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Better Advices for Books

 Glen Cowan, "Statistical Data Analysis", Oxford
Science Publications 1998

— Easy, clear, concise. Provides basic understanding on all
the common topics, but lacks in-depth treatment of
some advanced material important for HEP (e.g. MVA)

e F James, "Statistical Methods in Experimental
Physics", 2nd ed., World Scientific 2002

— A serious handbook which contains advanced
treatment of many important problems for HEP. Also
not complete.

e |. Narsky, F. Porter, "Statistical Analysis Techniques in
Particle Physics", Wiley 2014
— A ssharp focus on Multivariate Analysis techniques and

their applications to HEP. Aimed at problem solving
and extensive, although concise on any given topic.
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Practicalities

You can find the code used for some of the
examples of these lectures in the links below

Mind the underscores 2 Code for exercises in:
they are where you http://www.pd.infn.it/%7Edorigo/Poisson prob fix.C
see a space in the name http://www.pd.infn.it/%7Edorigo/Poisson prob fluct.C

http://www.pd.infn.it/%7Edorigo/FlipFlop exercise.C
These are simple ROOT http://www.pd.infn.it/%7Edorigo/FlipFlop.C

macros — the code is http://www.pd.infn.it/%7Edorigo/Coverage.C
ugly but hopefully easy http://www.pd.infn.ig/%7Edorigo/Die.C
to understand http://www.pd.infn.ig/%7Edorigo/Die5.C

http://www.pd.infn.ig/%7Edorigo/Bootstrap variance.C

A couple more practicalities:

- text in green shows proposed exercises

- text in purple indicates questions to you

- references[xx] are given in the text, listed at the end
And don't forget to ask questions when | am not clear
(surprisingly it does happen!)
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Contents

Today:
e (Classical interval estimation
e Derivation of upper and lower limits

Tomorrow:
 Hypothesis testing
 Cls and the Higgs search methodology

with examples and exercises scattered around.

Note: these slides are packed full with text. This has the purpose of making them easy to use offline

- but this makes it hard for you to follow, especially if you take notes. So don't: there's everything
you need already



Statistics Matters!

e To be a good physicist, one MUST understand Statistics:

— “Our results were inconclusive, so we had to use Statistics”
We are quite often in that situation in HEP |

— A good knowledge of Statistics allows you to make optimal use of your
measurements, obtaining more precise results than your colleagues, other
things being equal

— Itis very easy to draw wrong inferences from your data, if you lack some
basic knowledge on Statistics (it is easy regardless!)

— Foundational Statistics issues play a role in our measurements, because
different statistical approaches provide different results

* Thereis nothing wrong with this: the different results just answer different
questions

e The problem usually is, what is the question we should be asking ?
- Not always trivial to decide!

e We also as scientists have a responsibility for the way we communicate
our results. Sloppy jargon, imprecise claims, probability-inversion
statements are bad. Who talks bad thinks bad !



What Is a Measurement ?

e When we (physicists) talk about the "measurement" of a physical
guantity, what do we actually mean ?

— |l would say it is a procedure:
1) use of a measuring device to extract observations (data) carrying
information on the quantity
2)  analyse the data to extract the value of the quantity most consistent with
the observations
3) use some prescription to associate an uncertainty to the value found

e |n Statistics, what one talks about is an "estimate" of the quantity,
and the process involves two very distinct activities, called "point
estimation” and "interval estimation", which roughly correspond to
points 2) and 3) above

— The two take different chapters in any Statistics book, for a good
reason or two



Point and Interval Estimation

Point estimation can be awfully complicated, but it is almost always non-
controversial

It works by defining an estimator, a function of the data which has good properties
(no bias, small variance, consistency, efficiency...)

In making this choice, a careful evaluation of what we know of the distribution of
our data is CRUCIAL

Two all-important estimators: the chisquare, the likelihood

But even more common and simple to remember as good examples of estimators
are the sample mean and the sample variance

PE is dealt with in J. Donini's lectures — but | will introduce estimators and the MLE
below.

Interval estimation is more subtle —and it is what we really care about

provide the user with the range of values the parameter is likely to have
experimental design: minimize expected uncertainties on parameters of interest

BSM searches: "does it agree with the SM?" €< cannot answer with the estimate
alone; the uncertainty without estimate is instead still useful !

The core question we should always be asking ourselves is "do my uncertainty
bars cover at the stated confidence level ?"



A Parenthesis: Estimators

Before we discuss interval estimation, coverage, and related topics,
we need to introduce a few basic concepts we cannot do without

— some of them are in J.D.'s lecture, but they might be covered only
tomorrow — so this is my backup plan

— If | repeat something it can only be beneficial

The next few slides provide a few definitions we are going to use in
the following:

— expectation value, variance
— estimators and some of their crucial properties
— the MLE method

We can skip whatever is trivial to you... But stop me if you need
more explanation



E[.]: the Mean

 The probability density function (pdf) f(x) of a random variable x is a normalized
function which describes the probability to find x in a given range:

P(x,x+dx) = f(x)dx
— This is defined for continuous variables. For discrete ones,
e.g. P(n|u) =e*u"/nl , Pis a probability tout-court.

 The expectation value of the random variable x is then defined as
a function of the

E[X]= jxf (X)dx = u parameters of

the model f

* E[x], also called population mean , or simply mean, of x, thus depends on the
distribution f(x). Note that E[x] is not a function of x, but it is rather a fixed

quantity dependent on the form of the PDF f(x).
 The formulation of the expectation value is useful to define other properties of

the PDF, as shown in the following.



The Variance

e Of crucial importance to determine the property of a
distribution is the “second central moment” of x,

E[(x—EXD)*1= [ (x=2)* f (X)dx =V [x]

also called variance. The variance describes the "spread" of
the PDF around its expectation value. It enjoys the property
that

E[(x-E[x])?] = E[x?]-p?,
as itis trivial to show.

e Also well-known is the standard deviation c = sqrt(V[x]).



Parameter Estimation: Definitions

The parameters of a pdf are constants that characterize
its shape, e.g. 16_37/9

f(z;0) =
0
X is a random variable, theta is a parameter. If you change theta, you get a different PDF |

Suppose we have a sample of observed values: f p— (*/'Ula Ce e ;Un)

We often want to find some function of the data to estimate the
parameter(s):

N/ —
9 (CU) Note: the estimator gets written with a hat (ora *)

Usually we say ‘estimator’ for the function of xy, ..., x

n?

‘estimate’ for the value of the estimator with a particular data set.



Two Properties of Estimators

If we were to repeat the entire measurement many times, the estimates we get

from each would follow a pdf:

—~

0

A best
g(6;0)
large biased
variance
_
0

We usually (not always!!!) want small (or zero) bias (systematic error): bHh — E[é] — 0

this way, the average of repeated measurements should tend to the true value.

And we want a small variance (statistical error):

40

Note: small bias & small variance are in general conflicting criteria. You know
this from your experimental physics practice, but in Statistics this is a rule

(will define better below)



Estimators: a Few More Definitions

Given a sample {x;} of n observations of a random variable x, drawn from a pdf f(x),
one may construct a statistic: a function of {x;} containing no unknown parameters. An
estimator is a statisticused to estimate some property of a pdf. Using it on a set of
data provides an estimate of the parameter.

Estimators are consistent if they converge to the true value for large n.

The expectation value of an estimator 8* having a sampling distribution H(0*;0) is
E[O(x)] = [ H (6;0)d@

Simple example of day-to-day estimators: the sample mean and the sample variance

~ 1S 2 1 < A2 Unbiased estimators of

population mean and variance

An estimator can be consistent even if biased: the average of an infinite replica of
experiments with finite n will not in general converge to the true value, even if E[0*]
will tend to 0 as n tends to infinity.

Other properties of estimators (among which usually there are tradeoffs):
— efficiency: an efficient estimator (within some class) is the one with minimum variance

— robustness: the estimate is less dependent on the unknown true distribution f(x) for a more
robust estimator (see example on OPERA later)



A Final Digression:
the (Toy) Monte Carlo Technique

We often need to check the properties of our estimators in the specific conditions
of our experiment — one example will be given later

— For instance, we want to see if they are better than others, or if they depend on a tunable
parameter we want to optimize it

Often these details cannot be calculated algebrically, but we can use the Monte
Carlo technique:
— Simulate data with random generators

— Repeat many times, each time extracting properties under study (optionally as a function of
parameter to be optimized)

— Study properties of estimators as f(tunable parameters)

To generate pseudo-data one may rely on built-in functions in statistics packages
(root, R, etc.)
— We are spoiled by these built-in functions! We need to remember how to do the basic things
by ourselves...
One important part is to know how to generate data according to f(x) using a
simple rndm() function. To do this one needs to find the cumulative F(x) and
invert it. See next slide

How many of you know how to do that ?



The General Idea

You have a histogram, or a function, f(x). You want to create
pseudo-data that are distributed like it, to study other properties

From that f(x) you can always derive the cumulative function F(x):

Fx)= [_f(Odt

Then just throw a random number in [0,1]

Find the x where the cumulative function has that value
— and you are done!
P

7
L/




E.g. How To Get Data Distributed as
f(x)=exp(-x) ?

First obtain F(x), the cumulative function:
e F(x) = foxf(x’)dx’ = foxe"x dx=1—-e*=y
Next, invert it:
e x = —log(1 —1y)
Finally, account for the range of x you wish to generate,

e.g. [0, X,.,):
* x = —log[l — y(1 — e™¥max)] (you multiply y by the integral
of the pdfin the required range (<1)
to account for the restriction)

Voila —if y is uniformly distributed in [0,1], x as computed
above is distributed as f(x) = e ¥ in [0, x. ] !

— Try it at home: derive recipe to get f(x)=x?



void Example exp(int N=1000, int

// Change preset generator

¥xmax=10.) {

// HNB other wversions of TRandom are flawed

delete gRandom;
TRandom3 * myRNG = new TRandor
gRandom = myRNG;

int Nbins=350;
THI1D * Data0 = new TH1D ("Dat:
TH1D * Datal = new TH1D ("Dat:

for (int i=0; i<N; i++) {
double y = gRandom->Uniform
Data0O->Fill (vy):
double x = =log(l-y*(l-exp(-
Datal->Fill (x):

ICanvas * C = new TCanvas ("C°
C=>Divide(1,2):

C=->cd(1l):
Data0=->SetMinimum(0) ;
Data0->SetLineWidth(3) ;
DataO->Draw() :

C=->cd(2):
Datal->SetLineWidth(3);
Datal->Draw() :

Original distribution of y

B0
& From gRandom—>Uniform()
40
a:.
o....I....I....I....I....I....I....I....I....I.
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1200 fom
feo0
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v200 :
= Resulting transformed
1Edtl_— . . K
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=
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The Method of Maximum Likelihood

Take a pdf for a random variable x, f(x; ©) which is analytically known, but for which the
value of m parameters 0 is unknown. The method of maximum likelihood allows us to
estimate the parameters 0 if we have a set of data x; distributed according to f.

