CONCLUSION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

INTRODUCTION TO MACHINE LEARNING

Vincent Barra

LIMOS, UMR 6158 CNRS, Clermont-Auvergne University, Clermont-Fd, FRANCE

May 29, 2018

WHAT IS MACHINE LEARNING

WHAT IS MACHINE LEARNING

Webster's definition of "to learn"

"Gain knowledge or understanding of, or skill in by study, instruction or experience"

- \rightarrow Learning a set of new facts
- ightarrow Learning HOW to do something
- ightarrow Improving ability of something already learned

"Machine Learning"

- Simon¹: "Learning denotes changes in the system that are adaptive in the sense that they enable the system to do the same task or tasks drawn from the same population more effectively the next time"
- $\circ\,$ Michalski 2 : "Learning is constructing or modifying representations of what is being experienced "
- Mitchell³: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P improves with experience E"

(1)Simon M- Machine Learning I, 1993, Chapter 2

(2)Michalski R, Carbonell J, Mitchell T (Eds), Machine Learning: An Artificial Intelligence Approach, Morgan Kaufmann, 1986 (3)Mitchell T, Machine Learning, Chapter 1: Introduction, pp. 1-19, McGraw Hill, 1997.

MAIN CHALLENGES OF ML

CONCLUSION

WHY LEARNING ?

Machine learning is programming computers to optimize a performance criterion using example data or past experience.

Learning is used when

 \rightarrow Human expertise does not exist \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAIN CHALLENGES OF ML

CONCLUSION

WHY LEARNING ?

Machine learning is programming computers to optimize a performance criterion using example data or past experience.

Learning is used when

- ightarrow Human expertise does not exist
- ightarrow Humans are unable to explain their expertise
- \rightarrow
- \rightarrow
- \rightarrow
- \rightarrow
- ć

▲□▶▲□▶▲□▶▲□▶ □ のQで

MAIN CHALLENGES OF ML

CONCLUSION

WHY LEARNING ?

Machine learning is programming computers to optimize a performance criterion using example data or past experience.

Learning is used when

- ightarrow Human expertise does not exist
- ightarrow Humans are unable to explain their expertise
- $\rightarrow\,$ Amount of knowledge is too large for explicit encoding
- \rightarrow
- \rightarrow
- \rightarrow
- \rightarrow

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

MAIN CHALLENGES OF ML

CONCLUSION

WHY LEARNING ?

Machine learning is programming computers to optimize a performance criterion using example data or past experience.

Learning is used when

- $\rightarrow\,$ Human expertise does not exist
- $\rightarrow\,$ Humans are unable to explain their expertise
- $\rightarrow\,$ Amount of knowledge is too large for explicit encoding
- ightarrow Solution changes in time
- \rightarrow
- \rightarrow
- \rightarrow

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

CONCLUSION

WHY LEARNING ?

Machine learning is programming computers to optimize a performance criterion using example data or past experience.

Learning is used when

- $\rightarrow\,$ Human expertise does not exist
- ightarrow Humans are unable to explain their expertise
- $\rightarrow\,$ Amount of knowledge is too large for explicit encoding
- ightarrow Solution changes in time
- ightarrow Relationships can be hidden within large amounts of data
- \rightarrow
- \rightarrow

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

MAIN CHALLENGES OF ML

CONCLUSION

WHY LEARNING ?

Machine learning is programming computers to optimize a performance criterion using example data or past experience.

Learning is used when

- $\rightarrow\,$ Human expertise does not exist
- ightarrow Humans are unable to explain their expertise
- $\rightarrow\,$ Amount of knowledge is too large for explicit encoding
- ightarrow Solution changes in time
- ightarrow Relationships can be hidden within large amounts of data
- $\rightarrow\,$ Solution needs to be adapted to particular cases

CONCLUSION

WHY LEARNING?

Machine learning is programming computers to optimize a performance criterion using example data or past experience.

Learning is used when

- $\rightarrow\,$ Human expertise does not exist
- ightarrow Humans are unable to explain their expertise
- $\rightarrow\,$ Amount of knowledge is too large for explicit encoding
- $\rightarrow\,$ Solution changes in time
- $\rightarrow\,$ Relationships can be hidden within large amounts of data
- $\rightarrow\,$ Solution needs to be adapted to particular cases
- $\rightarrow\,$ New knowledge is constantly being discovered by humans

CONCLUSION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

A SIMPLE EXAMPLE

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E"

Build a program that learns to detect spams, based on annotated emails

Spam detection

- T detect spams
- E: annotated emails (spams / no spams)
- P: proportion of emails correctly classified

