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Outline

Goals: Learn models of the data itself.

e Generative models
e Variational inference
e Variational auto-encoders

e Generative adversarial networks (lecture 6)
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Generative models

Slides adapted from "Tutorial on Deep Generative Models"
(Shakir Mohamed and Danilo Rezende, UAI 2017).
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Generative models

A generative model is a probabilistic model p that can be used as a simulator of the
data. Its purpose is to generate synthetic but realistic high-dimension data

X~ p(X, 9)7
that is as close as possible from the true but unknown data distribution p,. (x).

Goals:

Learn p(x; ) (i.e., go beyond estimating p(y|x)).

Understand and imagine how the world evolves.

Recognize objects in the world and their factors of variation.

Establish concepts for reasoning and decision making.
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Planning,
Exploration
Intrinsic motivation

Model-based RL

Super-resolution,
Compression,
Text-to-speech

Proteomics,
Drug Discovery,
Astronomy,
High-energy physics

Generative models have a role in many important problems
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Drug design and response
prediction

Generative models for proposing candidate molecules and for improving prediction
through semi-supervised learning.
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(Gomez-Bombarelli et al, 2016)

6/46



Locating celestial bodies

Generative models for applications in astronomy and high-energy physics.
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Image super-resolution

Photo-realistic single image super-resolution.

bicubic SRGAN
(21.59dB/0.6423) (20.34dB/0.6562)

(Ledig et al, 2016)
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Text-to-speech synthesis

Generating audio conditioned on text.
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Image and content generation

Generating images and video content.
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Communication and compression

Hierarchical compression of images and other data.

Original images

JPEG
JPEG-2000
RVAE v1

RVAE v2

(Gregor et al, 2016)
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One-shot generalization

Rapid generalization of novel concepts.
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Visual concept learning

Understanding the factors of variation and invariances.
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(Higgins et al, 2017)



Future simulation

Simulate future trajectories of environments based on actions for planning.

(Finn et al, 2016)
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Scene understanding

Understanding the components of scenes and their interactions.

(b) Segment proposals (c) Inference Applications
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(Wu et al, 2017)

15/46



Variational inference



Latent variable model

Consider for now a prescribed latent variable model that relates a set of observable
variables x € X to aset of unobserved variablesz € Z.

This model is given and motivated by domain knowledge assumptions.

Examples:

e Linear discriminant analysis (see previous lecture)
e Bayesian networks
e Hidden Markov models

e Probabilistic programs
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The probabilistic model defines a joint probability distribution p(x, z), which
decomposes as

p(x,2) = p(x|z)p(z).

If we interpret z as causal factors for the high-dimension representations X, then
sampling from p(x|z) can be interpreted as a stochastic generating process from Z

to X.

For a given model p(x, z), inference consists in computing the posterior

p(x|z)p(z)
p(x)

p(z|x) =

For most interesting cases, this is usually intractable since it requires evaluating the
evidence

p(x) = [ plxlp(a)da
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Latent space

Original space

Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.
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Variational inference

Variational inference turns posterior inference into an optimization problem.

Consider a family of distributions ¢(z|x; /) that approximate the posterior
p(2z|x), where the variational parameters v index the family of distributions.

The parameters v are fit to minimize the KL divergence between p(z|x) and the
approximation ¢(z|x; v):

K L(q(z|x;v)||p(z]x)) = Eq(ajx) llog %]

— ]Eq(z|x;u) [lOg Q(Z|x; V) - logp(x? Z)] + logp(x)

For the same reason as before, the KL divergence cannot be directly minimized
because of the log p(x) term.
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However, we can write

log p(x) = Eqfaies) g p(x, %) ~ log a(z/x; )] + K L(q(z}x; ) [p(z/x)),

7

~~

ELBO(x;v)
where ELBO(x; v) is called the evidence lower bound objective.

Since log p(x) does not depend on v, it can be considered as a constant, and

minimizing the KL divergence is equivalent to maximizing the evidence lower
bound, while being computationally tractable.

Finally, given adatasetd = {x;|i = 1, ..., IV }, the final objective is the sum
Z{Xied} ELBO(x;;v).
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Remark that

ELBO(x;v) = Eg(2;)xv)
=K

- IE“cz(ZIX;V)

q(z|x;v)

Therefore, maximizing the ELBO:

log p(x,2) — log q(z|x; V)]
log p(x|z)p(z) — log q(z[x; V)]

log p(x|z)] — K L(q(z|x;v)||p(2))

e encourages distributions to place their mass on configurations of latent
variables that explain the observed data (first term);

e encourages distributions close to the prior (second term).
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p(z|x)

/KL(q(z:v*) || p(z] %))

Variational inference
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How do we optimize the parameters v? We want
v* = arg max ELBO(x; v)
1%

= arg max Eq(zjx) [log p(x,2) — log q(z|x; V)]

We can proceed by gradient ascent, provided we can evaluate V, ELBO(x; v).

In general, this gradient is difficult to compute because the expectation is unknown
and the parameters v, with respect to which we compute the gradient, are of the

distribution ¢(z|x; v/) we integrate over.

Solutions:

e Score function estimators:
VLELBO(x;v) = Ey(zxu) [V log q(z|x; v) (log p(x,2z) — log q(z|x;v))]

e Elliptical standardization (Kucukelbir et al, 2016).
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Variational auto-encoders



Variational auto-encoders

So far we assumed a prescribed probabilistic model motivated by domain

knowledge. We will now directly learn a stochastic generating process with a neural
network.

