Deep Learning

Lecture 6: Generative adversarial networks

Gilles Louppe
g.louppe@uliege.be

w LIEGE
universiteée

1/66

Outline

Goals: Learn models of the data itself.

e Generative models (lecture 5)
e Variational inference (lecture 5)
e Variational auto-encoders (lecture 5)

e Generative adversarial networks

fe

Original space

go

N

Latent space

2/ 66

Generative adversarial networks

Generative adversarial networks

The main idea of generative adversarial networks (GANSs) is to express the task of
learning a generative model as a two-player zero-sum game between two networks.

e The first network is a generator g(+; 0) : Z — X, mapping a latent space

equipped with a prior distribution p(z) to the data space, thereby inducing a
distribution

x ~ p(x;0) < z ~ p(z),x = g(z;0).

e Thesecond network d(-; ¢) : X — [0, 1] is a classifier trained to distinguish
between true samples x ~ p,(x) and generated samples x ~ p(x; 0).

The central mechanism will be to use supervised learning to guide the learning of
the generative model.

5/66

Generator
network

T~ pp(x)

Critic
network

> d(x:)

6/66

Game analysis

Consider a generator g fixed at 6. Given a set of observations
x; ~ pr(x),i=1,...,N,
we can generate a two-class dataset

d = {(x1,1),..., (xn,1),(g(21;60),0), ..., (9(zn;6),0)) }.

The best classifier d is obtained by minimizing the cross-entropy

£(6) = —— (S llogd(xi)] + 3 llog(1 — d(g(z:; 6); #))
2N

i=1 i=1
1

- (Exp, (x) log d(x;)] + E,p(a) [log(1 — d(g(z;0); $))])

with respect to ¢.

7/66

Following Goodfellow et al (2014), let us define the value function
V(¢,0) = Exp, (x) 108 d(x; 0)| + Eyp(z) [l0g(1 — d(g(2;0); 9))] -
Then,
J V(cb, 9) is high if d is good at recognizing true from generated samples.

e If disthe best classifier given g,and if V is high, then this implies that the
generator is bad at reproducing the data distribution.

e Conversely, g will be a good generative model if V' is low when d is a perfect
opponent.

Therefore, the ultimate goal is

0* = arg mein max V(g,0).

8/66

For a generator g fixed at 6, the classifier d with parameters ¢}, is optimal if and
only if

pr(x)
(x;0) + pr(x)

Vx,d(x; ¢p) =
(x; #9))

Therefore,

min max V (¢, 0) = mein Vg, 0)

0 ¢
. pr(x)] [p(x;0)
= minE, ., x) 1o + Exwpn(x:6) |10
o >[® p(x:) + pr (x) PO |8 p(x; 6) + pr (%)
ety

LKL (p(x; H)HPT(X) +2p(X; 9)) ogd

= mein 2JSD(p.(x)||p(x;6)) — log 4
where JSD is the Jensen-Shannon divergence.

9/66

In summary, solving the minimax problem

0* = arg mein max Vg, 0)

is equivalent to

0* = arg m@in JSD(p.(x)||p(x;8)).

Since JSD(p, (x)||p(x; @)) is minimum if and only if p, (x) = p(x; @), this
proves that the minimax solution corresponds to a generative model that perfectly
reproduces the true data distribution.

10/ 66

Learning process

Data distribution
Model distribution

N N 3

. p - P . o
L ‘-‘o . ' .]
. . . . ‘e
- - ! .n - - -
s PP

. 7. T I

Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium

(Goodfellow et al, 2014)

Alternating SGD

In practice, the minimax solution is approximated using alternating stochastic
gradient descent, for which gradients

VoV (9,0) = Exp,(x) [V 10g d(x; 9)] + Eopa) [V log(1 — d(g(2;0); 9))] ,
VoV ($,0) = Epep(z) [Volog(1 — d(g(z;0); 9))],

are approximated using Monte Carlo integration.

These noisy estimates can in turn be used alternatively to do gradient descent on 6
and gradient ascent on ¢.

e Forone step on 6, we can optionally take k steps on ¢, since we need the
classifier to remain near optimal.

e Note that to compute VgV(qb, 0), it is necessary to backprop all the way
through d before computing the partial derivatives with respect to g's
internals.

12/ 66

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.

for number of training iterations do
for & steps do

e Sample minibatch of m noise samples {z(l}, e ,z(m)} from noise prior p,(z).
e Sample minibatch of m examples {x(*) ... (")} from data generating distribution
pdala(ﬂ:)-

e Update the discriminator by ascending its stochastic gradient:

Vo, = 3" [log D () +10g (1- D (G (=9)))].