The probability of our observed set {x.} depends on the distribution of the pdf. Assuming
that the measurements are independent, we have,

P= H f(x;0)dX. tofind xin [x,x+dx
The likelihood function

L(0) = H f(x;0)

is then a function of the parameters O only. It is written as the joint pdf of the x,, but we
treat those as fixed

Using L(0) one can define “maximum likelihood estimators” for the parameters 0 as the
values which maximize the likelihood, i.e. the solutions 6=(4,.6,...9,) of the equation

oL(0)
00, | .

0=0

=0 forj=1,..m

Note: The ML requires (and exploits!)
the full knowledge of the distributions




Variance of the MLE

* |nthe simplest cases, i.e. when one has unbiased estimates and
Gaussian distributed data, one can estimate the variance of the
maximum likelihood estimate with the simple formula

. o2InLY)
00

6260

This is also the default used by MIGRAD to return the uncertainty of
a MLE from a fit.

However, note that this is only a lower limit of the variance in
conditions when errors are not Gaussian and when the ML
estimator is unbiased. A general formula called the Rao-Cramer-
Frechet inequality gives this lower bound as

V[0]> (1+a—bj /E{— o"In "}
o0

00’

(b is the bias, E is the expectation value)



Example: the Loaded Die

Imagine you want to test whether a die is loaded. Your hypothesis might be that
the probabilities of the six occurrences are not equal, but rather that

FI:J.] = ].llr'll{_i — El.ll."fﬁ

P(2)=P(3)=P(4) =P(5) =1/6 —1/8

Your data comes from N=20 repeated throws of the die, whereupon you get:
Ti =1 : 3 trials
.EIE' I:' E'

o

: 3 trials each
r; =0 .5 trals

The likelihood is the product of probabilities, so to estimate t you write L as
v

—log(L(t)) = — Z log(Plx;,t)) = —3log(1/6—1/2) —12log(1/6 —t/8) —
1=1
Slog(1/6 + t)
Setting the derivative wrt t to zero of —logl yields a quadratic equation:
36012 — 249t + 16 = 0

This has one solution in the allowed range for t, [-1/6,1/3]: t=0.072. Its uncertainty can be
obtained by the variance, computed as the inverse of the second derivative of the likelihood.
This amounts to +-0.084. The point estimate of the “load”, the MLE, is different from zero,
but compatible with it. We conclude that the data cannot establish the presence of a bias.



Exercise With Root

Write a root macro that determines, using the likelihood of the previous slide, the
value of the bias, t, and its uncertainty, given a random set of N (unbiased) die
throws.

Directions:
Your macro will be called “Die.C” and it will have a function called “void Die(int

N) {}”

Produce a set of N throws of the die by looping i=0...N-1 and storing the result of
(int)(1+gRandom->Uniform(0.,6.));

Call N;=number of occurrence of 1; N;=occurrences of 6; N,=other results.

With paper and pencil, derive the coefficients of the quadratic equation in t for
the likelihood maximum as a function of N;, N,, N.

Also derive the expression of —d?InL/dt? as a function of t and N;,N,,Ns.
Insert the obtained formulas in the code to compute t* and its uncertainty o(t*).

Print out the result of tin the allowed range [-1/6,1/3] and its uncertainty. If
there are two solutions in that interval, print the result away from the boundary.

How frequently do you get a result for t less than one standard deviation away
from 07



wvoid Die(int N=100) {
int res[100000];
int nl=0, n2=0, n3=0;
for (int i=0; i<N; i++) {
res[i]=1l+(int)gRandom->Uniform(0.,6.);
if (res[i]==1) {
nli++;
} else if (res[i]<6) {
nz2++;
} else {
n3++;

}
cout << endl << "™ Die throwing resulta:"™ << endl;
(:: cout: << " nl = " < ni;
cout << " n2 " << n2:
cout << " n3 =" £ n3 << endl << endl:
// Quadratic equation for max of L: coefficients
J double a = 18*(n1+n2+n3);
double b = =3% (7T*nl+n2+10*n3);
double ¢ = = (4*nl4+n2-8*n3);
double rms, tl, t2;
double discr=b*b-4%*a*c;
double tmin=-1./6., tmax=1./3., tstar=0;
if (discr<0) {

cout << " HNo solution for max likelihood™ << endl:
} else {

tl = (-b-sgrt(discr))/(2*a):

t2 = (-b+sqgrt(discr))/(2*a):

if (tl>=tmin && tl<=tmax) {

if (t2>=tmin && t2<=tmax) {
// NNBB when nl=0 there is always one s=solution at t=0.33333
if (tl-tmin>tmax-t2) {
cout << " DBias is estimated to be t = " < tl1;
tstar=tl;

[SH




} else {

cout << ™ Bias is estimated to be t = ™ << t2;
tstar=t2:
}
} else {
cout << " Bias is estimated to be t = " << tl1;
tstar=tl;

}
} else if (t2>=tmin && t2<=tmax) {
cout << ™ Bias is estimated to be t = " << t2;
tstar=t2;
}
// Determine error from inverse of second derivative of logL
double d2logl;
if (tstar>-1/6. && tstar<l/3.) {
d2logl=9*nl/pow(l-3*tstar,2)+ 9*n2/pow(4-3*tstar,2)+ 36*n3/pow(l+é*tstar,2):;
rms = sqgrt(l/d2logl):
}
cout €< " 4- " << ms << endl;
}
// Compute corresponding p-values
cout << endl;
cout << ™ This corresponds to the following probabilities:™ << endl;
cout << " pl(l) = " << 1./6.-tstar/2. << ™ +- " << ™s/2. << endl;
cout << " p(x) = " << 1./6.4tstar/B8. << " +- " << rms/B. << endl;
cout << " p(€) = " << 1./6.4tstar << " +- " << rms << endl << endl;



Another Exercise: Solve With LS Method

 We just used the ML method to estimate the load
on the die. But we could have also done it with
the chisquared method

—try it at home, we can look at the results
tomorrow

Hints:
- write down the chisquare
- derive WRT the load t
- set the derivative to zero, solve for t
- find t1, t2 such that chi2(t1)=chi2(t2)=chi2(t)+1



Loaded Die: Least-Square Solution

e We just have to write a chisquare as a function of the data N=(3,3,3,3,3,5)

and the load t:
6

, z (N; — e;(t))?
X =
o2,

i=1 i
where e;(t) are the expected times that result "i" appears in 20 throws, i.e. e;= 20
P(i) where, as before, P(1) = 1/6 — /2

P(2)=P(3)=Pi4)=P(5)=1/6 —1/8

P(6) =1/6+1

Note that we can use the information of N2, N3, N4, N5 distributions if
we wish — it just amounts to consider them as separate in the chi2.

Once we have the chi2(t), we may compute its derivative w.r.t. t, and set it to
zero, then solve for t = this will yield our point estimate t*

The interval will be obtained by finding t;, t, such that
chi?(t,) = chi?(t,) = chi?(t*)+1
Results: ....
Comparing with the likelihood solution, we see that ... ?
Of the two ways to compute the chisquare the preferable oneis ... ?



Calculation

Inputs: N, ny, n,, ng (x=sum of 2,3,4,5)

e(t) = N*p(i,t) = ey(t) = N*(1/6-t/2); e,(t) = 4*N*(1/6-1/8) = N*(2/3-t/2); eq(t) = N*(1/6+t) (2 et =N)
S1= [n1-e4(1)]/ ny = [ny?- 2% *N*(1/6-t/2) + N**(1/6-t/2)*] / ny =

ny- N/3 + N*t + N2/(36*n,) - N2*t/(6*n,) + N2*t?/(4*n,)

S= [ne-e(t)]2/n, = [n2- 2*n *N*(2/3-t/2) + N2*(2/3-t/2)2] / n, =

n, - 4*N/3 + N*t + 4*N2/(9%n,) — 2*N2*t/(3*n ) + N2*t2/(4*n)

Se = [N6-e5(t)]%/ ng = [Ne” - 2¥Ng*N*(1/6+t)+N**(1/6+t)*] / ng =

Neg - N/3 - 2*N*t + N2/(36*ng) + N2*t/(3*ng) + N2*t?/n,

dS,;/dt = N - N2/(6*n) + N>*t/(2*n,)
ds,/dt = N—2*N2/(3*n ) + N2*t/(2*n,)
dSe/dt = - 2*N + N2/(3*ng) + 2*¥*N2*t/n,

dS]_/dt + dSX/dt + dSG/dt =0 9
N - N2/(6%n,) + N2*t/(2%n,) + N — 2*N2/(3%n.) + N2*t/(2*n,) - 2*N + N2/(3%*n;) + 2*N2*t/n, = 0

t*N?*[1/(2%nq) + 1/(2*n,) + 2/ng] - [N**(1/(6%n4) +2/(3*n,) - 1/(3*ng))] = 0
t=[1/(6*n;) +2/(3*n,) - 1/(3*ng)1 / [1/(2*ny) + 1/(2*n,) + 2/ng)] =

= (n*ng + 4*n;*ng - 2*n,*n,) / (6*n*n,*ng) / (3*n,*ng + 3*n;*ng +12*n,*n,) / (6*ny*n,*ng) =
= (n*ng + 4*n;*ng - 2*n,*n, / (3*n,*ng + 3*n;*ng + 12*n,*n,)



Calculation, using all results (2,3,4,5)

Inputs: N, ny, n,, ng (x=2,3,4,5)

e(t) = N*p(i,t) 2 ey(t) = N*(1/6-t/2); e\(t) = N*(1/6-1/8); eg(t) = N*(1/6+t) (2 ewr =N)
S1= [n1-e4(1)]/ ny = [ny?- 2% *N*(1/6-t/2) + N**(1/6-t/2)*] / ny =

ny- N/3 + N*t + N2/(36*n,) - N2*t/(6*n,) + N2*t?/(4*n,)

S,= [nc-e(t)2/n, = [n2 - 2*n *N*(1/6-t/8) + N2*(1/6-t/8)?] / n, =

n, - N/3 + N*t/4 + N?/(36*n,) — N?*t/(24*n,) + N2*t?/(64*n,)