CONCLUSION

A SIMPLE EXAMPLE

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E"

Build a program that learns to detect spams, based on annotated emails

Spam detection

- T detect spams
- E: annotated emails (spams / no spams)
- P: proportion of emails correctly classified

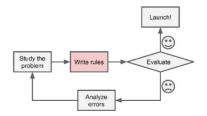
Traditional approach

- o observe what a spam looks like (frequency of some words, senders,...)
- write a algorithm detecting these patterns
- o consider an email as a spam if some patterns are detected
- test and iterate until P is satisfied

CONCLUSION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

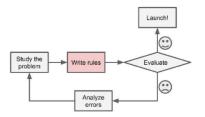
A SIMPLE EXAMPLE



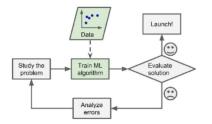
Non trivial task \Rightarrow huge number of rules / patterns

CONCLUSION

A SIMPLE EXAMPLE



Non trivial task \Rightarrow huge number of rules / patterns

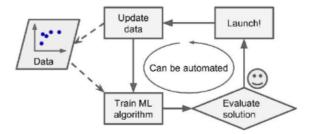


Machine learning automatically learns what the good features of a spam are _ _ _ _ _ \sim

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A SIMPLE EXAMPLE



If data / features are changing \rightarrow Adaptation

INTRODUCTION 00000 TAXONOMY MAIN CHALLENGES OF ML

CONCLUSION

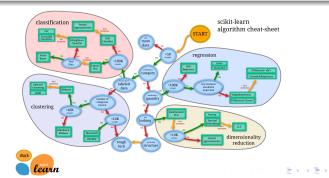
3

TAXONOMY

Several criteria

- trained or not: supervised vs unsupervised vs semi-supervised vs reinforcement learning
- trained gradually with the data or not: online vs batch
- based on known examples or built predictive models: instance-based vs model-based.
- > objective: regression vs. classification

Non exhaustive and combinable.



CONCLUSION

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING

Classification

Regression

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = ○ ○ ○ ○

MAIN CHALLENGES OF ML

CONCLUSION

▲□▶▲□▶▲□▶▲□▶ □ のQ@

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING: A SPECIAL FOCUS

Focus on supervised learning:

- Viewed from a statistical point of view
- Help to undersand the underlying notions (model, over/under fitting...)
- Relations with several other notions (optimization,...)

MAIN CHALLENGES OF ML

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

VAPNIK DEFINITION OF A LEARNING MODEL

- A random vector generator G giving $x \in \mathbb{R}^n$ i.i.d. using fixed but unknown P(x)
- A supervisor S giving for each input x a value y using a conditional fixed but unknown distribution P(y|x)
- \blacktriangleright A learning machine LM implementing a set of functions ${\cal F}$

MAIN CHALLENGES OF ML

CONCLUSION

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

Statistical learning problem \Leftrightarrow choose f in \mathcal{F} that best models S

LEARNING (OR TRAINING) SET

Choice of $f \Rightarrow$ training set { $(x_1, y_1), \ldots, (x_l, y_l)$ }: *l* iid observations using P(x, y) = P(x) P(y|x).

MAIN CHALLENGES OF ML

CONCLUSION

▲□▶▲□▶▲□▶▲□▶ □ のQ@

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

Statistical learning problem \Leftrightarrow choose *f* in \mathcal{F} that best models *S*

LEARNING (OR TRAINING) SET

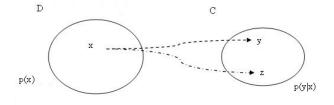
Choice of $f \Rightarrow$ training set { $(x_1, y_1), \ldots, (x_l, y_l)$ }: *l* iid observations using P(x, y) = P(x)P(y|x).

MAIN CHALLENGES OF ML

CONCLUSION

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW



 $S = \{(x_1, y_1), \dots, (x_l, y_l)\} \text{ drawn using } p(x, y) = p(x) p(y|x)$ Objective: Find $f : D \to C$ with minimal error $R(f) = P(y \neq f(x))$.

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三回 ●の≪?

MAIN CHALLENGES OF ML

CONCLUSION

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

REMARKS

▶ \mathbb{R}^n is continuous

Non deterministic model

- non deterministic target problem ;
- noisy problem;
- Rⁿ only partially describes a complex situation.
- Searching for a deterministic solution.
- non parametric model \Rightarrow no constraint on \mathcal{F} .

MAIN CHALLENGES OF ML

CONCLUSION

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

REMARKS

- \mathbb{R}^n is continuous
- Non deterministic model
 - non deterministic target problem ;
 - noisy problem;
 - \triangleright \mathbb{R}^n only partially describes a complex situation.
- Searching for a deterministic solution.
- non parametric model \Rightarrow no constraint on \mathcal{F} .