T=

end for
e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior pg(2).
e Update the generator by descending its stochastic gradient:

Vo Yoo (1-0 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

(Goodfellow et al, 2014)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c¢) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

(Goodfellow et al, 2014)

14/ 66

Open problems

Training a standard GAN often results in pathological behaviors:

e Oscillations without convergence: contrary to standard loss minimization,
alternating stochastic gradient descent has no guarantee of convergence.

e Vanishing gradient: when the classifier d is too good, the value function
saturates and we end up with no gradient to update the generator (more on this

later).

e Mode collapse: the generator g models very well a small sub-population,

concentrating on a few modes of the data distribution.

Performance is also difficult to assess in practice.

- - -

Step 0 Step 5k Step 10k Step 15k Step 20k

Mode collapse (Metz et al, 2016)

Step 25k Target

15/66

Deep convolutional GAN

Deep generative architectures require layers that increase the input dimension, i.e.,
thatgofromz € Ritox = g(z) € RP,withp > q.

e This is the opposite of what we did so far with feedforward networks, in which

we reduced the dimension of the input to a few values.

e Fully connected layers could be used for that purpose but would face the same
limitations as before (spatial specialization, too many parameters).

o |deally, we would like layers that implement the inverse of convolutional and
pooling layers.

17/66

Convolution

Forx € RZ*W and convolutional kernel u € R, we defined the discrete
convolution X * was a 2D tensor of size (H — h + 1) x (W — w + 1) such
that

h—1 w—1
(x*u);; = Xjtn,i+mWn,m.-
n=0 m=0
For example,
4 5 8 T
1888*11;_122148
3 6 6 4 3 3 1 ~\126 134
6 5 7 8

18/ 66

D4 HD

The convolution operation can be equivalently re-expressed as a single matrix
multiplication.

Following the previous example,

e the convolutional kernel u is rearranged as a sparse Toeplitz circulant matrix,
called the convolution matrix:

1 41014 3 03 3 100000
U:0141014303310000
o 0001 41014303 3 10
o 0o 0001 41014303 3 1

e theinput xis flattened row by row, from top to bottom:
vx)=(4 5 8 7 1 8 8 8 3 66 46 5 7 8
Then,

Uv(x) = (122 148 126 134)"

which we can reshapetoa 2 X 2 matrix to obtain x x u.

20/ 66

The same procedure generalizestox & RHE*W and convolutional kernel
u € R"" suchthat:

e the convolutional kernel is rearranged as a sparse Toeplitz circulant matrix U

of shape (H — h + 1)(W — w + 1) x HW where

o each row 7 identifies an element of the output feature map,
o each column 7 identifies an element of the input feature map,

o thevalue Ui,j corresponds to the kernel value the element 7 is multiplied with in output z;
e theinput X is flattened into a column vector v(x) of shape HW x 1;

e the output feature map X * u is obtained by reshaping the
(H—h+1)(W —w+1) x 1columnvector Uv(x) as a
(H—h+1) x (W —w—+ 1) matrix.

Therefore, a convolutional layer is a special case of a fully connected layer:

h=xx*u< v(h) = Uy (x) < v(h) = WHy(x)

21/66

flatten

matmul

—>

reshape

22/66

In afully connected layer h = WT'x, the partial derivatives with respect to the
layer inputs are

oh
8—X—W.

Since a convolutional layer h = x % 1 can be expressed as a fully connected layer
v(h) = Uw(x), the partial derivatives with respect to its inputs are

Ov(h)

Ov(x) -u

The backward pass of convolutional layer therefore amounts to multiplying the loss
with U7 and reshaping appropriately.

e The backward pass takes some g-dimensional vector as input and produces
some p-dimensional vector as output, with g < p.

e |t does so while keeping a connectivity pattern that is compatible with U, by
construction.

23/66

Transposed convolution

A transposed convolution is a convolution where the implementation of the forward
and backward passes are swapped.

Therefore, a transposed convolution can be seen as the gradient of some
convolution with respect to its input.

Given a convolutional kernel u,

e the forward pass is implemented as v(h) = U?v(x) with appropriate
reshaping, thereby effectively up-sampling an input v(x) into alarger one;

e the backward pass is computed by multiplying the loss by U instead of U”T,

Transposed convolutions are also referred to as fractionally-stride convolutions or
deconvolutions (mistakenly).