Se = [N6-e5(t)]%/ ng = [Ne” - 2¥Ng*N*(1/6+t)+N**(1/6+t)*] / ng =

Neg - N/3 - 2*N*t + N2/(36*ng) + N2*t/(3*ng) + N2*t?/n,

dS,;/dt = N - N2/(6*n) + N>*t/(2*n,)
dS,/dt = N/4 — N2/(24*n,) + N2*t/(32*n,)
dSe/dt = - 2*N + N2/(3*ng) + 2*¥*N2*t/n,

dS]_/dt + dSz/dt + dS3/dt + dS4/dt + dS5/dt + dSS/dt =0 9
N - N2/(6*n;) + N>*t/(2*n,) + N/4 — N?/(24%*n,) + N?*t/(32*n,) + N/4 — N2/(24*n;) + N2*t/(32*n3) + N/4 -
N2/(24*n,) + N?*t/(32*n,) + N/4 — N?/(24*nc) + N2*t/(32*nc) - 2*N + N?/(3*ng) + 2*¥*N?*t/ng =0

t*N2*[1/(2%ny) + 1/(32*n,) + 1/(32*n3) + 1/(32*n,) + 1/(32*ns) + 2/ng] - [N?*(1/(6*n,) + 1/(24%*n,) + 1/(24%*n;) +
1/(24%n,) + 1/(24%ns) - 1/(3*ng))] = 0

t=[1/(6*ny) +1/(24*n,) +1/(24*n3) + 1/(24*n,) + 1/(24*ns) - 1/(3*n¢)]1/ [1/(2*ny) + 1/(32*n,) + 1/(32%*n3) +
1/(32*n,) +1/(32*ns) + 2/ng)] =

=4/3*[4/n;+ 1/n,+1/n3+ 1/ny+ 1/ng -8/ng]l/ [16/n;+1/ny+ 1/n3+1/n,+ 1/ng+ 64/n]



Intermezzo: Area Preservation
or

Two Chisquared and a Likelihood



Know the Properties of Thy Estimators

e Issues (and errors hard to trace) may arise in the simplest of
calculations, if you do not know the properties of the tools you are
working with.

e Take the simple problem of combining three measurements of the
same quantity. Make these be counting rates, i.e. with Poisson

uncertainties:
If they aren’t,

don’t combine!

— A, =100
- Az = 90

These measurements are fully compatible with each other, given that
the estimates of their uncertainties are sqrt(A,)={10, 9.5, 10.5}
respectively. We may thus proceed to average them, obtaining

<A> =100.0+-5.77



Now imagine, for the sake of argument, that we were on a lazy mood, and
rather than do the math we used a y? fit to evaluate <A>.

Surely we would find the same answer as the simple average of the three
numbers, right?

... Wrong! :
g the y? fit does not “preserve

the area” of the fitted histogram

110

WTF is going on ??

1ol /

H

Let us dig a little bit into this matter. This
requires us to study the detailed definition
of the test statistics we employ in our fits.

Likelihood fit

2 fit s .
' In general, a y? statistic results from a

32 ndf = 2,007/ 2

Prob

G

0.366T

99.33 =575

TO— % I ndf

Prob

p0

20212

0.3642

100 =5.8
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2 2.5

3

weighted sum of squares; the weights

should be the inverse variances of the true

values.

Unfortunately, we do not know the latter!




Two Chisquareds and a Likelihood

The “standard” definition is called “Pearson’s y2”, which for Poisson data we write as

k 2
Zé _ Z (Ni —n) (here n is the best fit value,
) n N, are the measurements)

The other (AKA “modified” y?) is called “Neyman’s y2”:
Kk 2
2 (Ni B n)
AN = Z
= N,

While 2, uses the best-fit variances at the denominator, y?, uses the individual estimated
variances. Although both of these least-square estimators have asymptotically a 2
distribution, and display optimal properties, they use approximated weights.

The result is a pathology: neither definition preserves the area in a fit!

1%, overestimates the area, 2, underestimates it. In other words, neither works to
make a simple weighted average !

k
The maximization of the Poisson maximum likelihood, | = | I n
P

instead preserves the area, and obtains exactly the result of the simple average.
Proofs in the next slides.




Proofs — 1: Pearson’s y?

e Let us compute n from the minimum of y2.:

_ Zk: (Ni — n)z/ note: a variable weight!

8;@ < 2n(n—N,)— (N, —n)?
1 n

0= Z(n2 -N,*) =kn’ —Z N?
i=1 i=1

n is found to be the square root of the average of squares, and is
thus by force an overestimate of the areal



2 — Neyman'’s y?

If we minimize %2,

2 _ k (N; - n)2 again a variable weight
AN = Z N -
i1 i
2k B
we have: 0= Oxn — Z 2(N; —n)
on ‘3 N.
Just developing K K « [k K
the fraction leads to O:Z{(Ni -n) HNJ}:Z{HNJ_ -n HNJ}
i=1 J=1, j#i i=1] j=1 J=1, =i
Kk K K
which implies that ZH N, = nz H N,
i1 j-1 i =1, j=i
Kk
1 Z HNJ 1& 1
from which we finally get = = ':kl J:i’““ — EZN—
n =}
S,
1= J=

the minimum is found for n equal to the harmonic mean of the inputs — which is
an underestimate of the arithmetic mean!




3 — The Poisson Likelihood L;

e We minimize L, by first taking its logarithm, and find:

k nNie—n
L, =H N

In(L,) = Z —n+N,Inn-InN,!)
0— 5'”('—) Z( 1+%}:—k+%zklNi
S

K

As predicted, the result for n is the arithmetic mean. Likelihood fitting
preserves the area!



Putting it together

To check the behavior of the three fitting 8o
methods (remember: we are just -
considering them as ways to determine a 70
weighted average here), we study a -
histogram with 100 bins |

60

505
Each bin is filled with N sampled from a 4OEI
Poisson(N|p) 1

30

We then fit the histogram to a constant 20
by minimizing ¥%, x%\, -2In(Lp) in turn
10

We repeat many times, getting the
average result for each fitting method

DD
—
o
N
o

30 40 S50 60 70 80 90 100

_ By the way, it's four lines of code:
We can then also study the ratio TH1D * A = new TH1D("A" " 100, 0., 100.);
between the average result and the true L :
For (int i=1; i<101; i++) {

as a function of
H H A->SetBinContent(i,gRandom->Poisson(50.));}
A->Fit("pol0"); // for Neyman's chi2



Comparison vs U

Fit results with different y°

1.4 * One observes that the

convergence is slowest for

Neyman’s y?, but the bias is
ﬁ\'\\ significant also for y?,

—
=
&R

o - — This result depends only
marginally on the number of
bins

Fit result / p ratio

0.95

Poisson Likelihood e Keep that in mind when

0.9 you fit a histogram!
Pearson's y*

Neyman's y* e Standard ROOQT fitting uses
V=N, = Neyman’s
definition!

0.85




Discussion

What we are doing when we fit a constant through a s
unknown, true value p from which the entries

We have k Poisson measur
weight in the combij

ce. However, one seldom
rawbacks are solved by grouping

L, does not

o sums of squares, and it has in general better properties.
Cases when

lems are rare. Whenever possible, use a Likelihood!



Interval Estimation



Confidence Level

e In classical statistics, the confidence level (CL) is a reference value chosen
by the user
— Most typical: CL=0.683 ("1-sigma")
— Also quite used: CL=0.90, CL=0.95, CL=0.99

e The CLis used to define the level of confidence one wishes to have on the
possible values of a quantity under study

— One can alternatively set the type-| error rate a, as
CL=1-a.
What does one do with the CL? One seeks to derive intervals (uncertainty
bars, or upper or lower limits) that on average (in a frequentist sense) have

the property of including the unknown, but fixed, true value of the quantity
with a rate not smaller than CL.

The notion of a CL stems from reasoning on the probability of getting data of
some kind, under some hypothesis. To understand it, we need to discuss the
Neyman construction.



The Simplest Confidence Interval:
the Standard Deviation

The standard deviation is used in most simple applications as a
measure of the uncertainty of a point estimate

o 1 N
— Sample standard deviation: N )2

For example: N i.i.d. observations {x;} of random variable x with
hypothesized pdf f(x;0), with 6 unknown. X={x} allows to compute
the value that a suitable estimator 0°() takes on X, 07(X)

Using an analytic method, or the RCF bound, or MC sampling
techniques, one may usually cook up an estimate the standard
deviation of 6%, ¢y«

The value 07+- 67y« is then reported. What does this mean ?

— Have a crack at it ! Spell out what it means to report that.



0°+- ¢ 4« is Reported. What Does This
Mean ?

It means that in repeated estimates based on the same number N
of observations of x, 0 would distribute according to some pdf
G(07) centered around a true value 0 with a true standard deviation

Oy+, respectively estimated by 6™ and 7.

In the large sample limit G() is a (multi-dimensional) Gaussian
function

In most interesting cases for physics G() is not Gaussian, the large
sample limit does not hold, 1-sigma intervals do not cover 68.3% of
the time the true parameter, and we have better be careful in
constructing intervals.

But we need to have a hunch of the pdf f(x;0) to start with! (Or
maybe not: when we can't, we assume it is itself Gaussian, and use
the chisquare method.)



One Example, to Clarify

A strongly produced resonance of unknown mass in
LHC data would result in events with two energetic
jets. Let us assume we have a significantsignal in our
data, x

The PDF f(x;M) depends on M; we may derive an
estimate M*+-0*,+ using x and some estimator — the
easiest one being the sample mean

Our interval estimation procedure returns intervals
that hopefully fulfil the requirements on the
confidence level chosen

Still, there is no guarantee that the true value M is
within the quoted interval around M* !

Yet in a frequentist sense our interval covers it 68.3%
of the time

The factis that intervals constructed in a less than

rigorous manner often FAIL to fulfil that requirement

The question is how to construct
confidence intervals that "work" in general

)}
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Neyman’s Confidence Interval Recipe

Note: the recipe is designed to
cover correctly. Thus, one could
not, on average, win money by

Specify a model which provides the probability density
betting that the result of a

function of a particular observable x being found, for each

value of the unknown parameter of interest: p(x/u) )
Also choose a Type-l error rate a (e.g.31.7%, or 5%), or the measurement does not contain the
corresponding CL true value, by using payoff odds
- o b orirontal . . . corresponding to the stated type-I
or each u, draw a horizontal acceptance interval [x;,x,] suc
thot T P xa,x2] error rate (eg. 5% —> 20:1)
p (xElxyxo] [W)=1-a. 4 | e 7
There are infinitely many ways of doing this: it all depends on - L — ]
what you want from your data - < = -
— for upper limits, integrate the pdf from x to infinity 3 N g i
—  for lower limits do the opposite - % .
— might want to choose central intervals 2 E —
— or shortestintervals ? _ = N
In general: an ordering principle is needed to well-define. 1 == ]
Upon performing an experiment, you measure x=x*. You can o Liid r===auu .E. N S W N
0 1 2 3 4 5 6 7
X

then draw a vertical line through it.