MAIN CHALLENGES OF ML

CONCLUSION

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

REMARKS

- \mathbb{R}^n is continuous
- Non deterministic model
 - non deterministic target problem ;
 - noisy problem;
 - \triangleright \mathbb{R}^n only partially describes a complex situation.
- Searching for a deterministic solution.
- non parametric model \Rightarrow no constraint on \mathcal{F} .

MAIN CHALLENGES OF ML

CONCLUSION

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

REMARKS

- \mathbb{R}^n is continuous
- Non deterministic model
 - non deterministic target problem ;
 - noisy problem;
 - \triangleright \mathbb{R}^n only partially describes a complex situation.
- Searching for a deterministic solution.
- ▶ non parametric model \Rightarrow no constraint on \mathcal{F} .

MAIN CHALLENGES OF ML

CONCLUSION

▲□▶▲□▶▲□▶▲□▶ □ のQ@

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

LOSS FUNCTION

 $L(y, f(x)) = \mathbb{1}_{y \neq f(x)}$

Measures the difference between S (y) and LM (f(x))

RISK OR ERROR

$$R(f) = \int L(y, f(x)) dP(x, y) = P(y \neq f(x))$$

 \Rightarrow Expected value of the loss function= probability that f predicts a value different from S.

MAIN CHALLENGES OF ML

CONCLUSION

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

Learning issue \Leftrightarrow Knowing a training set, find $f \in \mathcal{F}$ minimizing R(f).

EXTENSIONS

This formulation can be extended to regression and density estimation problems, e.g.:

- $L(y, f(x)) = (y f(x))^2$
- $L(y, f(x)) = -\log(f(x))$

MAIN CHALLENGES OF ML

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

Learning issue \Leftrightarrow Knowing a training set, find $f \in \mathcal{F}$ minimizing R(f).

EXTENSIONS

This formulation can be extended to regression and density estimation problems, e.g.:

- $L(y, f(x)) = (y f(x))^2$
- L(y, f(x)) = -log(f(x))

MAIN CHALLENGES OF ML

CONCLUSION

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

For classification, \exists a function with minimal risk (Bayes' decision rule)

 $f_{Bayes}(x) = argmax_{y}P(y|x)$

 f_{Bayes} : ideal function

Learning issue \Leftrightarrow Knowing a training set, find $f \in \mathcal{F}$ as close as possible to f_{Bayes}

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

MAIN CHALLENGES OF ML

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

For classification, ∃ a function with minimal risk (Bayes' decision rule)

 $f_{Bayes}(x) = argmax_{y}P(y|x)$

 f_{Bayes} : ideal function

Learning issue \Leftrightarrow Knowing a training set, find $f \in \mathcal{F}$ as close as possible to f_{Bayes}

MAIN CHALLENGES OF ML

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

Let suppose there exists $f_{opt} \in \mathcal{F}$ with minimum risk:

$$0 \le R(f_{Bayes}) \le R(f_{opt}) = \underbrace{R(f_{Bayes})}_{\text{non-deterministic}} + \underbrace{\left(R(f_{opt}) - R(f_{Bayes})\right)}_{\text{structural error}}$$

Use expressive \mathcal{F} spaces to allow:

- the best function to be close to f_{Bayes}
- functions to be sufficiently handy

MAIN CHALLENGES OF ML

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

SUPERVISED/UNSUPERVISED

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

Let suppose there exists $f_{opt} \in \mathcal{F}$ with minimum risk:

$$0 \le R(f_{Bayes}) \le R(f_{opt}) = \underbrace{R(f_{Bayes})}_{\text{pon-deterministic}} + \underbrace{(R(f_{opt}) - R(f_{Bayes}))}_{\text{structural error}}$$

Use expressive \mathcal{F} spaces to allow:

- the best function to be close to f_{Bayes}
- functions to be sufficiently handy

SUPERVISED/UNSUPERVISED

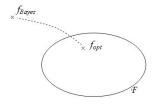
SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

Let suppose there exists $f_{opt} \in \mathcal{F}$ with minimum risk:

$$0 \le R(f_{Bayes}) \le R(f_{opt}) = \underbrace{R(f_{Bayes})}_{\text{non-deterministic}} + \underbrace{\left(R(f_{opt}) - R(f_{Bayes})\right)}_{\text{structural error}}$$

Use expressive \mathcal{F} spaces to allow:

- the best function to be close to f_{Bayes}
- functions to be sufficiently handy



