
Deep Learning
Lecture 6: Generative adversarial networks

Gilles Louppe
g.louppe@uliege.be

1 / 66

Outline
Goals: Learn models of the data itself.

Generative models (lecture 5)

Variational inference (lecture 5)

Variational auto-encoders (lecture 5)

Generative adversarial networks

2 / 66

Generative adversarial networks

3 / 66

4 / 66

Generative adversarial networks
The main idea of generative adversarial networks (GANs) is to express the task of
learning a generative model as a two-player zero-sum game between two networks.

The �rst network is a generator , mapping a latent space

equipped with a prior distribution to the data space, thereby inducing a

distribution

The second network is a classi�er trained to distinguish

between true samples and generated samples .

The central mechanism will be to use supervised learning to guide the learning of
the generative model.

g(⋅; θ) : Z → X
p(z)

x ∼ p(x; θ) ⇔ z ∼ p(z),x = g(z; θ).

d(⋅;ϕ) : X → [0, 1]
x ∼ p (x)r x ∼ p(x; θ)

5 / 66

6 / 66

Game analysis
Consider a generator �xed at . Given a set of observations

we can generate a two-class dataset

The best classi�er is obtained by minimizing the cross-entropy

with respect to .

g θ

x ∼ p (x), i = 1, ...,N ,i r

d = {(x , 1), ..., (x , 1), (g(z ; θ), 0), ..., (g(z ; θ), 0))}.1 N 1 N

d

L(ϕ) = − log d(x ;ϕ) + log(1 − d(g(z ; θ);ϕ))
2N
1
(

i=1

∑
N

[i]
i=1

∑
N

[i])

≈ − E log d(x;ϕ) + E log(1 − d(g(z; θ);ϕ))
2
1
(x∼p (x)r

[] z∼p(z) [])

ϕ

7 / 66

Following Goodfellow et al (2014), let us de�ne the value function

Then,

 is high if is good at recognizing true from generated samples.

If is the best classi�er given , and if is high, then this implies that the

generator is bad at reproducing the data distribution.

Conversely, will be a good generative model if is low when is a perfect

opponent.

Therefore, the ultimate goal is

V (ϕ, θ) = E log d(x;ϕ) + E log(1 − d(g(z; θ);ϕ)) .x∼p (x)r
[] z∼p(z) []

V (ϕ, θ) d

d g V

g V d

θ = arg V (ϕ, θ).∗

θ
min

ϕ
max

8 / 66

For a generator �xed at , the classi�er with parameters is optimal if and

only if

Therefore,

where is the Jensen-Shannon divergence.

g θ d ϕ θ
∗

∀x, d(x;ϕ) = .θ
∗

p(x; θ) + p (x)r

p (x)r

 V (ϕ, θ) = V (ϕ , θ)
θ

min
ϕ

max
θ

min θ
∗

= E log + E log

θ
min x∼p (x)r

[
p(x; θ) + p (x)r

p (x)r] x∼p(x;θ) [
p(x; θ) + p (x)r

p(x; θ)
]

= KL p (x)∣∣

θ
min (r 2

p (x) + p(x; θ)r)

+ KL p(x; θ)∣∣ − log 4(
2

p (x) + p(x; θ)r)

= 2 JSD(p (x)∣∣p(x; θ)) − log 4
θ

min r

JSD

9 / 66

In summary, solving the minimax problem

is equivalent to

Since is minimum if and only if , this

proves that the minimax solution corresponds to a generative model that perfectly
reproduces the true data distribution.

θ = arg V (ϕ, θ)∗

θ
min

ϕ
max

θ = arg JSD(p (x)∣∣p(x; θ)).∗

θ
min r

JSD(p (x)∣∣p(x; θ))r p (x) = p(x; θ)r

10 / 66

Learning process

(Goodfellow et al, 2014)

11 / 66

Alternating SGD
In practice, the minimax solution is approximated using alternating stochastic
gradient descent, for which gradients

are approximated using Monte Carlo integration.

These noisy estimates can in turn be used alternatively to do gradient descent on

and gradient ascent on .

For one step on , we can optionally take steps on , since we need the

classi�er to remain near optimal.

Note that to compute , it is necessary to backprop all the way

through before computing the partial derivatives with respect to 's

internals.