The vertical confidence interval [, 11,] (with Confidence Level
C.L. =1 -a) is the union of all values of u for which the
corresponding acceptance interval is intercepted by the

vertical line.



Important Notions on C. |.’s

What is a vector ? A vectoris an element of a vector space (a set with certain properties).

Similarly, a confidence interval is defined to be “an element of a confidence set”, the latter
being a set of intervals defined to have the property of frequentist coverage under sampling!

Let the unknown true value of p be 1, . In repeated experiments, the confidence intervals
will have different endpoints [u,, W,], depending on the random variable x.
A fraction C.L. = 1 —a of intervals obtained by Neyman’s contruction will contain (“cover”) the

fixed but unknown u,: P(u.€[p,, Ww,]) =C.L.=1-a.

It is important thus to realize two facts:

1) the random variables in this equation are p,and p,, and not p,
2) Coverage is a property of the set, not of an individual interval ! For a Frequentist, the interval either

covers or does not cover the true value, regardless of a.

- Classic FALSE statement you should avoid making:
“The probability that the true value is within p, and p, is 68%" !

The confidence interval instead does consist of those values of u for which the observed x
is among the most probable (in sense specified by ordering principle)

Also note: “repeated sampling” does not require one to perform the same experiment all
of the times for the confidence interval to have the stated properties. Can even be different
experiments and conditions! A big issue is what is the relevant space of experiments to consider.



Upper Limits: How We Use Them

If we do not see a signal we can
exclude the new physics model

= (simple hypothesis test)

More often we have a unknown
parameter, and we exclude
ranges of its value

— Typically this is the mass of the
particle

We can e.g. derive lower limits
on the particle mass from

on the signal strength, by
comparing those to a theoretical
model

top quark

productionrate

>

High signal rates
excluded by search

Upper limit
Theoretical prediction

b

Top quark mass

Excluded Not excluded

I(_-_-_-_-——

Luckily, the lower mass limit is useful information, worth a publication !



The Problem Is Relevant in
Fundamental Physics and Astrophysics !

To give you the flavour of the relevance
of the problem of setting correct upper
limits, suffices to tell the story of the
Higgs search

For a long time (late 1990s) all we could

say was where the particle could *not*
be

The competition (also for funding)
centred on that information rather than
the observation of the particle

At the end of the seminar | will discuss
the details of the method used.

95% CL limit on o/c),

—
o

% — Observed Tevatron Run Il, L, , <10 '] i
E --= Expected w/o Higgs SM Higgs combination
5 I Expected + 1 s.d.
i [ Expected + 2 s.d.
o == Expected if m =125 GeV/c?
32
re}
o
1
P | PR L | - PR 1 PR T | PR S S R P
100 120 140 160 180 200
my (GeV/cZ)
| CMS Preliminary, \'s = 7 TeV | —— Observed |
Combined, Lim =4.6-4.7 fb_1 ....... Expected+ 1o
O —————— S —————————— (T Expected+ 2¢ =
1 : ol ,‘.: /
! a8 A
o T it
L T
: Ay
10'1 1 1 1 1 L1 1 11 11 Il
100 200 300 400 500 600

Higgs boson mass (GeV/c?)



Coverage, or the Lack Thereof

Take a typical HEP graph: event counts in
a mass histogram, with sqrt(N) bars

[Remember: for a Poisson, pu=0?]

What are those uncertainty bars
supposed to mean? They report central
intervals and nothing is said, so these
should "cover" at 68.3%. Do they ?

Alas, usually they don't, as the Gaussian
approximation for the Poisson
distribution breaks down for small N

Suppose John claims x is in [a,b] with
68.3% confidence, but in fact the CL of
the procedure is only 50%.

- John is a liar ! He gave a
misrepresentation of the information
content of the measurement !

Events/2.5 GeV

By the way: what is it that
—1 uncertainty bars on event

35 ATLAS counts mean ?
B * B ZZ
30 - H—= 27" - 4l —E
- 13 TeV, 14.8 fb™ tt+V, VVV
w7z Uncertainty
25
20

I|IIJI|IIL\|IIII|IIIIIIIII|1
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0
80 90 100110120 130 140 150 160 170
m,, [GeV]

Of course, a solution exists: it was
obtained in the fifites by Garwood, who
used Neyman's construction for the
Poisson distribution



On Undercoverage

It is BAD. A frequentist shouldn’t allow it.

E.g: if you state a limit or an interval at 95% CL and it turns out that,
for the true value p, the coverage is actually 85%, you have
significantly underestimated the uncertainty bars of your
measurement— and your type-I error rate is 3-fold larger 11!

Undercoverage results from approximate expressions for the variance,
or from other specific aspects of the problem

— See example of likelihood of loaded die later

Undercoverage can also results from apparently innocuous procedures
in the derivation of our results, like

— deciding whether to quote a limit or a confidence interval a posteriori

— modifying details of analysis “because something does not look right” in
your background estimate

— Not publishing results that are controversial !



Overcoverage

 (Coverage is usually guaranteed by the
frequentist Neyman construction. But this
includes overcoverage.

 Overcoverage: sometimes the pdf p(x|9) is
discrete = it may not be possible to find exact
boundary values x,, x, for each 6; one thus errs
conservatively by including x values (according
to one’s ordering rule) until Z.p(x;|0)>1-a.

- 0, and 6, will overcover
Let's make an example with the Binomial

F(N;r,p) = N! p"(1-p)N/[r!(N-r)!]

P For N=5 trials

0.8 =)

0.5| <¢rEssE——)

0.2 (e

v

Binomial Distribution PDF

. n=5p=0.5
n=20 p=0.5
n=50 p=0.5

Probability
=]

o o
O ——

0.1
o 191 e
71
10 2

|

]|I.
0

0 3
Random Variable

For N=5, p=0.5: For N=5, p=0.8:

F(5;0,0.5)=0.55=0.031 F(5;0,0.8)=0.25=0.0003
F(5;1,0.5)=5*0.55=0.156 | F(5;1,0.8)=5*0.24*0.8=0.0064
F(5;2,0.5)=10%0.55=0.313 F(5;2,0.8)=10*0.23*0.82=0.0512
F(5;3,0.5)=10%0.5°=0.313 | 0-938 F(5;3,0.8)=10*0.2"2*0.83=0.2048
F(5;4,0.5)=5*0.55=0.156 F(5;4,0.8)=5*0.2*0.84=0.4096
F(5;5,0.5)=0.5°=0.031 F(5;5,0.8)=0.85=0.3277 } 0.737



The Binomial error bars for a small number of trials is indeed a complex problem!

The (true) variance is o=sqrt(p(1-p)/N) , but its ESTIMATE c*=sqrt(p*(1-p*)/N) (with
p*=Successes/N) (so-called Wald interval) fails badly for small N and p*—0,1

Clopper-Pearson: intervals obtained from Neyman’s construction with a central
interval ordering rule. They overcover sizeably for some values of the
trials/successes.

Lots of technology has been deployed to improve properties of binomial intervals

-

0.9
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N= 10; 68.27% coverage
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In HEP (and astro-HEP) the interest is related to the
famous on-off problem (determine a expected
background from a sideband)



Wilson
Score
Interval
for
Binomial

Cousins and Tucker, 0905.3831

Already in 1927, Edwin Wilson [9] realized that since the rms depends on
the unknown parameter p, the more appropriate way to invoke the Gaussian
approximation was by consistently inverting the test using the rms of the null
hypothesis for each value of p. For the lower endpoint, one uses the lowest value

p1 such that p, + Z, o \/ p1(1 = py) /Ny contains p. Analogously for the upper

endpoint, one uses the largest value ps such that py — /2 \/ p2(1 = p2) /Mot
o ;2)2/ Niot, this leads to a quadratic equation in p
= Tp(1 — p), with solutions

contains p. Letting T' =
for the endpoints, (p — p

VAl = p)T +T2/4
1+T '

5+ T/2
_p+T/2

1+ T (20

These endpoints form the Wilson score interval; in spite of the fact that it
is a non-iterative solution using nothing more than a square root, sadly it is
commonly overlooked in favor of the Wald interval when a quick Gaussian
estimate is desired.

1 CovWald
Entries 100
0.9 Mean .5003
RMS .2608

Zopp =071 — a/2) = =07 (r/2)
where
. 2
—_— —_ 2 4 =
®(2)= = i exp(—t2/2) dt
so that
=V2erf™'(1 - a).

E.g., Zaj =1 for /2 =0.159, and Z,/» = 1.64 for a/2 = 0.05. 0 01

1 +erf(Z/V/?2)
5 ;

N=10; red=Wilson;
Black=Wald

02 03 04 05 06 07 08 09 1


http://arxiv.org/PS_cache/arxiv/pdf/0905/0905.3831v2.pdf

Confidence Intervals and Flip-Flopping

e Here we want to understand a couple of issues that the Neyman
construction can run into, for the very common case of the measurement
of a bounded parameter and the derivation of upper limits on its value

e Typical observables falling in this category: cross section for a new
phenomenon; or neutrino mass

* We take the simplifying assumption that we do
a unbiased Gaussian-resolution measurement;
we also renormalize measured values such that
the variance is 1.0. In that case if pis the true
value, our experiment will return a value x which

is distributed as 1 . s
P(z|p) = Nor: exp(—(z —p)°/2)

true value u

Nota bene: x may assume negative values! > AN observed value x



Neyman Construction
for Bounded Parameter

10_IIIIIII\!IIII!II\I!IIIII\IIIIII\I\III\II\II

Mean

e Gaussian measurement with known sigma
(0=1 assumed in graph) of bounded
parameter u1>=0

e (lassical method for a=0.05 produces upper
limit p<x+1.640 (or p<x+1.280 for a=0.1)

e for x<-1.64 this results in the empty set!
* in violation of one of Neyman’s own demands WW—————————
(confidence set does not contains empty sets) 2 asured Meanx

— Also note: x<<0 casts doubt on o=1 hypothesis
- rather than telling about value of pu the result
could be viewed as a GoF test