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

Natural idea: select $f \in \mathcal{F}$ best classifying the training set

$$R_{emp}(f) = \frac{1}{l} \sum_{i=1}^{l} L(y_i, f(x_i)) = \frac{Card \{i | f(x_i) \neq y_i\}}{l}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

Natural idea: select $f \in \mathcal{F}$ best classifying the training set

EMPIRICAL RISK

Empirical risk of f on $\{(x_1, y_1), \ldots, (x_l, y_l)\}$

$$R_{emp}(f) = \frac{1}{I} \sum_{i=1}^{I} L(y_i, f(x_i)) = \frac{Card\{i | f(x_i) \neq y_i\}}{I}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

Natural idea: select $f \in \mathcal{F}$ best classifying the training set

EMPIRICAL RISK

Empirical risk of f on $\{(x_1, y_1), \ldots, (x_l, y_l)\}$

$$R_{emp}(f) = \frac{1}{l} \sum_{i=1}^{l} L(y_i, f(x_i)) = \frac{Card\{i | f(x_i) \neq y_i\}}{l}$$

EMPIRICAL RISK MINIMIZATION (ERM)

Find $f \in \mathcal{F}$ (f_{emp}) minimizing R_{emp} (f)

 $R(f_{emp}) = R(f_{Bayes}) + (R(f_{opt}) - R(f_{Bayes})) + (R(f_{emp}) - R(f_{opt}))$

INTRODUCTION DIFFERENT TYPES OF ML SUPERVISED/UNSUPERVISED/REINFORCEMENT

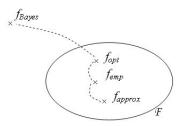
MAIN CHALLENGES OF ML

CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

In practice, impossible to compute f_{emp} in reasonable time $\Rightarrow f_{approx} \approx f_{emp}$.

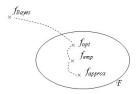


SUPERVISED/UNSUPERVISED/REINFORCEMENT

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

At least 3 reasons hinder the results of a ML algorithm:

- weak expressivity of \mathcal{F} : structural error;
- Unconsistency or the ERM principle : do we get close to fopt with the training set (and its number of examples)?
- Difficulty to minimize the empirical risk.



・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

DIFFERENT TYPES OF ML INTRODUCTION MAIN CHALLENGES OF ML

CONCLUSION

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

SUPERVISED/UNSUPERVISED/REINFORCEMENT

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

- ERM does not allow to be close to the optimal function in all cases. \Rightarrow the training set is by nature stochastic

INTRODUCTION DIFFERENT TYPES OF ML MAIN CHALLENGES OF ML

CONCLUSION

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

SUPERVISED/UNSUPERVISED/REINFORCEMENT

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

- ERM does not allow to be close to the optimal function in all cases. \Rightarrow the training set is by nature stochastic
- \blacktriangleright . \mathcal{F} too rich \Rightarrow ERM can overfit.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

SERIOUS PROBLEM

- f_{opt} close to f_{bayes} needs a rich F;
- Find f_{opt} using ERM ned not so rich \mathcal{F} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SUPERVISED/UNSUPERVISED/REINFORCEMENT

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

SERIOUS PROBLEM

- f_{opt} close to f_{bayes} needs a rich F;
- Find f_{opt} using ERM ned not so rich \mathcal{F} .

EXTREME EXAMPLES:

- $\mathcal{F} = \{f_0\}, f_{opt} = f_0$ but does not mimimize R_{emp} ;
- ▶ \mathcal{F} = all possible functions, $f_{bayes} \in \mathcal{F}$ but also all functions minimizing R_{emp} including f_{byheart}.

SUPERVISED/UNSUPERVISED/REINFORCEMENT

SUPERVISED LEARNING FROM A STATISTICAL POINT OF VIEW

SERIOUS PROBLEM

- f_{opt} close to f_{bayes} needs a rich F;
- Find f_{opt} using ERM ned not so rich \mathcal{F} .

EXTREME EXAMPLES:

- $\mathcal{F} = \{f_0\}, f_{opt} = f_0$ but does not mimimize R_{emp} ;
- ▶ \mathcal{F} = all possible functions, $f_{bayes} \in \mathcal{F}$ but also all functions minimizing R_{emp} including f_{byheart}.