24/ 66

flatten

—>

matmul

—>

reshape

25/66

)\ o O 0933246)
g Noo o Ao A H A~ Y
|

—~

» ~ N

~— AN v <" <H

IS /Illlllllllll\\\

&~

U\ TN
OO O OO T H - O = <H M O MM
C OO OO A FHI A O AFMOMNMm N O
O A I 1 O = FH M O MmN A O O OO
T A1 O A F N O n MmO OO OO
N -~

26/66

Transposed convolution (no padding, no stride)

27/ 66

Deep convolutional GAN

Given transposed convolutional layers, we are now equipped for building deep
convolutional generative models.

Radford et al (2015) identify the following guidelines to ensure stable training:

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

Use ReLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReL.U activation in the discriminator for all layers.

28/ 66

100 z

Project and reshape

CONV 1
64

G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

The DCGAN generator architecture (Radford et al, 2015)

29/66

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

(Radford et al, 2015)

30/ 66

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual

under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

(Radford et al, 2015)

31/66

smiling neutral neutral
woman woman man

smiling man

Vector arithmetic in Z-space (Radford et al, 2015)

32/66

Progressive growing of GANs

G Latent Latent Latent
v

1024x1024 |

. A. - &
| | Reals | iReals i, ; Reals
¥

1024x1024 |

4x4

Training progresses

A 4

(Karrasetal,2017)

33/66

(Karras et al,2017)

Cabinet of curiosities

While state-of-the-art results are impressive, a close inspection of the fake samples
distribution p(x; 9) often reveals fundamental issues highlighting architectural
limitations.

These issues remain an open research problem.

Cherry-picks (Goodfellow, 2016)

35/66

Problems with counting (Goodfellow, 2016)

36/66

Problems with perspective (Goodfellow, 2016)

37/66

Problems with global structures (Goodfellow, 2016)

38/66

Wasserstein GAN

Vanishing gradients

For most non-toy data distributions, the fake samples x ~ p(x; 9) may be so bad
initially that the response of d saturates. At the limit, when d is perfect given the
current generator g,

d(X; ¢) =1,Vx ~ pr(x)a
d(x; 8) = 0, ¥x ~ p(x;).

Therefore,
V(9,0) = Exwp, (x) log d(x;@)] + E,p(z) [log(1 — d(g(z;0); 9))] = 0
and VgV (¢, 0) = 0, thereby halting gradient descent.

Dilemma:

e If disbad,then g does not have accurate feedback and the loss function cannot
represent the reality.

e Ifdistoo good,the gradients drop to O, thereby slowing down or even halting
the optimization.

40/ 66

Jensen-Shannon divergence

For any two distributions p and q,
0 < JSD(pl|q) < log2,
where

e« JSD(p||q) = Oifandonlyifp = g,
e JSD(pl||q) = log2ifand only if p and g have disjoint supports.

040 - — P

— q
--- 5D=0.111

035 -

0.30 -

025 -

020 -

015 -

010 -
005 -

000 -

41/ 66

Notice how the Jensen-Shannon divergence poorly accounts for the metric

structure of the space.

Intuitively, instead of comparing distributions "vertically", we would like to compare

them "horizontally".

0.40 -

035 -

0.30 -

025 -

020 -

42/ 66

Wasserstein distance

An alternative choice is the Earth mover's distance, which intuitively corresponds to
the minimum mass displacement to transform one distribution into the other.

1
4 X 7

3 X

N =

2 X

=
N/
N

1 1 1
Wl(p,q):4><1—|—2><1—|—3><§:3

Credits: EE559 Deep Learning (Fleuret, 2018)
43/ 66

The Earth mover's distance is also known as the Wasserstein-1 distance and is
defined as:

Wi(p,q) = inf E. .\ |||lx —
1(p Q) eTl(p.g) (z,y) 7[|| y||]

where:

e II(p, q) denotes the set of all joint distributions y(z, y) whose marginals are
respectively p and g;

e v(x,y) indicates how much mass must be transported from & to y in order to
transform the distribution p into q.

e || -||istheL1normand ||z — y|| represents the cost of moving a unit of mass
fromx toy.

44/ 66

45/ 66

Notice how the W distance does not saturate. Instead, it increases monotonically
with the distance between modes:

0.40 -
0.35 -
0.30 -
025 - d
020 -
015 -
010 -
005 -

000 -

Wi(p,q) =d

For any two distributions p and q,

« Wi(p,q) € R,
e Wi(p,q) = Oifandonlyifp = gq.