3= = N [ 28] = (2, [=2] ~ =] ©o
A

COTTTT[TTTIT[TIT T[T T T T[T T T[T T T T[T TT I T ITT[TTTT[TTT

Flip-flopping: “since we observe no significant signal, we proceed to derive upper limits...”
As a result, the upper limits undercover ! (Unified approach by Feldman and Cousins solves
the issue)



The attitude that one might take, upon measuring, say,

a particle cross section which is negative (say if your
backgrounds fluctuated up such that N,,.<B,,,), is to
quote zero, and report an upper limit which, in units of
sigma, is
xUP=sqrt(2)*Erfinverse(1-2a)
where a is the desired confidenc
the integral of the Gaussian from
1-a (one-tailed test).

level. XYP is such that
inus infinity to x"Pis

If, however, one finds x>D, where D is one’s

zero value of the parameter — a discovery of the
Higgs, or a measurement of a non-zero neutrin
mass. What the physicist will then report is rathe
an interval: to be consistent with the chosen test
size a, he will then quote central intervals which

Dd(x) = % +%erf (XTZ]

up

X
20(x)—-1=erf (ﬁ]

X
Z— =erfinv(2d(x) 1)

J2
X = /2erfinv[2(1- &) —1]
= /2erfinv(l-2a)

TH

- a=0.10,
- Z>5 discovery
- threshold

O

h¥

N

<

/
s
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/
s
/
/
2
7
/
/

cover at the same level: x,...+-E(ct/2), with

E(a) = sqrt(2)*Erfinverse(1-2*a).
The confidence belt may then take the form
shown on the graph on the right.
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Flip-Flopping Illustrated

The issue of Flip-Flopping and
¢ E.g. a=0.05, Disc. Threshold =4.5 the empty set problem can be
cured in the frequentist setting
by the recipe advocated by
G.Feldman and R.Cousins in 1998,
Coverage for «=0.05 with Flip-Flopping at 4.5-sigma based on a likelihood-ratio Ordering
of the acceptance intervals.
The FC technique is widely used in HEP

1_/\ A
. Under Flip-flopping Confidence belt |
0.98— coverage! B
B 14_—
B 12~
0.96— C
0.94 8
i 6
0.92 a4
- 2 5
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True value of p {in ¢ units)



Bounded u Problem: Proposed Solutions

[=) T T T T !

Upper Limit

The graph illustrates
various choices for

confidence belts one
can construct for the R i S
bounded parameter '
problem o

The most principled b __
among classical
constructions is the

—4 l 1 L 1 1

one provided by - I, 2

Feldman and | o

Cousins in 1998 (1) Neymgn’s recipe for 90% upper |Im.ItS: My =x+1.28.
) ] (4) Bayesian solution: step-function prior

Bayesians have their (6) Mc Farlane's "loss of confidence"

owh solution too



One Further Example of Coverage

e We canre-use the program "Die.C" You may modify it
to compute the coverage of the likelihood intervals. 2

Die5.C

To do that, one must add a TH1D* called
“Coverage” and a cycle on the true
parameter values, taking

care of simulating the die throws correctly
taking into account the bias t. Then one
counts how often the likelihood has the true
value within its interval, as a function of the
true value.

By running it you will find that the coverage is only
approximate for small number of throws,
especially when your true value of the

parameter t (the “increase in probability”

of throws giving a 6) lies close to the

boundaries -1/6, 1/3.
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Food for Thought: Relevant Subsets

Neyman’s method applied to Gaussian measurement with known o of a parameter
with unknown positive mean p yields upper limits at 95% CL in the form
My =Xx+1.640 . The procedure guarantees coverage, and yet...

* Yet one can devise a betting strategy against it at 19:1 odds, using no more
information than the observed x, and be guaranteed to win in the long run!

— How ? Just choose a real constant k: bet that the interval does not cover
when x<k, pass otherwise.

— For k<-1.64 this wins EVERY bet! For larger k, advantage is smaller but is still
>0.

Surely then, the procedure is not making the best inference on
the data ?



Conditioning and Ancillary Statistics

In the bounded parameter problem, the flaw of being subject to winning bet strategies can be
amended by adding a horizontal line or interval (such that any c.i. will contain that value of p),
but it feels like a hack

In other cases one can identify ancillary statistics and use them to partition the space into
relevant subsets.

e “Ancillary statistic”: f(data) yielding information about the precision of the estimate of the
parameter of interest, but no information about the parameter’s value.

 Most typical case in HEP: branching fraction measurement. With N,, N; event counts in two
channels one finds that

P(N,,N;) = Poisson (N,) x Poisson (Ng) =
= Poisson (N,+N;) x Binomial (N,|N,+Ng)

By using the second expression, one may condition to having observed N,+N; in total, and
then ignore the ancillary statistic N,+Ng, since all the information on the BR is in the

conditional binomial factor

- by restricting the sample space, the problem is simplified.



Cox Weighting Procedure

Things get even more intriguing in the famous example by B. Cox|2]:

Flip a coin to decide whether to use a 10% scale (if you get tails) or a 1% scale (if you get
heads) to measure an object's weight. Which error do you quote for your measurement,
upon getting heads ?

Of course the knowledge of your device allows you to estimate that your precision is 1% -
but a full NP construction (which is unconditional on the outcomes) would require you to
include the coin flipping in the procedure!



Locating the Box

e Another example: 1
Find n using x4, X, sampled from

> X
u-1/2 u u+1/2

Suppose e.g. that u=1, and take the two datasets,

A: {0.99,1.01}; B: {0.6,1.4}. What would you prefer to
measure?

— NP procedures maximizing power in the unconditional space
yield the same confidence interval for both data sets A and B;
however, B restricts the set of possible pto [0.9,1.1] while A
only restricts it to [0.51,1.49] !

— There exists in fact an ancillary statistics | x,-x,| which carries
no information on y, yet it can be used to divide the sample
space in subsets where inference can be more or less powerful.

— See R. Cousins for more discussion



Relevant Subsets: Take-Away Bit

Point made: The quality of your inference depends
on the breadth of the “whole space” you are
considering. The more you can restrict it, the better
(i.e. the more relevant) your inference becomes

e Ancillary statistics are not easy to find, but they
are quite useful!

- Look for ancillary statistics in your everyday
measurements!



Properties of Estimators Relevant for
Interval Estimation

A uniformly minimum variance unbiased estimator (UMVU) for a parameter is the one
which has the minimum variance possible, for any value of the unknown parameter it
estimates.

The form of the UMVU estimator depends on the distribution of the parameter!
Minimum variance bound: it is given by the RCF inequality

V[6]> (1+ a_bﬂlz{——az l0g LD
06 06

- A unbiased estimator (b=0) may have a variance as small as the inverse of the second derivative
of the likelihood function, but not smaller.

Two related properties of estimators are efficiency and robustness.

— Efficiency: the ratio of the variance to the minimum variance bound
Robustness: more robust estimators are less dependent on deviations from the assumed underlying pdf

Simple examples:

— Sample mean: most used estimator for centre of a distribution - it is the UMVU estimator of the mean,
if the distribution is Normal; however, for non-Gaussian distributions it may not be the best choice.

— Sample mid-range (defined later): UMVU estimator of the mean of a uniform distribution

Both sample mean and sample mid-range are efficient (asymptotically efficiency=1) for the
qguoted distribution (Gaussian and box, respectively). But for others, they are not. Robust
estimators have efficiency less dependent on distribution



A Robust Estimator: Trimmed Mean

e Often we have a sample of measurements, most of which
are drawn from a narrow PDF, but we know that there is
some "background" that follows a wider distribution

— Simple example: a Z—>ee peak from collider data

CDF 1l preliminary I L dt =~ 2.4 fb™
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Trimmed Mean Example:
/> ee Mass Distribution

Here we have 100 Z—>ee candidates,
and want a quick-and-dirty check of
the energy scale in the EM
calorimeter

There is obviously some background,
distributed at random values

To get the peak position we could fit
the distribution, but a quicker way is
to take the trimmed mean.

Average error of estimate indicates
we should not average all data

In this case, for r<0.8 we are
insensitive to the background noise!

One obviously needs to find the proper
working point for one's own problem
- Use toy MC technique!
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Choosing Estimators: Another Example

You are all familiar with the OPERA measurement of neutrino velocities

You may also have seen the graph below, which shows the distribution of ot (in nanoseconds)

for individual neutrinos sent from narrow bunches at the end of October 2011

Because times are subject to random offset (jitter from GPS clock), you might expect this to be

a Box distribution

OPERA quoted its best estimate of the ot as the
sample mean of the measurements. Would you
have a better idea ?

— This is NOT the best choice of estimator for the
location of the center of a square distribution!

— OPERA quotes the following result:
<0t>=62.1+ 3.7 ns

— The UMVU estimator for the Box is the mid-range,
8t=(tma\x'|'tmin)/2
— You may understand why sample mid-range is better
than sample mean: once you pick the extrema, the
rest of the data carries no information on the
center!!!'It only adds noise to the estimate of the
average!

— The larger N is, the larger the disadvantage of the
sample mean.
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Expected Uncertainty
on Mid-Range and Average

100,000 n=20-entries histograms, with data
distributed uniformly in [-25:25] ns

a Gaussian;
approximation.

— Average is asymptotically distribute
for 20 events this is already a
Expected width is 3.24 ns

— Error on average consistent with Opera result
— Mid-point has expected error of 1.66 ns

— if dt=(t,,,axttmin)/2, Mid-point distribution P(n &t) is
asymptotically a Laplace distribution; again 20 events
are seen to already be close to asymptotic behaviour
(but note departures at large values)

— If OPERA had used the mid-point, they would have
halved their statistical uncertainty:

— <Ot>=62.1+-3.7 ns 2 <d6t>=65.2+-1.7 ns

NB If you were asking yourselves what is a Laplace
distribution:

f(x) = 1/2b exp(-|x-p.| /b)
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However... The Devil Is in the Details

Although the conclusions above are correct if the underlying pdf of the data is exactly a
box distribution, things change rapidly if we look at the real problem in more detail

Additional random smearings affect timing measurements:
* the protonbunchhasapeaked shape with 3ns FWHM
* other effects contribute to smearrandomly each timing measurement

— of course there may also be biases —fixed offsets due to imprecise corrections made to the delta t
determination; these systematic uncertainties do not affect our conclusions, because they do not
change the shape of the p.d.f

But the random smearings do affect our conclusions regarding the least variance
estimator, since they change the p.d.f. !