A variational auto-encoder is a deep latent variable model where:

e Thelikelihood p(x|z; 6) is parameterized with a generative network NNy (or
decoder) that takes as input z and outputs parameters ¢ = NNg(z) to the

data distribution. E.g.,
p, 0 = NNy(z)
p(x|z;0) = N (x; p, 0°T)

e The approximate posterior q(z]x; go) is parameterized with an inference
network NN, (or encoder) that takes as input x and outputs parameters
v = NN, (x) to the approximate posterior. E.g.,

@, 0 = NN, (x)
q(z|x; ) = N(z; p, o°T)

26/46



N
rd

—

A4

Latent space

Original space

Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.
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As before, we can use variational inference, but to jointly optimize the generative
and the inference networks parameters 6 and .

We want:

0", " = arg max ELBO(x; 6, ¢)
e

— arg ng?ax Eq(z)x;0) log p(x,z; 0) — log q(z|x; ¢)]

= argmax By log p(x|2;0)] — K'L(q(z|x; ¢)|[p(2))

e Given some generative network €, we want to put the mass of the latent
variables, by adjusting (, such that they explain the observed data, while
remaining close to the prior.

e Given some inference network ¢, we want to put the mass of the observed
variables, by adjusting @, such that they are well explained by the latent
variables.
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Unbiased gradients of the ELBO with respect to the generative model parameters 6

are simple to obtain:

VELBO(x; 6, ) = VoEq(aixsy) [log p(x, 7; 0) —log g(z[x; ¢)]
= Ey(aix:0) [Vo(log p(x,2;6) — log q(z|x; ©))]
= Ey(alxip) [Vo log p(x,2;0)]

which can be estimated with Monte Carlo integration.

However, gradients with respect to the inference model parameters ¢ are more
difficult to obtain:

V,ELBO(x;0, ) = Vo Eypxp) [log p(x,z; 0) — log q(z|x; ¢)]
+ E (z]x;0) [V@(logp(x, Z; 9) — log Q(Z‘X; 90))]
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Let us abbreviate
ELBO(X, 9, (,0) — Eq(z]x;cp) [lOgP(X7 Z, 9) o 1Og Q(Z’X, 90)]
— IE:q(z|x;<,0) [f(xa Z, 90)] .

We have

o ~ q(z|x; )

We cannot backpropagate through the stochastic node z to compute wa.
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Reparameterization trick

The reparameterization trick consists in re-expressing the variable z ~ ¢(z|x; ¢)
as some differentiable and invertible transformation of another random variable €,
given X and ¢,

z — 57(907 )(, 6)7

and where the distribution of € is independent of X or .

For example, if q(z|x; ) = N (z; u(x; ), 0%(x; ©)), where u(x; ) and
o (x; ) are the outputs of the inference network N V., then a common
reparameterization is:

p(e) = N(&0,1)
z = pu(x;9) +o(x50) O€
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Given such a change of variable, the ELBO can be rewritten as:

ELBO(x;0, ¢) = Ey(x;p) [ f(X,2; )]
— ]Ep(e) [f(xa 9(907 X, 6); (P)]

Therefore,

VSOELBO(X; 0, QO) — vgoEp(e) [f(xa 9(907 X, 6); (10)]
— IE:p(e) [vgof(xa 9(907 X, 6); 90)] )

which we can now estimate with Monte Carlo integration.

The last required ingredient is the evaluation of the likelihood q(z|x; ¢) given the
change of variable g. As long as g is invertible, we have:

0z

log q(z|x; ) = log p(e) — log
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Example

Consider the following setup:

e Generative model:

z € R’
p(z) = N(z;0,I)
p(x|2; 0) = N (x; (2 0), 0% (2 )T
1(z;0) = Wih + by
log o*(z;60) = Wih + b3
h = ReLU(W7z + by)
0 ={Wi,b;, Wy, by, W3, b3}
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e |nference model:

q(z|x; ) = N (z; p(x; 9), 0° (x; 9)I)
p(e) = N (¢ 0,1)

— {W47 b47 W57 b57 W67 b6}

Note that there is no restriction on the generative and inference network
architectures. They could as well be arbitrarily complex convolutional networks.
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Plugging everything together, the objective can be expressed as:

ELBO(x;0, ¢) = Ey(x;) [log p(x, z; 0) — log q(z|x; ¢)]
= Ey(z)x;) [log p(x|2;0)] — K L(q(z|x; ¢)||p(2))
= K, [logp(x|z = g(p,x,¢€);0)] — KL(q(z|x; ¢)||p(2))

where the KL divergence can be expressed analytically as

J
K L{a(alx; o)l p(2) = 5 3 (1+ loglo? (x5 ) — i3(x:0) — o2 (x5 )

DO

which allows to evaluate its derivative without approximation.
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Consider as data d the MNIST digit dataset:
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(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities

of latent space.

(Kingma and Welling, 2013)
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To get an intuition of the learned latent representation, we can pick two samples x
and x’ at random and interpolate samples along the line in the latent space.

\ T
S

/ Latent space

Original space

Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pe(x|z) with the learned parameters 6.

(Kingma and Welling, 2013)
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Some further examples

Random walks in latent space.




Figure 7: Decoupling attribute vectors for smiling (x-axis) and
mouth open (y-axis) allows for more flexible latent space
transformations. Input shown at left with reconstruction
adjacent. (model: VAE from Lamb 16 on CelebA)

(White, 2016)



“ i want to talk to you . ”
“ want to be with you . ”

“r do n’t want to be with you .
1 do n't want to be with you .
she did n’t want to be with him .

3'!‘

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Table 8: Paths between pairs of random points in
VAE space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

(Bowman et al, 2015)
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Impersonation by encoding-decoding an unknown face.
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Design of new molecules with desired chemical properties.
(Gomez-Bombarelli et al, 2016)
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The end.
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