∇ V (ϕ, θ)ϕ

∇ V (ϕ, θ)θ

= E ∇ log d(x;ϕ) + E ∇ log(1 − d(g(z; θ);ϕ)) ,x∼p (x)r
[ϕ] z∼p(z) [ϕ]

= E ∇ log(1 − d(g(z; θ);ϕ)) ,z∼p(z) [θ]

θ

ϕ

θ k ϕ

∇ V (ϕ, θ)θ

d g

12 / 66

(Goodfellow et al, 2014)

13 / 66

(Goodfellow et al, 2014)

14 / 66

Open problems
Training a standard GAN often results in pathological behaviors:

Oscillations without convergence: contrary to standard loss minimization,
alternating stochastic gradient descent has no guarantee of convergence.

Vanishing gradient: when the classi�er is too good, the value function

saturates and we end up with no gradient to update the generator (more on this
later).

Mode collapse: the generator models very well a small sub-population,

concentrating on a few modes of the data distribution.

Performance is also dif�cult to assess in practice.

Mode collapse (Metz et al, 2016)

d

g

15 / 66

Deep convolutional GAN

16 / 66

Deep generative architectures require layers that increase the input dimension, i.e.,

that go from to , with .

This is the opposite of what we did so far with feedforward networks, in which
we reduced the dimension of the input to a few values.

Fully connected layers could be used for that purpose but would face the same
limitations as before (spatial specialization, too many parameters).

Ideally, we would like layers that implement the inverse of convolutional and
pooling layers.

z ∈ Rq x = g(z) ∈ Rp p≫ q

17 / 66

Convolution
For and convolutional kernel , we de�ned the discrete

convolution as a 2D tensor of size such

that

For example,

x ∈ RH×W u ∈ Rh×w

x ⋆ u (H − h + 1) × (W − w + 1)

(x ⋆ u) = x u .j,i

n=0

∑
h−1

m=0

∑
w−1

j+n,i+m n,m

 ⋆ =

⎝
⎜
⎜
⎛4

1
3
6

5
8
6
5

8
8
6
7

7
8
4
8⎠
⎟
⎟
⎞

⎝

⎛1
1
3

4
4
3

1
3
1⎠

⎞
(

122
126

148
134

)

18 / 66

19 / 66

The convolution operation can be equivalently re-expressed as a single matrix
multiplication.

Following the previous example,

the convolutional kernel is rearranged as a sparse Toeplitz circulant matrix,

called the convolution matrix:

the input is �attened row by row, from top to bottom:

Then,

which we can reshape to a matrix to obtain .

u

U =

⎝
⎜
⎜
⎛1

0
0
0

4
1
0
0

1
4
0
0

0
1
0
0

1
0
1
0

4
1
4
1

3
4
1
4

0
3
0
1

3
0
1
0

3
3
4
1

1
3
3
4

0
1
0
3

0
0
3
0

0
0
3
3

0
0
1
3

0
0
0
1⎠
⎟
⎟
⎞

x

v(x) = (4 5 8 7 1 8 8 8 3 6 6 4 6 5 7 8)
T

Uv(x) = (122 148 126 134)
T

2 × 2 x ⋆ u

20 / 66

The same procedure generalizes to and convolutional kernel

, such that:

the convolutional kernel is rearranged as a sparse Toeplitz circulant matrix

of shape where

each row identi�es an element of the output feature map,

each column identi�es an element of the input feature map,

the value corresponds to the kernel value the element is multiplied with in output ;

the input is �attened into a column vector of shape ;

the output feature map is obtained by reshaping the

 column vector as a

 matrix.

Therefore, a convolutional layer is a special case of a fully connected layer:

x ∈ RH×W

u ∈ Rh×w

U
(H − h + 1)(W − w + 1) × HW

i

j

U i,j j i

x v(x) HW × 1

x ⋆ u
(H − h + 1)(W − w + 1) × 1 Uv(x)
(H − h + 1) × (W − w + 1)

h = x ⋆ u⇔ v(h) = Uv(x) ⇔ v(h) =W v(x)T

21 / 66

22 / 66

In a fully connected layer , the partial derivatives with respect to the

layer inputs are

Since a convolutional layer can be expressed as a fully connected layer

, the partial derivatives with respect to its inputs are

The backward pass of convolutional layer therefore amounts to multiplying the loss

with and reshaping appropriately.

The backward pass takes some -dimensional vector as input and produces

some -dimensional vector as output, with .