One may assume that the smearings are
Gaussian. The real p.d.f. from which the 20
timing measurements are drawn is then a
convolution of a Gaussian with a Box
distribution.

Inserting that modification in the generation
of toys one can study the effect. With 20-
event samples, a Gaussian smearing with éns
sigma is already enough to make the
expected variance equal for the two
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Choice of Estimators: Take-Away Bit

Point made: the intrinsic properties of estimators are
not enough to choose them: the problem at hand
[defined by the pdf, e.g. p(x| 1), and the amount of
data] must be considered carefully when deciding how
to perform a point and interval estimate

— for point estimates, bias is usually a concern
— But variance is equally important

— In fact what one should minimize is the Minimal Squared
Error MSE = b%+0?, which is the expectation value of the
squared difference between true and estimated value.

To determine the UMVU (or a good substitute) is
sometimes easy, sometimes hard. A toy MC analysis can
often be quite useful to understand what is optimal, as
analytical calculations are not always feasible



Intermezzo: On The Weighted Average



Weighted Average: the Basics

Suppose we need to combine two different, independent measurements
with variances 64,0, of the same physical quantity x,:

— we denote them with
X1(X0,01), X,(Xo,0,) € the PDFs are G(x,,0;)

Let us combine them linearly to get the result with the smallest possible
variance,

X = CXy+dx, . Let us try this simple
= What are ¢, d such that o; is smallest ? exercise

Answer: we first of all note that d=1-c if we want <x>=x, (reason with expectation
values to convince yourself of this). Then, we express the variance of x in terms of the
variance of x, and x,

X=X +(1-C)X,

o, =C’oc#+(1-c)’c; ,and find c which minimizes the expression. This yields:

2 2
_Xlop+%/0,

2 2
1oy +1l 0, The generalization of these
1 formulas to N measurements is

oo = .
” 1/012 +1/022 trivial




Linearization and Correlation

In the method of LS the linear approximation in the covariance (Taylor series

expansion to first order) may lead to strange results

Let us consider the LS minimization of a combination of two measurements of
the same physical quantity k, for which the covariance terms be all known.

In the first case let there be a common offset error .. We may combine the
two measurements Xx,, X, with LS by computing the inverse of the covariance

matrix:
2 2 2 2 2 2
V - o, +0, o IRV 1 o, +0; -0,
B 2 2 2 2.2 2 2\ __2 2 2 2
o o, +0, o,0,+ (o] +oy)o;\ —o. o, +0;
2, 2 2 2/ 2 2 2
Zz . (X —Kk) (o3 +o7)+ (X, —=K) (of +07)—2(X, —K)(X, —K)0o;
o 2 2 2 2 2
0,0, +(o; +0;)0;
2 2
The minimization of the above expression leads to the following k= X192 + X0,
expressions for the best estimate of k and its standard deviation: 0'12 + (722
2 2
: 2010 0,0,
The best fit value does not depend on o, and corresponds o (k) > >
o, +0,

to the weighted average of the results when the individual
variances ¢,% and o,? are used.
This result is what we expected, and all is good here.

|



Normalization Error: Hic Sunt Leones

In the second case we take two measurements of k having a common scale error.

2 2 2 2 2 2 2 2
o X X. o2 2 L y252 = 2 2 2 __2 25052 | — X X.52 2 | y252
1X,0 ¢ O, T X,0¢ 0,0, +(X 0, +X;07 )0} 1X,0¢  Op T X0y

, (4 —K)2 (02 +X20?)+ (%, —K)A (07 + X20?) = 2(% — K)(X, —K)X, X0

2 2 2 2 2 2 2
0,0, +(X[0; + X071 )07
Try this at home to see

This time the minimization produces these results .
how it works!

for the best estimate and its variance:

c x2o? + xio? Before we discuss these formulas, let us test
~— 2 2 22 them on a simple case:
o; +o, + (X, —X,) o}
- S x;=10+-0.5,
o2 (R) = o0, +(X o, +X,0,)0; X,=11+-0.5,
- 2 2 2 2 c:=20%
o; +0; + (X, —X,) o} f °
This yields the following disturbing result:
k =8.90+-2.92 !

What is going on ???



Shedding Some Light
on the Disturbing Result

K =
e The fact that we get a result outside the or +0, +(X —X,) 07}
range of inputs requires investigation. W22 4 X252
e Rewrite the result by dividing it by the X = 1022 +022 :
weighted average result obtained ignoring S
the scale correlation: k 1
:>§: (Xl_X2)2 2
1+~ > O
O, +O'2

If the two measurements differ, their

squared difference divided by the sum of the individual

variances plays a role in the denominator. In that case the LS fit “squeezes the scale”

by an amount allowed by o, in order to minimize the 2.

This is because the LS expression uses only first derivatives of the covariance:

the individual variances ,, 6, do not get rescaled when the normalization factor is lowered,
but the points get closer.

This may be seen as a shortcoming of the linear approximation of the covariance, but it
might also be viewed as a careless definition of the covariance matrix itself instead
(see next slide) !



In fact, let us try again. We had defined earlier the covariance matrix as
2 2 2 2
V o, + X O} X, X,0';
o 2 2 2 2
X, X,0°% o, +X,07%

The expression above contains the estimates of the true value, not the true value
itself. We have learned to beware of this earlier... What happens if we instead try

using the following ?
[012 +k’c? k’c? j

2 __2 2 2__2
kKo o, +k°o;

The minimization of the resulting y?,
(4K (03 +k0?) + (x, ~K)}(0F +k7a?) - 2(x, ~K)(x, ~k)k’o?

2 2 2 2 2 2
oo, + (o +0;)ko;

2

produces as result the weighted average Xlo'f N X2012

K =

ol +05
The same would be obtained by maximizing the likelihood

(Xl_k)2 X (Xz _k)2

L =exp _2(0'2+X202) _2(0'2+X2c72)

or even minimizing the x2 defined as 1A 2 T O
1)\2 )2 _1\2

= kz) L (1%, kz) L 21)
(fo) (fo,) o

Note that the latter corresponds to “averaging first, dealing with the scale later”.




When Do Results Qutside Bounds
Make Sense ?

Let us now go back to the general case of taking the average of two correlated
measurements, when the correlation terms are expressed in the general form :

V = (Vll V12] ZK 0'12 Po'lo'zJ
Voo Yy L0110, 022
The LS estimators provide the following result for the weighted average [Cowan 1998]:
2 2
0, — PO.0, 0, — P0O.0,
2 2 Xl + 2 2
o, +o0, -2po,o, o, +o0, —2p0,0,

X=wx, +(Ll—-w)x, =

whose (inverse) variance is

1 1[1+1_2pj:1+1£px\1

2~ 2| 2 2 2 2
c° 1-p°\o, o, o0, 1-p°\ 0o, o,
From the above we see that once we take a measurement of x of variance 6,2, a

measurement of the same quantity will reduce the vanance of the average unless p=6,/G,.

But what happens if p>6,/c, ? In that case the weight w gets negative, and the average goes
outside the “psychological” bound [x,X,].

The reason for this behaviour is that with a large positive correlation the two results are
likely to lie on the same side of the true value! On which side they are predicted to be by the
LS minimization depends on which result has the smallest variance.




Exercise

e Suppose you have a measurement x_1 of a physical
guantity x, with a variance sigma_172=1.0. You are
offered to improve the knowledge of x by performing a
second measurement x_2 with variance sigma_2=4.0
and taking the weighted average of the two. You can
choose to do this with two different methods. The first
method offers a result with a 50% correlation with x_1;
the second offers a correlation of 75%.

e Which one should you choose and why ?



How Can That Be ?

It seems a paradox, but it is not. Again, the reason why we cannot digest the
fact that the best estimate of the true value u be outside of the range of the
two measurements is our incapability of understanding intuitively the
mechanism of large correlation between our measurements.

John: “l took a measurement, got x;. | now am going to take a second
measurement x, which has a larger variance than the first. Do you mean to
say | will more likely get x,>x, if u<x;, and x,<x; if u>x, ??”

Jane: “That is correct. Your second measurement ‘goes along” with the first,

because your experimental conditions made the two highly correlated and x;
is more precise.”

John: “But that means my second measurement is utterly useless!”
Jane: “Wrong. It will in general reduce the combined variance. Except for the

very special case of p=c,/0,, the weighted average will converge to the true
L. LS estimators are consistent !!”.



Jane vs John, Round 1

John: “I still can’t figure out how on

earth the average of two numbers can be
ouside of their range. It just fights with my
common sense.”

Jane: “You need to think in probabilistic
terms. Look at this error ellipse: it is thin and
tilted (high correlation, large difference in
variances).”

John: “Okay, so ?”

Jane: “Please, would you pick a few points at
random within the ellipse?”

John: “Done. Now what ?”

Jane: “Now please tell me whether they are mostly on the same side (orange rectangles)
or on different sides (pink rectangles) of the true value.”

John: “Ah! Sure, all but one are on orange areas”.

Jane: “That’s because their correlation makes them likely to “go along” with one another.”



Round 2: a Geometric Construction

Jane: “And | can actually make it even easier for you. Take a two-dimensional plane, draw
axes, draw the bisector: the latter represents the possible values of p. Now draw the error
ellipse around a point of the diagonal. Any point, we’ll move it later.”

John: “Done. Now what ?”

Jane: “Now enter your measurements x=a, y=b. That corresponds to picking a point P(a,b) in
the plane. Suppose you got a>b: you are on the lower right triangle of the plane. To find the
best estimate of u, move the ellipse by keeping its center along the diagonal, and try to scale
it also, such that you intercept the measurement point P.”

John: “But there’s an infinity of ellipses that fulfil that requirement”.

Jane: “That’s correct. But we are only interested in the smallest ellipse! Its center will give
us the best estimate of |, given (a,b), the ratio of their variances, and their correlation.”

John: “Oooh! Now I see it! It is bound to be outside of the interval!”

Jane: “Well, that is not true: it is outside of the interval only because the ellipse you have
drawn is thin and its angle with the diagonal is significant. In general, the result depends on
how correlated the measurements are (how thin is the ellipse) as well as on how different
the variances are (how big is the angle of its major axis with the diagonal). Note also that in
order for the “result outside bounds” to occur, the correlation must be positive!
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Trivia — Try It at Home

Here is a simple

arrangement with d,
which you can test
whether or not 2 T T T T
significant

correlation

between two
measurements d
causes the effect ,A_l
we have been |
discussing. ERRRRRRRRRRRRRREE

Here we measure y with a ruler shorter than y, by taking d1 and d2 and using the yellow stick

as an offset. The arrangement is such that we set the yellow stick from the edge of the red bar, and the red bar may have an
angle error WRT the orthogonal to y. The non-zero angle causes a correlation between the two measurements d1 and d2. It
turns out that yl=d1+a and y2=d2+a (a being the length of the yellow stick) will be on the same side of the true value of y, if
the angle error is larger than the other uncertainties in the measurements.



