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Outline
Goals: Learn models of the data itself.

Generative models

Variational inference

Variational auto-encoders

Generative adversarial networks (lecture 6)
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Generative models
Slides adapted from "Tutorial on Deep Generative Models" 
(Shakir Mohamed and Danilo Rezende, UAI 2017).
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Generative models
A generative model is a probabilistic model  that can be used as a simulator of the

data. Its purpose is to generate synthetic but realistic high-dimension data

that is as close as possible from the true but unknown data distribution .

Goals:

Learn  (i.e., go beyond estimating ).

Understand and imagine how the world evolves.

Recognize objects in the world and their factors of variation.

Establish concepts for reasoning and decision making.

p

x ∼ p(x; θ),

p  (x)r

p(x; θ) p(y∣x)
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Generative models have a role in many important problems
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Drug design and response
prediction
Generative models for proposing candidate molecules and for improving prediction
through semi-supervised learning.

(Gomez-Bombarelli et al, 2016)
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Locating celestial bodies
Generative models for applications in astronomy and high-energy physics.

(Regier et al, 2015)
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Image super-resolution
Photo-realistic single image super-resolution.

(Ledig et al, 2016)
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Text-to-speech synthesis
Generating audio conditioned on text.

(Oord et al, 2016)
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Image and content generation
Generating images and video content.

(Gregor et al, 2015; Oord et al, 2016; Dumoulin et al, 2016)
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Communication and compression
Hierarchical compression of images and other data.

(Gregor et al, 2016)
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One-shot generalization
Rapid generalization of novel concepts.

(Gregor et al, 2016)
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Visual concept learning
Understanding the factors of variation and invariances.

(Higgins et al, 2017)
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Future simulation
Simulate future trajectories of environments based on actions for planning.

 

(Finn et al, 2016)
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Scene understanding
Understanding the components of scenes and their interactions.

(Wu et al, 2017)
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Variational inference
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Latent variable model

Consider for now a prescribed latent variable model that relates a set of observable

variables  to a set of unobserved variables .

This model is given and motivated by domain knowledge assumptions.

Examples:

Linear discriminant analysis (see previous lecture)

Bayesian networks

Hidden Markov models

Probabilistic programs

x ∈ X z ∈ Z
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The probabilistic model de�nes a joint probability distribution , which

decomposes as

If we interpret  as causal factors for the high-dimension representations , then

sampling from  can be interpreted as a stochastic generating process from 

to .

For a given model , inference consists in computing the posterior

For most interesting cases, this is usually intractable since it requires evaluating the
evidence

p(x, z)

p(x, z) = p(x∣z)p(z).

z x
p(x∣z) Z

X

p(x, z)

p(z∣x) =  .
p(x)

p(x∣z)p(z)

p(x) = p(x∣z)p(z)dz.∫
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Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.
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Variational inference
Variational inference turns posterior inference into an optimization problem.

Consider a family of distributions  that approximate the posterior 

, where the variational parameters  index the family of distributions.

The parameters  are �t to minimize the KL divergence between  and the

approximation :

For the same reason as before, the KL divergence cannot be directly minimized

because of the  term.

q(z∣x; ν)
p(z∣x) ν

ν p(z∣x)
q(z∣x; ν)

  

KL(q(z∣x; ν)∣∣p(z∣x)) = E  log  q(z∣x;ν) [
p(z∣x)

q(z∣x; ν)
]

= E  log q(z∣x; ν) − log p(x, z) + log p(x)q(z∣x;ν) [ ]

log p(x)
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However, we can write

where  is called the evidence lower bound objective.

Since  does not depend on , it can be considered as a constant, and

minimizing the KL divergence is equivalent to maximizing the evidence lower
bound, while being computationally tractable.

Finally, given a dataset , the �nal objective is the sum 

.

log p(x) =  + KL(q(z∣x; ν)∣∣p(z∣x)),

ELBO(x;ν)

 E  log p(x, z) − log q(z∣x; ν)q(z∣x;ν) [ ]

ELBO(x; ν)

log p(x) ν

d = {x  ∣i = 1, ...,N}i

 ELBO(x  ; ν)∑{x  ∈d}i
i
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Remark that

Therefore, maximizing the ELBO:

encourages distributions to place their mass on con�gurations of latent
variables that explain the observed data (�rst term);

encourages distributions close to the prior (second term).