BIAS-VARIANCE TRADEOFF

Bias \approx distance between f_{bayes} and f_{opt} Variance \approx distance between f_{opt} and f_{emp}

MAIN CHALLENGES OF ML

CONCLUSION

▲□▶▲□▶▲□▶▲□▶ □ のQ@

SUPERVISED/UNSUPERVISED/REINFORCEMENT

SUPERVISED LEARNING

Main algorithms

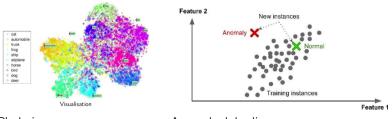
- k-nearest neighbors
- Linear regression
- Logistic regression
- SVM, SVR
- Decision trees and random forests
- Shallow and deep neural networks

CONCLUSION

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

SUPERVISED/UNSUPERVISED/REINFORCEMENT

UNSUPERVISED LEARNING



Clustering

Anomaly detection

CONCLUSION

▲□▶▲□▶▲□▶▲□▶ □ のQ@

SUPERVISED/UNSUPERVISED/REINFORCEMENT

UNSUPERVISED LEARNING

Main algorithms

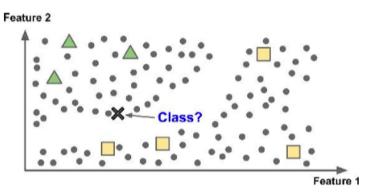
- Clustering
 - k-means and fuzzy variations
 - Hierarchical cluster analysis
 - o EM
- Visualisation and dimension reduction
 - PCA, ICA
 - Non linear techniques: ISOMAP, LLE,...
 - Kernel methods
 - ∘ t-SNE
- Association rules

INTRODUCTION DIFFERENT TYPES OF ML MAIN CHALLENGES OF ML

CONCLUSION

SUPERVISED/UNSUPERVISED/REINFORCEMENT

SEMI SUPERVISED LEARNING

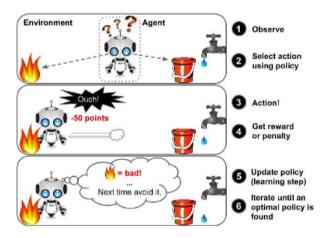


MAIN CHALLENGES OF ML

CONCLUSION

SUPERVISED/UNSUPERVISED/REINFORCEMENT

REINFORCEMENT LEARNING



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

MAIN CHALLENGES OF ML

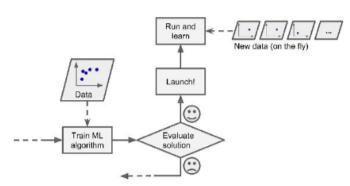
CONCLUSION

BATCH / INLINE LEARNING

BATCH / INLINE LEARNING

Does the ML algorithm have the ability to incrementally update, following a data stream ?

Inline learning



Inline... misleading term \rightarrow incremental & offline learning

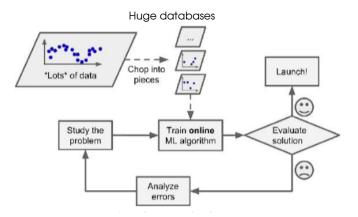
|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣|||の��

INTRODUCTION	DIFFERENT TYPES OF ML
00000	000000000000000000000000000000000000000

CONCLUSION

BATCH / INLINE LEARNING

INLINE LEARNING



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

MAIN CHALLENGES OF ML

CONCLUSION

▲□▶▲□▶▲□▶▲□▶ □ のQ@

BATCH / INLINE LEARNING

INLINE LEARNING

Learning rate

How fast an inline ML algorithm has to adapt to new data (and then forget the older ones) ?

- \Rightarrow Define a learning rate:
 - too fast: unstable system, too sensitive to erroneous data
 - too slow: the algorithm will not be able to adapt

MAIN CHALLENGES OF ML

CONCLUSION

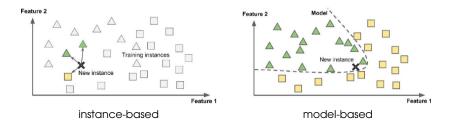
WITH / WITHOUT A MODEL

GENERALIZATION

Generalization

Capacity of an algorithm to correctly predict on new data. Two main approaches:

- instance-based (without a model)
- model-based



▲□▶▲□▶▲□▶▲□▶ □ のQ@

EXAMPLE

Simple example: construction of a model on simple data

Data

- "Better life" data, OCDE
- income distribution by country and subjective feelings (happyness)

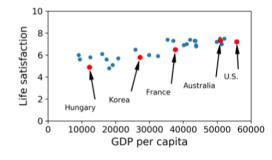
Country	Income (USD)	Happyness
Hungary	12240	4.9
South Korea	27195	5.8
France	37675	6.5
Australia	50962	7.3
U.S.	55805	7.2

Can money buy happyness?

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

EXAMPLE



Any tendancy ?