It does so while keeping a connectivity pattern that is compatible with , by

construction.

h =W xT

 =W.
∂x
∂h

h = x ⋆ u
v(h) = Uv(x)

 = U .
∂v(x)
∂v(h) T

UT

q

p q < p

U

23 / 66

Transposed convolution
A transposed convolution is a convolution where the implementation of the forward
and backward passes are swapped.

Therefore, a transposed convolution can be seen as the gradient of some
convolution with respect to its input.

Given a convolutional kernel ,

the forward pass is implemented as with appropriate

reshaping, thereby effectively up-sampling an input into a larger one;

the backward pass is computed by multiplying the loss by instead of .

Transposed convolutions are also referred to as fractionally-stride convolutions or
deconvolutions (mistakenly).

u

v(h) = U v(x)T

v(x)

U UT

24 / 66

25 / 66

U v(x)T

⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛1

4
1
0
1
4
3
0
3
3
1
0
0
0
0
0

0
1
4
1
0
1
4
3
0
3
3
1
0
0
0
0

0
0
0
0
1
4
1
0
1
4
3
0
3
3
1
0

0
0
0
0
0
1
4
1
0
1
4
3
0
3
3
1⎠
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎝
⎜
⎜
⎛2

1
4
4⎠
⎟
⎟
⎞

= v(h)

=

⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ 2

9
6
1
6
29
30
7
10
29
33
13
12
24
16
4 ⎠
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

26 / 66

Transposed convolution (no padding, no stride)

27 / 66

Deep convolutional GAN
Given transposed convolutional layers, we are now equipped for building deep
convolutional generative models.

Radford et al (2015) identify the following guidelines to ensure stable training:

28 / 66

The DCGAN generator architecture (Radford et al, 2015)

29 / 66

(Radford et al, 2015)

30 / 66

(Radford et al, 2015)

31 / 66

Vector arithmetic in -space (Radford et al, 2015)Z

32 / 66

Progressive growing of GANs

(Karras et al, 2017)

33 / 66

Progressive Growing of GANs for Improved Quality, Stability, and Variation

(Karras et al, 2017)

34 / 66

Cabinet of curiosities
While state-of-the-art results are impressive, a close inspection of the fake samples

distribution often reveals fundamental issues highlighting architectural

limitations.

These issues remain an open research problem.

Cherry-picks (Goodfellow, 2016)

p(x; θ)

35 / 66

Problems with counting (Goodfellow, 2016)

36 / 66

Problems with perspective (Goodfellow, 2016)

37 / 66

Problems with global structures (Goodfellow, 2016)

38 / 66

Wasserstein GAN

39 / 66

Vanishing gradients
For most non-toy data distributions, the fake samples may be so bad

initially that the response of saturates. At the limit, when is perfect given the

current generator ,

Therefore,

and , thereby halting gradient descent.

Dilemma:

If is bad, then does not have accurate feedback and the loss function cannot

represent the reality.

If is too good, the gradients drop to 0, thereby slowing down or even halting

the optimization.

x ∼ p(x; θ)
d d

g

d(x;ϕ)

d(x;ϕ)

= 1, ∀x ∼ p (x),r

= 0, ∀x ∼ p(x; θ).

V (ϕ, θ) = E log d(x;ϕ) + E log(1 − d(g(z; θ);ϕ)) = 0x∼p (x)r
[] z∼p(z) []

∇ V (ϕ, θ) = 0θ

d g

d

40 / 66

Jensen-Shannon divergence
For any two distributions and ,

where

 if and only if ,

 if and only if and have disjoint supports.

p q

0 ≤ JSD(p∣∣q) ≤ log 2,

JSD(p∣∣q) = 0 p = q

JSD(p∣∣q) = log 2 p q

41 / 66

Notice how the Jensen-Shannon divergence poorly accounts for the metric
structure of the space.

Intuitively, instead of comparing distributions "vertically", we would like to compare
them "horizontally".

42 / 66

Wasserstein distance
An alternative choice is the Earth mover's distance, which intuitively corresponds to
the minimum mass displacement to transform one distribution into the other.

Then,

p = 1 + 1 + 1 4
1

[1,2] 4
1

[3,4] 2
1

[9,10]

q = 1 [5,7]

W (p, q) = 4 × + 2 × + 3 × = 31 4
1

4
1

2
1

Credits: EE559 Deep Learning (Fleuret, 2018)

43 / 66

The Earth mover's distance is also known as the Wasserstein-1 distance and is
de�ned as:

where:

 denotes the set of all joint distributions whose marginals are

respectively and ;

 indicates how much mass must be transported from to in order to

transform the distribution into .

 is the L1 norm and represents the cost of moving a unit of mass

from to .