  

ELBO(x; ν) = E  log p(x, z) − log q(z∣x; ν)q(z;∣xν) [ ]

= E  log p(x∣z)p(z) − log q(z∣x; ν)q(z∣x;ν) [ ]

= E  log p(x∣z) − KL(q(z∣x; ν)∣∣p(z))q(z∣x;ν) [ ]
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Variational inference
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How do we optimize the parameters ? We want

We can proceed by gradient ascent, provided we can evaluate .

In general, this gradient is dif�cult to compute because the expectation is unknown
and the parameters , with respect to which we compute the gradient, are of the

distribution  we integrate over.

Solutions:

Score function estimators:

Elliptical standardization (Kucukelbir et al, 2016).

ν

  

ν∗ = arg  ELBO(x; ν)
ν

max

= arg  E  log p(x, z) − log q(z∣x; ν)
ν

max q(z∣x;ν) [ ]

∇  ELBO(x; ν)ν

ν

q(z∣x; ν)

∇  ELBO(x; ν) = E  ∇  log q(z∣x; ν) log p(x, z) − log q(z∣x; ν)ν q(z∣x;ν) [ ν ( )]
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Variational auto-encoders
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Variational auto-encoders
So far we assumed a prescribed probabilistic model motivated by domain
knowledge. We will now directly learn a stochastic generating process with a neural
network.

A variational auto-encoder is a deep latent variable model where:

The likelihood  is parameterized with a generative network  (or

decoder) that takes as input  and outputs parameters  to the

data distribution. E.g.,

The approximate posterior  is parameterized with an inference

network  (or encoder) that takes as input  and outputs parameters 

 to the approximate posterior. E.g.,

p(x∣z; θ) NN  θ

z ϕ = NN  (z)θ

  

μ,σ

p(x∣z; θ)

= NN  (z)θ

= N (x;μ,σ I)2

q(z∣x;φ)
NN  φ x

ν = NN  (x)φ

  

μ,σ

q(z∣x;φ)

= NN  (x)φ

= N (z;μ,σ I)2
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Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.
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As before, we can use variational inference, but to jointly optimize the generative
and the inference networks parameters  and .

We want:

Given some generative network , we want to put the mass of the latent

variables, by adjusting , such that they explain the observed data, while

remaining close to the prior.

Given some inference network , we want to put the mass of the observed

variables, by adjusting , such that they are well explained by the latent

variables.

θ φ

θ ,φ∗ ∗ = arg  ELBO(x; θ,φ)
θ,φ

max

= arg  E  log p(x, z; θ) − log q(z∣x;φ)
θ,φ

max q(z∣x;φ) [ ]

= arg  E  log p(x∣z; θ) − KL(q(z∣x;φ)∣∣p(z))
θ,φ

max q(z∣x;φ) [ ]

θ

φ

φ

θ
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Unbiased gradients of the ELBO with respect to the generative model parameters 

are simple to obtain:

which can be estimated with Monte Carlo integration.

However, gradients with respect to the inference model parameters  are more

dif�cult to obtain:

θ

∇  ELBO(x; θ,φ)θ = ∇  E  log p(x, z; θ) − log q(z∣x;φ)θ q(z∣x;φ) [ ]

= E  ∇  (log p(x, z; θ) − log q(z∣x;φ))q(z∣x;φ) [ θ ]

= E  ∇  log p(x, z; θ) ,q(z∣x;φ) [ θ ]

φ

∇  ELBO(x; θ,φ)φ = ∇  E  log p(x, z; θ) − log q(z∣x;φ)φ q(z∣x;φ) [ ]

≠ E  ∇  (log p(x, z; θ) − log q(z∣x;φ))q(z∣x;φ) [ φ ]
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Let us abbreviate

We have

We cannot backpropagate through the stochastic node  to compute .