46/ 66

Wasserstein GAN

Given the attractive properties of the Wasserstein-1 distance, Arjovsky et al (2017)
propose to learn a generative model by solving instead:

0" = argmin W1(p, (x)||p(x; 6))

Unfortunately, the definition of W does not provide with an operational way of
estimating it because of the intractable inf.

On the other hand, the Kantorovich-Rubinstein duality tells us that

Wi (pr (%)p(x;0)) = Sup, Exp, (x) [f ()] = Expixio) [(%)]

where the supremum is over all the 1-Lipschitz functions f : X — RR.Thatis,
functions f such that

TR LI

[l —x'|]

|f]lz = ma

47/ 66

Credits: EE559 Deep Learning (Fleuret, 2018)

48/ 66

Using this result, the Wasserstein GAN algorithm consists in solving the minimax
problem:

0" =—argmin max E,_, o [d(x;0)] — Eropixo [d(X;
g max By 0 406 6) — Bxeppus) [0 9)

Note that this formulation is very close to the original GAN, except that:

e Theclassifierd : X — [0, 1] isreplaced by a critic functiond : X — R and
its output is not interpreted through the cross-entropy loss;

e Thereis a strong regularization on the form of d. In practice, to ensure 1-
Lipschitzness,

o Arjovsky et al (2017) propose to clip the weights of the critic at each iteration;

o Gulrajani et al (2017) add a regularization term to the loss.

e Asaresult, Wasserstein GANs benefit from:
o ameaningful loss metric,

o improved stability (no mode collapse is observed).

49/ 66

1.0 - . - . . T .
— Density of real
— Density of fake]

—— GAN Discriminator
WGAN Critic

0.8 |

0.6 F

---..,"_’
—02L — C .
T Va'mshung gradients
_—
_— in regular GAN
_0_4 s 1 L 1 L 1 1 1
-8 -6 -4 -2 0 2 4 6 8

Figure 2: Optimal discrimainator and critic when learning to differentiate two Gaussians.
As we can see, the discriminator of a minimar GAN saturates and results in vanishing
gradients. Our WGAN critic provides very clean gradients on all parts of the space.

(Arjovsky et al, 2017)

50/ 66

10

08

0.6

J51r estimate
J51) estimate

=

L L L I L L L L I L
] 50000 100000 150000 200000 250000 300000 330000 400000 0 50000 100000 150000 200000 250000 300000 350000 400000
Generator iterations Generator iterations

— MLP_G,MLP_D

151 estimate

0.4

0.2

0.0

L A L A L
o 50000 100000 150000 200000 250000 300000 350000 400000

Figure 4: JS estimates for an MLP generator (upper left) and a DCGAN generator (upper
right) trained with the standard GAN procedure. Both had a DCGAN discriminator. Both
curves have increasing error. Samples get better for the DCGAN but the JS estimate
increases or stays constant, pointing towards no significant correlation between sample
quality and loss. Bottom: M LP with both generator and discriminator. The curve goes up
and down regardless of sample quality. All training curves were passed through the same
median filter as in Figure 3.

(Arjovsky et al, 2017)

51/66

3.5

— MLP_512

r]
s i i,
A —

0.5 A

— DCGAN

30|

- 2020 2 L

rd

Wasserstein estimate
Wasserstein estimate

L I L L L .
a 100000 200000 300000 400000 200000 600000 0 100000 200000 300000 400000 500000 600000
Generator iterations Generator iterations

— MLP_G,MLP_D

Wasserstein estimate

it ek Y TOARnT TN e
[100000 200000 300000 400000 500000
Generator iterations

i

800000

Figure 3: Training curves and samples at different stages of training. We can see a clear
correlation between lower error and better sample quality. Upper left: the generator is an
MLP with 4 hidden layers and 512 units at each layer. The loss decreases constistently as
training progresses and sample quality increases. Upper right: the generator is a standard
DCGAN. The loss decreases quickly and sample quality increases as well. In both upper
plots the critic is a DCGAN without the sigmotid so losses can be subjected to comparison.
Lower half: both the generator and the discriminator are MLPs with substantially high
learning rates (so training failed). Loss is constant and samples are constant as well. The
training curves were passed through a median filter for visualization purposes.

(Arjovsky et al, 2017)

52/66

(Arjovsky et al, 2017)

53/66

Some applications

p(2z) need not be a random noise distribution.