CONCLUSION

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

EXAMPLE

happyness = $\theta_0 + \theta_1$ income

EXAMPLE

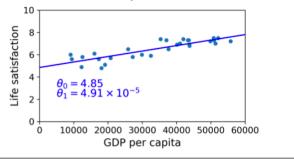
Optimal parameter values

Optimal in the sens of a performance measure

- > utility function: measures to which extent the model performs well
- cost function: measures to which extent the model is bad

Linear regression case

In general: cost function measuring the distance between predictions and real values on the training set.



MAIN CHALLENGES OF ML

CONCLUSION

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

MAIN CHALLENGES OF ML

Two main problems:

- A wrong algorithm
- bad, missing, noisy and/or too few data

NTRODUCTION DIFFERENT TYPES OF ML

MAIN CHALLENGES OF ML

CONCLUSION

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PROBLEMS WITH DATA

TOO FEW DATA

The child

To learn what an apple is, only have to show (and repeat) an apple, and pronounce the word. The child is then able to recognize all varieties of apples, whatever the shape and color

The machine

A lot of data is necessary to learn the concept. Even for simple problems, thousands of examples needed.

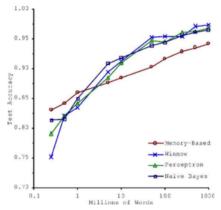
 CONCLUSION

PROBLEMS WITH DATA

TOO FEW DATA

For best performances: simple (and even naive) algorithm and huge amount of data.

Example: performance of simple algorithms on a difficult problem (desambiguation of "too", "two" or "to")



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 - つへぐ

MAIN CHALLENGES OF ML

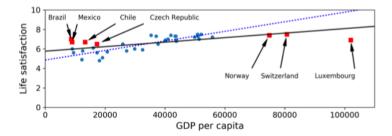
CONCLUSION

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PROBLEMS WITH DATA

NON REPRESENTATIVE DATA

For generalization purposes, training data must be representative of future data.



MAIN CHALLENGES OF ML

CONCLUSION

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

PROBLEMS WITH DATA

POOR DATA

Clean the data

- ► if points are clearly outliers, remove or manually correct them
- if some values (attributes) are missing for some data:
 - ignore the corresponding attribute
 - ignore the corresponding data
 - fill the missing values (mean, median...)
 - learn several models combining these approaches

MAIN CHALLENGES OF ML

CONCLUSION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

PROBLEMS WITH DATA

POOR DATA

Clean the data

- ► if points are clearly outliers, remove or manually correct them
- if some values (attributes) are missing for some data:
 - ignore the corresponding attribute
 - ignore the corresponding data
 - fill the missing values (mean, median...)
 - learn several models combining these approaches

Filter the attributes

- variable selection
- variable extraction
- creation of new attributes from new data.

MAIN CHALLENGES OF ML

CONCLUSION

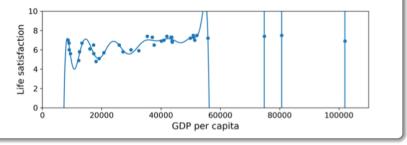
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

PROBLEMS WITH ALGORITHMS

OVERFITTING

Overfitting

The algorithm fits very well the training set but behaves poorly on generalization



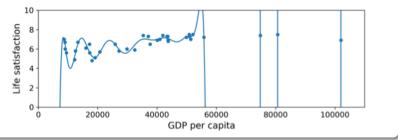
CONCLUSION

PROBLEMS WITH ALGORITHMS

OVERFITTING

Overfitting

The algorithm fits very well the training set but behaves poorly on generalization



Why?