When Chi-By-Eye Fails !

Which of the PDF (parton

distribution functions!) models
shown in the graph is a best fit to
the data:

CTEQ4M (horizontal line at 0.0) or
MRST (dotted curve) ?

You cannot tell by eye!ll

The presence of large correlations
makes the normalization much less important
than the shape.

p-value(y? CTEQ4M)=1.1E-4,

p-value(y? MRST) = 3.2E-3 :
The MRST fit has a 30 times higher p-value
than the CTEQ4M fit !

Take-home lessons:
- Be careful with LS fits in the presence of
large common systematics!
- Do not trust your eye when data points
carry significant bin-to-bin correlations!
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Source: 1998 CDF measurement of the differential
dijet mass cross section using 85/pb of Run | data,
F. Abe et al., The CDF Collaboration,
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Drawing Home a Few Lessons

e If I managed to thoroughly confuse you, | have reached my goal!
There are a number of lessons to take home from this:

— Even the simplest problems can be easily mishandled if we do not pay
a lot of attention...

— Correlations may produce surprising results. The average of highly-
correlated measurements is an especially dangerous case, because a
small error in the covariance leads to large errors in the point estimate.

— Knowing the PDF your data are drawn from is CRUCIAL (but you then
have to use that information correctly!)

— Statistics is hard! Pay attention to it if you want to get correct results |



Hypothesis Testing and GOF

* A few basic definitions

o Statistical significance: what is it ?
 The Jeffrey-Lindley Paradox

e Some examples



Hypothesis Testing: Generalities

We are often concerned with proving or disproving a theory, or comparing and
choosing between different hypotheses.

In general this is a different problem than that of estimating a parameter, but the two
are tightly connected.

If nothing is known a priori about a parameter, naturally one uses the data to estimate it;
if however theory predictions exist, the problem is better formulated as a test of hypothesis.

Within the idea of hypothesis testing one
must also consider goodness-of-fit tests:

in that case there is only one hypothesis

to test (e.g. a particular value of a parameter
as opposed to any other value), so some of the
possible techniques are not applicable

A hypothesis is simple if it is completely
specified; otherwise (e.g. if depending on
the unknown value of a parameter) it is called composite.




Nuts and Bolts of Hypothesis Testing

Hy: null hypothesis
H,: alternate hypothesis

Three main parameters in the game:

— o type-l error rate; probability that H is true although you accept the
alternative hypothesis

— [: type-ll error rate; probability that you fail to claim a discovery (accept H,)
when in fact H, is true

— 0, parameter of interest (describes a continuous hypothesis, for which H, is a
particular value). E.g. 6=0 might be a zero cross section for a new particle

Common for H, to be nested in H;

Can compare different methods by plotting the test statistic
for HOand H1 and look at a. vs 3
- Usually there is a tradeoff between o and [; often a subjective

decision, involving cost of the two different errors.
- Tests may be more powerful in specific regions of an interval

TeprT =233

In classical hypothesis testing, test of 0=0 equates to asking o
whether 0 is in the confidence interval Above, a smaller o is paid

) ] with a larger type-Il error
(HT €—2Interval estimation) rate (yellow area)

- smaller power 1-



Alpha vs Beta and
Power Graphs

* Very general framework of classification

e Choice of o and B3 is conflicting: where to stay in the
curve provided by your analysis method highly
depends on habits in your field

e What makes a difference is the test statistic: note how
the N-P likelihood-ratio test outperforms others in the
figure — reason is N-P lemma (see below)

As data size increases, power curve becomes closer to step function
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Fig. 10.3. Power functions of tests A, B, and C at significance level a. Of these three tests
B is the best for # = #'. For smaller values of 8, C is better.

The power of a test usually also
depends on the parameter of
interest: different methods may
have better performance in
different parameter space points

UMP (uniformly most powerful):
has the highest power for any 6



Statistical Significance: What It Is

Statistical significance reports the probability that an experiment obtains data at
least as discrepant as those actually observed, under a given "null hypothesis“ H,

— In physics H, usually describes the currently accepted and established theory

 Given data X and a test statistic T (a function of X), one may obtain a p-value as
the probability of obtaining a value of T at least as extreme as the one observed,
if Hy is true.

p can then be converted into the corresponding number of "sigma," i.e. standard
deviation units from a Gaussian mean. This is done by finding x such that the integral
from x to infinity of a unit Gaussian equals p:

According to the above recipe, a 15.9% probability is a one-standard-deviation
effect; a 0.135% probability is a three-standard-deviation effect; and a 0.0000285%
probability corresponds to five standard deviations - "five sigma" in jargon.



Notes

The convention is to use a “one-tailed” Gaussian: we do not care about departures
of x from the mean in the un-interesting direction

The conversion of p into o is independent of experimental detail. Using No rather
than p is just a shortcut, nothing more !

In particular, using “sigma” units does in no way mean
we are operating some kind of Gaussian approximation

N\
_ Empirical PDF of p|H,
anywhere in the problem

BAD — don't even
The whole construction rests on a proper think of converting

definition of the p-value. Any shortcoming of ill-defined p into Z !
the properties of p (e.g. a tiny non-flatness of ‘

its PDF under the null hypothesis) totally

invalidates the meaning of the derived No

GOOD

_—— |

v



An Important Ingredient:
Wilks” Theorem

An almost ubiquitous method to derive a
significance from a likelihood fit is the one of
invoking Wilks’ theorem

Entries per 10 MeV
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e D*p+D*p

— Signal + bg. fit
--- Bg. only fit

f

_+++

3.4 3.6
M(D*p) [ GeV ]

— that is, some invoke it although they are not aware they are doing it !

One has a likelihood under the null hypothesis, L, (say, a background-only
fit), and a likelihood for an alternative, L, (a signal+background fit)

One takes -2(InL;-InLy)=-2A(InL) and interprets it as a chisquare

P(x?) can then be obtained, and from it a Z-value

— But people regularly forget that this is only applicable when the two

hypotheses are connected by Hy being a particular case of H, (fixing of one

parameter): they must be nested models.

— In most cases this is not so: we routinely test a H; where one of the
parameters is not present in H, (mass m for 0=0).

Fortunately, often even when the regularity conditions demanded by the
theorem are not met, the asymptotic properties of AlnL are good enough



Power of the Die Load Test

e We canrevisit the macro Die5.C, which studies the hypothesis that
there is a load in the die, and study the power of the test (is t=0 in
the critical region?) as the data size increases

500 die throws
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The Poisson W
diStribUtion 50:25 \
* We all know what the Poisson distribution is: ézizg
NA—u 0.05} \ a 1
- 'Ll e 0.00 === i~ 2 2
P(n, /Ll) — 0 5 172 15 20
n!

— The expectation value of a Poisson variable with mean pis E(n) = p
— itsvarianceisV(n) = pn

The Poisson is a discrete distribution. It describes the probability of getting
exactly n eventsin a given time, if these occur independently and randomly at
constant rate (in that given time) p

BEWARE

Other fun facts:

N n -n
— itis a limiting case of the Binomial [P(n) :(njp 1-P""] for p=>0, in the limit
of large N

— it convergesto the Normal for large



The Compound Poisson Distribution

Less known is the compound Poisson distribution, which describes the
sum of N Poisson variables, all of mean u, when N is also a Poisson

(N,Ll)n e—N,u AN e—i
n! N!

variable of mean A:

P(n; u,A) = i

— Obviously the expectation value is E(n)=Ap
— The variance is V(n) = Ap(1+p)

One seldom has to do with this distribution in practice. Yet it is necessary
for a physicist to know it exists, and to recognize it is different from the
simple Poisson distribution.

Why ? Should you really care ?

Let me ask before we continue: how many of you knew about the existence
of the compound Poisson distribution?



An Example of the
Compound Poisson: Bootstrapping

e Bootstrapping: creating new samples from a dataset by fishing
events at random, with replacement

 The idea of bootstrapping is that inference on properties of a
unknown distribution from which we have a sample of data can be
obtained by inference on resampled sets

e Example (from Wikipedia): assume we are interested in the
average height of people worldwide. We only measure the heights
of N (say 10000) individuals. From that single sample, only one
estimate of the mean can be obtained. In order to reason about the
population, we need some sense of the variability of the mean that
we have computed.

- By resampling with replacement we may construct many (say 1000)

sets of size N, and study the distribution of the mean (or of the variance,
or whatever statistic we are interested in)



The PDF of Bootstrapped Sets

Most commonsituation: you have a histogram of events in the original
dataset, such that each bin content has Poisson properties.

What are the statistical properties of the bin entries in the
bootstrapped histograms ?

— Quantitatively: if the expectation value of a bin's contentis p, what is
the associated variance o? ?

As you might have correctly guessed, the variance in the number of
entries in each bin is larger than o?=p as the Poisson distribution would

imply.

00 n ~—N N . —1
P(n;ﬂ,/l)ZZ{(Nﬂ) ¢ LE } V(n) = Ap(1+u)
N=0

n! N! f

EXERCISE: write a program that tests this.