  

ELBO(x; θ,φ) = E  log p(x, z; θ) − log q(z∣x;φ)q(z∣x;φ) [ ]

= E  f(x, z;φ) .q(z∣x;φ) [ ]

z ∇  fφ
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Reparameterization trick
The reparameterization trick consists in re-expressing the variable 

as some differentiable and invertible transformation of another random variable ,

given  and ,

and where the distribution of  is independent of  or .

For example, if , where  and 

 are the outputs of the inference network , then a common

reparameterization is:

z ∼ q(z∣x;φ)
ϵ

x φ

z = g(φ,x, ϵ),

ϵ x φ

q(z∣x;φ) = N (z;μ(x;φ),σ (x;φ))2 μ(x;φ)
σ (x;φ)2 NN  φ

p(ϵ)

z
= N (ϵ;0, I)
= μ(x;φ) + σ(x;φ) ⊙ ϵ
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Given such a change of variable, the ELBO can be rewritten as:

Therefore,

which we can now estimate with Monte Carlo integration.

The last required ingredient is the evaluation of the likelihood  given the

change of variable . As long as  is invertible, we have:

  

ELBO(x; θ,φ) = E  f(x, z;φ)q(z∣x;φ) [ ]

= E  f(x, g(φ,x, ϵ);φ)p(ϵ) [ ]

∇  ELBO(x; θ,φ)φ = ∇  E  f(x, g(φ,x, ϵ);φ)φ p(ϵ) [ ]

= E  ∇  f(x, g(φ,x, ϵ);φ) ,p(ϵ) [ φ ]

q(z∣x;φ)
g g

log q(z∣x;φ) = log p(ϵ) − log  det   

∣
∣
∣
∣

(
∂ϵ
∂z

)
∣
∣
∣
∣
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Example
Consider the following setup:

Generative model:

z

p(z)
p(x∣z; θ)

μ(z; θ)

log σ (z; θ)2

h
θ

∈ RJ

= N (z;0, I)
= N (x;μ(z; θ),σ (z; θ)I)2

=W h+ b  2
T

2

=W h+ b  3
T

3

= ReLU(W  z+ b  )1
T

1

= {W  ,b  ,W  ,b  ,W  ,b  }1 1 2 2 3 3
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Inference model:

Note that there is no restriction on the generative and inference network
architectures. They could as well be arbitrarily complex convolutional networks.

  

q(z∣x;φ)

p(ϵ)

z

μ(x;φ)

log σ (x;φ)2

h
φ

= N (z;μ(x;φ),σ (x;φ)I)2

= N (ϵ;0, I)
= μ(x;φ) + σ(x;φ) ⊙ ϵ

=W  h+ b  5
T

5

=W  h+ b  6
T

6

= ReLU(W  x+ b  )4
T

4

= {W  ,b  ,W  ,b  ,W  ,b  }4 4 5 5 6 6
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Plugging everything together, the objective can be expressed as:

where the KL divergence can be expressed analytically as

which allows to evaluate its derivative without approximation.

ELBO(x; θ,φ) = E  log p(x, z; θ) − log q(z∣x;φ)q(z∣x;φ) [ ]

= E  log p(x∣z; θ) − KL(q(z∣x;φ)∣∣p(z))q(z∣x;φ) [ ]

= E  log p(x∣z = g(φ,x, ϵ); θ) − KL(q(z∣x;φ)∣∣p(z))p(ϵ) [ ]

KL(q(z∣x;φ)∣∣p(z)) =   1 + log(σ  (x;φ)) − μ  (x;φ) − σ  (x;φ) ,
2
1

j=1

∑
J

( j
2

j
2

j
2 )

36 / 46



Consider as data  the MNIST digit dataset:d
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(Kingma and Welling, 2013)
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To get an intuition of the learned latent representation, we can pick two samples 

and  at random and interpolate samples along the line in the latent space.

x
x′

Credits: Francois Fleuret, EE559 Deep Learning, EPFL, 2018.
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(Kingma and Welling, 2013)
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Some further examples

Face manifold from conv/deconv variational autoencoder

Random walks in latent space.
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(White, 2016)
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(Bowman et al, 2015)
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Impersonation by encoding-decoding an unknown face.
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Design of new molecules with desired chemical properties. 
(Gomez-Bombarelli et al, 2016)
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The end.
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