Model too complex w.r.t. noise level and.or number of data

- simplify the model
- use more data
- reduce the amount of noise in the data

MAIN CHALLENGES OF ML

CONCLUSION

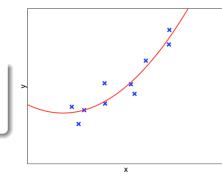
PROBLEMS WITH ALGORITHMS

OVERFITTING

A visual example of overfitting

Polynomial interpolation of a set of points

Order 2



MAIN CHALLENGES OF ML

CONCLUSION

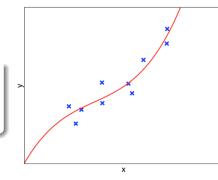
PROBLEMS WITH ALGORITHMS

OVERFITTING

A visual example of overfitting

Polynomial interpolation of a set of points

Order 3



MAIN CHALLENGES OF ML

CONCLUSION

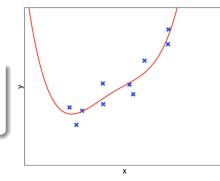
PROBLEMS WITH ALGORITHMS

OVERFITTING

A visual example of overfitting

Polynomial interpolation of a set of points

Order 4



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

MAIN CHALLENGES OF ML

CONCLUSION

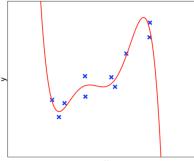
PROBLEMS WITH ALGORITHMS

OVERFITTING

A visual example of overfitting

Polynomial interpolation of a set of points

Order 5



х

MAIN CHALLENGES OF ML

CONCLUSION

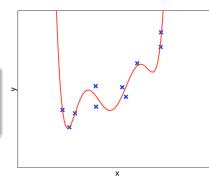
PROBLEMS WITH ALGORITHMS

OVERFITTING

A visual example of overfitting

Polynomial interpolation of a set of points

Order 6



MAIN CHALLENGES OF ML

CONCLUSION

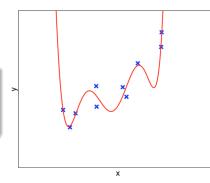
PROBLEMS WITH ALGORITHMS

OVERFITTING

A visual example of overfitting

Polynomial interpolation of a set of points

Order 7



MAIN CHALLENGES OF ML

CONCLUSION

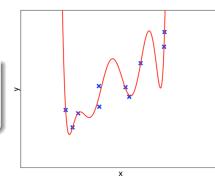
PROBLEMS WITH ALGORITHMS

OVERFITTING

A visual example of overfitting

Polynomial interpolation of a set of points

Order 8



MAIN CHALLENGES OF ML

CONCLUSION

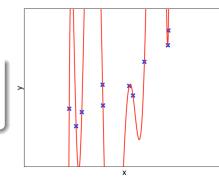
PROBLEMS WITH ALGORITHMS

OVERFITTING

A visual example of overfitting

Polynomial interpolation of a set of points

Order 9



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

MAIN CHALLENGES OF ML

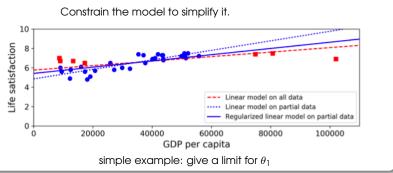
CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

PROBLEMS WITH ALGORITHMS

REGULARIZATION

Definition

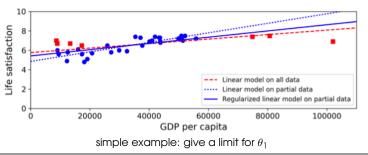


CONCLUSION

PROBLEMS WITH ALGORITHMS

REGULARIZATION

Definition



Constrain the model to simplify it.

Hyperparameter

The quantity of regularization is controled by an hyperparameter (learning parameter)

- a prori fixed during the training phase
- the higher the hyperparameter, the more constrained the model will be
- hyperparameter(s) need(s) to be tuned (important issue)

 CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

PROBLEMS WITH ALGORITHMS

UNDERFITTING

Definition

The model is too simple:

- choose a more complex model (with more parameters)
- find better attributes
- lower the regularization

 CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

TEST AND VALIDATION

Once the model is learned, one has to evaluate it and if necessary tune it. Training/test sets

The only way to see if the model generalizes well is to test it on new data

- \blacktriangleright A subset of the initial set ($\approx 80\%$)will serve as a learning set \rightarrow training error
- the rest will serve as a test set \rightarrow generalization error

 CONCLUSION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

TEST AND VALIDATION

TEST SET

Once the model is learned, one has to evaluate it and if necessary tune it. **Training/test sets**

The only way to see if the model generalizes well is to test it on new data

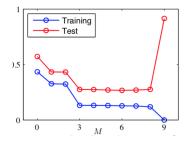
- A subset of the initial set (pprox 80%) will serve as a learning set ightarrow training error
- \blacktriangleright the rest will serve as a test set \rightarrow generalization error

Overfitting

generalization error> training error \Rightarrow Overfitting

TEST AND VALIDATION TEST SET

- > The training error decreases with the complexity of the model
- > The generalization error decreases at first, then starts increasing
- As we will see, cross-validation will help:
 - Find a good model, using a validation set
 - Report unbiased results, using a test set, untouched during either parameter training or validation



 $\begin{array}{c} \text{Main challenges of ML} \\ \texttt{OOOOOOOOOOOOOOOOO} \end{array}$

CONCLUSION

▲□▶▲□▶▲□▶▲□▶ □ のQ@

TEST AND VALIDATION

VALIDATION SET

Hyperparameter tuning

When comparing several models (using different values for the hyperparameter(s)) on the test set, this test will be "learned"

 CONCLUSION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

TEST AND VALIDATION

VALIDATION SET

Hyperparameter tuning

When comparing several models (using different values for the hyperparameter(s)) on the test set, this test will be "learned"

Learning/Validation sets

Learning set / Validation set The models are tested on the validation set, the best is retained. Then this model is applied on the test set to evaluate it.