W (p, q) = E ∣∣x − y∣∣1
γ∈Π(p,q)

inf (x,y)∼γ []

Π(p, q) γ(x, y)
p q

γ(x, y) x y

p q

∣∣ ⋅ ∣∣ ∣∣x − y∣∣
x y

44 / 66

45 / 66

Notice how the distance does not saturate. Instead, it increases monotonically

with the distance between modes:

For any two distributions and ,

,

 if and only if .

W 1

W (p, q) = d1

p q

W (p, q) ∈ R1
+

W (p, q) = 01 p = q

46 / 66

Wasserstein GAN
Given the attractive properties of the Wasserstein-1 distance, Arjovsky et al (2017)
propose to learn a generative model by solving instead:

Unfortunately, the de�nition of does not provide with an operational way of

estimating it because of the intractable .

On the other hand, the Kantorovich-Rubinstein duality tells us that

where the supremum is over all the 1-Lipschitz functions . That is,

functions such that

θ = arg W (p (x)∣∣p(x; θ))∗

θ
min 1 r

W 1
inf

W (p (x)∣∣p(x; θ)) = E f(x) − E f(x)1 r
∣∣f ∣∣ ≤1L

sup x∼p (x)r
[] x∼p(x;θ) []

f : X → R
f

∣∣f ∣∣ = ≤ 1.L
x,x′

max
∣∣x− x ∣∣′

∣∣f(x) − f(x)∣∣′

47 / 66

For and ,p = 1 + 1 + 1 4
1

[1,2] 4
1

[3,4] 2
1

[9,10] q = 1[5,7]

W (p, q)1 = 4 × + 2 × + 3 × = 3
4
1

4
1

2
1

= − = 3

E f(x)x∼p (x)r []

 3 × + 1 × + 2 ×(
4
1

4
1

2
1

)

E f(x)x∼p(x;θ) []

 −1 × − 1 × (
2
1

2
1

)

Credits: EE559 Deep Learning (Fleuret, 2018)

48 / 66

Using this result, the Wasserstein GAN algorithm consists in solving the minimax
problem:

 Note that this formulation is very close to the original GAN, except that:

The classi�er is replaced by a critic function and

its output is not interpreted through the cross-entropy loss;

There is a strong regularization on the form of . In practice, to ensure 1-

Lipschitzness,

Arjovsky et al (2017) propose to clip the weights of the critic at each iteration;

Gulrajani et al (2017) add a regularization term to the loss.

As a result, Wasserstein GANs bene�t from:

a meaningful loss metric,

improved stability (no mode collapse is observed).

θ = arg E d(x;ϕ) − E d(x;ϕ)∗

θ
min

ϕ:∣∣d(⋅;ϕ)∣∣ ≤1L

max x∼p (x)r
[] x∼p(x;θ) []

d : X → [0, 1] d : X → R

d

49 / 66

(Arjovsky et al, 2017)

50 / 66

(Arjovsky et al, 2017)

51 / 66

(Arjovsky et al, 2017)

52 / 66

(Arjovsky et al, 2017)

53 / 66

Some applications

54 / 66

 need not be a random noise distribution.p(z)

55 / 66

Image-to-image translation

(Zhu et al, 2017)

56 / 66

High-Resolution Image Synthesis and Semantic Manipulation with Conditio…

(Wang et al, 2017)

57 / 66

Captioning

(Shetty et al, 2017)

58 / 66

Text-to-image synthesis

(Zhang et al, 2017)

59 / 66

(Zhang et al, 2017)

60 / 66

Unsupervised machine translation

(Lample et al, 2018)

61 / 66

(Lample et al, 2018)

62 / 66

Brain reading

(Shen et al, 2018)

63 / 66

(Shen et al, 2018)

64 / 66

Deep image reconstruction: Natural images

(Shen et al, 2018)

65 / 66

The end.

65 / 66

References
EE-559 Deep learning (Fleuret, 2018)

Tutorial: Generative adversarial networks (Goodfellow, 2016)

From GAN to WGAN (Weng, 2017)

Wasserstein GAN and the Kantorovich-Rubinstein Duality (Herrmann, 2017)

66 / 66