55/66

Image-to-image translation

Photos

Summer T Winter

Monet _ Zebras {_ Horses

zebra —} horse

horse — zebra

Photograph Monet Van Gogh Cezanne Ukiyo-e

(Zhu et al, 2017)

56/66

(Wang et al, 2017)

Captioning

a tennis player gets two men dressed in a tennis player hits the a male tennis player in ~ a man in white is about
ready to return a serve costumes and holding ball during a match action on the court to serve a tennis ball
tennis rackets

[— il

a laptop and a desktop a person is working on a a cup of coffee sitting next a laptop computer sitting a picture of a computer on
computer sit on a desk computer screen to a laptop on top of a desk next to a a desk

(Shetty et al, 2017)

Text-to-image synthesis

IFC with reshape IUpsampIing I.Ioining I Residual Conv3x3

Generators in a tree-like structure

4x4 64x64 128x128 256x256
1 I:(StJfNg X4Ng X2Ng XNg

Unconditional
loss

Fig. 2: The overall framework of our proposed StackGAN-v2 for the conditional image synthesis task. c is the vector of conditioning variables
which can be computed from the class label, the text description, efc.. N, and Ny are the numbers of channels of a tensor.

(Zhanget al, 2017)

59/66

A small bird A small yellow This small bird

The bird is A bird witha This small with varying bird with a has a white
Text Thisbirdisted shortand mediumorange black bird has shades of black crown breast, light
descrintion and brown in stubby with bill white body a short,slightly brown with and a short grey head, and
p color, with a yellow on its gray wingsand curvedbilland white underthe black pointed black wings
stubby beak body webbed feet long legs eyes beak and tail
64x64 . ¥
GAN-INT-CLS :

128x128
GAWWN
256x256

StackGAN-v1

- A
Fig. 3: Example results by our StackGAN-v1, GAWWN [29], and GAN INT-CLS [31] conditioned on text descriptions from CUB test set.

(Zhanget al, 2017)

60/ 66

Unsupervised machine translation

source sentences | latent space Atarget sentences *Iatent space ‘source sentences

A

W ﬁ_oder\
C(x) Cly) Xe
X ‘: . ’,.zsrc . \ztgt .Q

s

]

—decoder “=————"decoder
- : - - >

Figure 1: Toy illustration of the principles guiding the design of our objective function. Left (auto-
encoding): the model is trained to reconstruct a sentence from a noisy version of it. x is the target,
C'(x) is the noisy input, Z is the reconstruction. Right (translation): the model is trained to translate
a sentence in the other domain. The input is a noisy translation (in this case, from source-to-target)
produced by the model itself, M, at the previous iteration (¢), y = M ®(z). The model is symmet-
ric, and we repeat the same process in the other language. See text for more details.

(Lample et al, 2018)

ef s, src)
encoder

Zsre

1

-ﬁad v

ef», tgt)
encoder

§

Zygt

;0

e, src)
encoder

—
X sre i:)src

el +, tgt)
encoder

Zsrc

-an‘ v

Zrgt

d(-, src)
decoder

di -, tgt)
decoder

(Lample et al, 2018)

d(=, src)
decoder

df «, tgt)
decoder

xsrc

X

" tgt

Figure 2: Illustration of the proposed architecture and training objectives. The architecture is a
sequence to sequence model, with both encoder and decoder operating on two languages depending
on an input language identifier that swaps lookup tables. Top (auto-encoding): the model learns to
denoise sentences in each domain. Bottom (translation): like before, except that we encode from
another language, using as input the translation produced by the model at the previous iteration (light
blue box). The green ellipses indicate terms in the loss function.

62/ 66

Brain reading

(A) Model training

Image loss() | Comparator Feature loss
-

—
-

|
-
-5
’
’ I
. |

T
|
Training images MRI activity Reconstructed

training images r—t Discriminator -I-Oc— Real or fake

Adversarial loss

— Generalor —* —

(B) Model test

Test image

fMRI activity Reconstructed image

(Shen et al,2018)

63/66

(A)

Subject 3 Subject2 Subject 1 Presentad

% correct

(©)

100

% correct

D.
Shape Color

Pixel correlation
I Human judgment

Subject 3 Subject 2 Subject 1 Presented

% corract

(Shen et al,2018)

64 /66

(Shenetal,2018)

The end.

65/66

References

EE-559 Deep learning (Fleuret, 2018)

Tutorial: Generative adversarial networks (Goodfellow, 2016)

From GAN to WGAN (Weng, 2017)

Wasserstein GAN and the Kantorovich-Rubinstein Duality (Herrmann, 2017)

66/66