 CONCLUSION

▲□▶▲□▶▲□▶▲□▶ □ のQ@

TEST AND VALIDATION

CROSS VALIDATION

Risk: learn the validation set

Principle

- divide the learning set in v subsets
- learn the modl with v 1 subsets
- test using the last subset
- repeat v times, using each of the v subsets as a test set

Final error: mean of the v learning errors

 $\begin{array}{c} \text{Main challenges of ML} \\ \texttt{OOOOOOOOOOOOOOOO} \end{array}$

CONCLUSION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

TEST AND VALIDATION

CROSS VALIDATION

Risk: learn the validation set

Principle

- divide the learning set in v subsets
- learn the modl with v 1 subsets
- test using the last subset
- repeat v times, using each of the v subsets as a test set

Final error: mean of the v learning errors

Leave one out

v : number of examples

 CONCLUSION

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

TEST AND VALIDATION

PERFORMANCE MEASURE

Measuring the performance of a classifier is generally harder than for a regression algorithm.

- cross validation (can be difficult if the classes are non equilibrated)
- confusion matrix (binary and multiclass cases)

INTRODUCTION	DIFFERENT TYPES OF ML
00000	000000000000000000000000000000000000000

CONCLUSION

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

TEST AND VALIDATION

PERFORMANCE MEASURE

$$C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

Example: binary confusion matrix C

- $C_{1,1}$: true positives (TP)
- ► C_{2,2} : true negatives (TN)
- ► C_{1,2} : false positives (FP)
- C_{2,1} : true negatives (FN)

INTRODUCTION	DIFFERENT TYPES OF ML
00000	000000000000000000000000000000000000000

CONCLUSION

TEST AND VALIDATION

PERFORMANCE MEASURE

$$C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

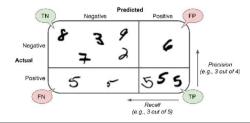
Example: binary confusion matrix C

- $C_{1,1}$: true positives (TP)
- ► C_{2,2} : true negatives (TN)
- ► C_{1,2} : false positives (FP)
- $C_{2,1}$: true negatives (FN)

Precision / Recall

• precision
$$P = \frac{TP}{TP + FP}$$

• recall
$$\frac{TP}{TP+FN}$$



INTRODUCTION	DIFFERENT TYPES OF ML
00000	000000000000000000000000000000000000000

 $\begin{array}{c} \text{Main challenges of ML} \\ \texttt{OOOOOOOOOOOOOO} \bullet \texttt{O} \end{array}$

CONCLUSION

TEST AND VALIDATION

PERFORMANCE MEASURE

F_1 score

$$F_1 = 2\frac{P.R}{P+R} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

INTRODUCTION	DIFFERENT TYPES OF ML
00000	000000000000000000000000000000000000000

 $\begin{array}{c} \text{Main challenges of ML} \\ \texttt{OOOOOOOOOOOOOOO} \end{array}$

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

TEST AND VALIDATION

PERFORMANCE MEASURE

F_1 score

$$F_1 = 2\frac{P.R}{P+R} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

Harmonic mean

Good performances for classifiers with similar P and R values

INTRODUCTION	DIFFERENT TYPES OF ML
00000	000000000000000000000000000000000000000

CONCLUSION

TEST AND VALIDATION

PERFORMANCE MEASURE

 F_1 score

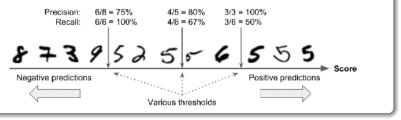
$$F_1 = 2\frac{P.R}{P+R} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

Harmonic mean

Good performances for classifiers with similar P and R values

P/R compromise

- ► In general, improving *P* lowers *R* and vice versa.
- > Decision function, returning a value compared to a threshold

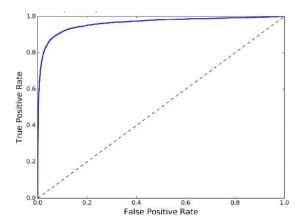


 CONCLUSION

TEST AND VALIDATION

PERFORMANCE MEASURE

ROC (Receiver Operating Characteristic): TP rate vs. FP rate



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

INTRODUCTION 00000 DIFFERENT TYPES OF ML

MAIN CHALLENGES OF ML

CONCLUSION

