What does a convolutional network see?

Convolutional networks can be inspected by looking for input images that

maximize the activation of a chosen convolutional kernel at layer and

index in the layer �lter bank.

Such images can be found by gradient ascent on the input space:

x
h (x)ℓ,d u ℓ

d

L (x)ℓ,d

x0

xt+1

= ∣∣h (x)∣∣ ℓ,d 2

∼ U [0, 1]C×H×W

= x + γ∇ L (x)t x ℓ,d t

32 / 41

VGG16, convolutional layer 1-1, a few of the 64 �lters

Credits: How convolutional neural networks see the world

33 / 41

VGG16, convolutional layer 2-1, a few of the 128 �lters

Credits: How convolutional neural networks see the world

34 / 41

VGG16, convolutional layer 3-1, a few of the 256 �lters

Credits: How convolutional neural networks see the world

35 / 41

VGG16, convolutional layer 4-1, a few of the 512 �lters

Credits: How convolutional neural networks see the world

36 / 41

VGG16, convolutional layer 5-1, a few of the 512 �lters

Credits: How convolutional neural networks see the world

37 / 41

Some observations:

The �rst layers appear to encode direction and color.

The direction and color �lters get combined into grid and spot textures.

These textures gradually get combined into increasingly complex patterns.

In other words, the network appears to learn a hierarchical composition of patterns.

38 / 41

What if we build images that maximize the activation of a chosen class output?

The left image is predicted with 99.9% con�dence as a magpie.

Credits: How convolutional neural networks see the world

39 / 41

Deep Dream
Start from an image , offset the image by a random jitter, enhance some layer

activation at multiple scales, zoom in, repeat on the produced image .

Journey on the Deep Dream

x t

x t+1

40 / 41

The end.

40 / 41

References
CS231n Convolutional networks (Fei-Fei Li et al, Stanford)

EE-559 Deep learning (Francois Fleuret, EPFL)

Further readings:

Feature Visualization (Olah et al, 2017)

The Building Blocks of Interpretability (Olah et al, 2018)

41 / 41