Bootstrap variance.C

void Bootstrap_variance (double Ndata=10000, int Nrep=100, double
fracBoot=1.0) {

// Ndata = Expectation value of number of eventsin original histogram
// Nrep =Number of Bootstrap replicasdrawn

// fracBoot = fraction of Ndata drawn in Bootstrapped sets

double NdataB=Ndata*fracBoot;

const int Nbins=100; // We fix the number of bins to 100

if (Ndata>100000) {

cout << "Too much data per sample, reduce to <100000. Exiting..." <<
endl;

return;
}
// Repeat many times to get average of variance over replicas
double sumvar =0;
double Average_content=0;
for (inti=0; i<Nrep;i++) {
double data[100000];
intthisdata =gRandom->Poisson(Ndata);
for (intj=0; j<thisdata; j++) { // Generate histogram data
double x = gRandom->Uniform(0.,(double)Nbins);
dataljl=x;
}
// Create Bootstrap sample
double Bdata[100000];
thisdata =gRandom->Poisson(NdataB);
Average_content+=thisdata;

for (int j=0; j<thisdata; j++) {
int index=(int)gRandom->Uniform(0.,Ndata);
if (index==Ndata) index=Ndata-1;
Bdata[j]=data[index];
}

// Study statistical properties of Bdata in each bin by computing
the bin-by-bin variances

int Contents[Nbins];
double sum=0;
double sum2=0;
for (int k=0; k<Nbins; k++) {
Contents[k]=0;
for (int j=0; j<thisdata; j++) {
if (Bdata[j]>=(double)k && Bdata[jl<(double)k+1.) {
Contents[k]++;
}
}
sum+= Contents[k];
sum2+= Contents[k]*Contents[k];
}
double var = sum2/Nbins-pow(sum/Nbins,2);
sumvar +=var;
}
Average_content = Average_content/Nrep;
double Average_variance = sumvar/Nrep;
cout << endl;

cout <<" Average variance in bootstrapped sets is " <<
Average variance << endl;

cout << " Expectation for compound Poisson is " <<
NdataB/Nbins*(1+Average_content/Ndata) << endl;

cout << " Variance for a Poisson distribution is " <<
NdataB/Nbins << endl;

}



Example: 100 Bins With u=20

We generate bootstrapped replicas of 2000 events each sampled
from the same data, with 100 bins

— We can then measure the variance within each bin and compare to
Poisson and Compound Poisson expectations

— We vary the fraction of resampling from 0.2 to 0.8 to see the effect on
the actual variance of multiple entries in the same bin

root [5] Bootstrap_variance(10000,1000,0.2);

Aver. variance of bin contents in bootstrapped sets is 23.7969
Expectation for compound Poisson is 23.9975
Uariance for a Poisson distribution is 20

root [6] Bootstrap_variance(5000,1000,0.4);
Aver. variance of bin contents in bootstrapped sets is 27.7172

Expectation for compound Poisson is 28
Variance for a Poisson distribution is 20

root [7] Bootstrap_variance(2500,1000,0.8);

Aver. variance of bin contents in bootstrapped sets is 35.6591
Expectation for compound Poisson is 35.9953
Uariance for a Poisson distribution is 20




Take-Away Bits

1) Bootstrapping is powerful, but be careful
with the handling of resulting uncertainty
estimates!

2) The compound Poisson is more common
than you'd think

3) Knowing the properties of the PDF you
sample from is crucial

- this is a common theme of these lessons



EVIDENCE OF QUARKS IN AIR-SHOWER CORES* —> PRL 23’ 658 (1969)

C. B. A, McCusker and L. Cairns
Cornell-Sydney University Astronomy Center, Physics Department, The University of Sydney, Sydney, Australia
(Received 3 September 1969)

In a study of air-shower cores using a delayed-expansion cloud chamber, we have ob-
sarved a track for which the only explanation we can gee ig that it is produced by a frac-
tionally charged particle.

In 1968 the gentlemen named in the above clip observed four
tracks in a Wilson chamber whose apparent ionization was
compatible with the one expected for particles of charge ?/.e.
Successively, they published a paper where they showed a track
which could not be anything but a fractionary charge particle!

In fact, it produced 110 counted droplets per unit path length
against an expectation of 229 (from the 55,000 observed tracks).

What is the probability to observe such a phenomenon ?
We compute it in the following slide.

Note that if you are strong in nuclear physics and thermodynamics,
you may know that a scattering interaction produces on

average about four droplets. The scattering and the

droplet formation are independent Poisson processes.

However, if your knowledge of Statistics is poor, this observation
does not allow you to reach the right conclusion. What is the
difference, after all, between a Poisson process and the
combination of two ?




Significance of the Observation

Case A: single Poisson process, with u=229:

110 —-229
P(n<110)=>" 229'e

i=0 !

~1.6x1078

Since they observed 55,000 tracks, seeing at least one track with P = 1.6x1018
has a chance of occurring of 1-(1-P)>°°%, or about 1013

Case B: compound Poisson process, with Au=229, u=4:
One should rather compute

110 oo Nu AN
P'(n<110) = ZZ[(N”)e ’INI }4&105

i=0 N=0

from which one gets that the probability of seeing at least one such track is
rather 1-(1-P’)>>9%, or 92.5%. Ooops!

Bottomline:
You may know your detector and the underlying physics as well as you know your **%,
but only your knowledge of basic Statistics prevents you from being fooled !



Going Bayesian:
The Jeffreys-Lindley Paradox

So what happens if one tries to move to Bayesian territory ?

Consider a null hypothesis, H,, on which we base a strong belief. In physics we do
believe in our “point null” — a theory valid for a specific value 8,0f a parameter 6 (say
the photon mass being 0); in other sciences a true “point null” hardly exists

Comparing a point null 6=0,to an alternative which has a continuous support for 6, we
need to suitably encode this in a prior belief. Bayesians use a “probability mass” at 8=0
for H,,.

The use of probability masses to encode priors for a simple-vs-composite test throws a
monkey wrench in the Bayesian paradigm, as it can be proven that no matter how large
and precise is the data, Bayesian inference strongly depends on the scale over which the
prior is non-null —that is, on the prior belief of the experimenter.

The Jeffreys-Lindley paradox[16] arises as frequentists and Bayesians draw opposite
conclusions on some data when comparing a point null to a composite alternative. This
fact bears relevance to the kind of tests we are discussing, so let us give it a look.




The Paradox

Take X;...X, i.i.d. as X.| 8 ~ N(8,02), and a prior belief on 8 constituted by a mixture of a point
mass p at 8, and (1-p) uniformly distributed in [B,-1/2, B,+1/2].

In classical hypothesis testing the “critical values” of the sample mean delimiting the rejection
region of H,: @ = B, in favor of H;: B <> B, at significance level a are

X =0+ (0/vn)2a)2 >

where z,, is the significance correspondingto test size a fora
two-tailed normal distribution

1(Ho)

The paradox is that the posterior probability that H,
is true, conditional on seeing data in the critical n(H,)
region (i.e. ones which exclude H, in a classical a- !
sized test) approaches 1 (not a, NB!) as the sample 0
size becomes arbitrarily large.
yiare 0,-1/2 8, 0,+1/2

\ 4

As evidenced by R. Cousins[17], the paradox arises

if there are three independent scales in the problem,
€ << ofsqrt(n) << |, i.e. the width of the point mass,
the measurement uncertainty, and the scale | of the
prior for the alternative hypothesis

Common situation in HEP!!



JLP Example: Charge Bias of a Tracker

Imagine you want to investigate whether your detector has a bias in reconstructing positive

versus negative curvature, say at a lepton collider (e*e”). You take a unbiased set of collisions,

and count positives and negatives in a set of n=1,000,000.

 Youget n*=498,800, n'=501,200. You want to test the hypothesis that the fraction of
positive tracks, say, is R=0.5 with a size a=0.05.

e Bayesians will need a prior rt(R): a typical choice would be to assign equal probability to

L]

the chance that R=0.5 and to it being different (R PEUELPNT Torerserivefnaryatad L0 % X UL
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and a uniform distribution of the remaining p=1/

e We are in high-statistics regime and away from 0
for the Binomial. The probability to observe a nu
written, with x=n*/n, as N(x,c) with o?=x(1-x)/n.
The posterior probability that R=0.5 is then

.
S S _(x-RY’

1 le 2° |le 2 1te
P(R==|x,n)~= +—
( 2| 2 \N2no |2 \2ro 2-([ N2rwo

from which a Bayesian concludes that there i
and actually the data strongly supports the n




JLP Charge Bias: Frequentist Solution

Frequentists calculate how often a result “at least as extreme” as the one
observed arises by chance, if the underlying distribution is N(R,c) with R=1/2 and

o2=x(1-x)/n
(t-)?
0.4988 " 5,7

P(x < 0.4988|R = %) = [ ©——dt=0.008197

Yy N2mo

— P'(x|R :%) = 2*P =0.01639

One then has

(we multiplied by two since we would be just as surprised to observe an excess of positives as a deficit).

From this, frequentists conclude that the tracker is biased, since there is a less-
than 5% probability, P’<a, that a result as the one observed could arise by

chance!

A frequentist thus draws the opposite conclusion of a Bayesian from the same
(large body of) data !



Notes on the JL Paradox

The paradox has been used by Bayesians to criticize the way inference is
drawn by frequentists:

— Jeffreys: “What the use of [the p-value] implies, therefore, is that a

hypothesis that may be true may be rejected because it has not predicted
observable results that have not occurred” [18]

Still, the Bayesian approach offers no effective substitute to the p-value

— Bayes factors, which describe by how much prior odds are modified by the

data, do not factor out the subjectivity of the prior when the JLP applies: even
asymptotically, they retain a dependence on the scale of the prior of H,.

In JLP debates, Bayesians have argued that “the precise null” is never true.
— However, we do believe our point nulls in HEP and astro-HEP!!

(mass of photon==0; total electric charge of a system==0)

There is a large body of literature on the subject. The issue is an active
research topic and is not resolved.

— The trouble of picking a in classical hypothesis testing is not
automatically solved by moving to Bayesian territory.



The Neyman-Pearson Lemma

For simple hypothesis testing there is a recipe to find the most powerful test. It is
based on the likelihood ratio.

Take data X={X;...Xy} and two hypotheses depending on
the values of a discrete parameter: H,={6=0,} vs H,{6=0,}. _[ fn (X | 6, )dX —a
If we write the expressions of size a and power 1-f we have W

a

1- 8= [ fu(X]6,)dX

The problem is then to find the critical region w, such that 1- [3 is maximized, given a.

We rewrite the expression for power as
x |9
) ) i X|é
which is an expectation value: =E,, {Mw = 6’0}
fy(X16,)

This is maximized if we accept in w, all the values for which (X.6,,6,) = fu (X |6’1)>C
N 1201 =
f

Soone choosesH, if 1,(X,6,,6)>c,
and H, if instead I, (X,6,,6)<c,

In order for this to work, hypotheses must be simple. The test above is called
Neyman-Pearson test, and a test with such properties is the most powerful.



Goodness-of-Fit Tests

* |f Hyis specified but the alternative H, is not, then only the Type |
error rate a can be calculated, since the Type |l error rate B depends
on having specified a particular H,.

In this case the test is called a test for goodness-of-fit (to H,).

e Hence the question “Which g.o.f. test is best?” is ill-posed, since the
power depends on the alternative hypothesis, which is not given.

* In spite of the popularity of tests which give a statistic which one may
directly connect with the size a (in particular x2 and Kolomogorov
tests), their ability to discriminate against variations with respect to H,
may be poor, i.e. they may have small power (1-B) against relevant
alternative hypotheses

— x? throws away information (sign, ordering)

— Kolmogorov —=Smirnov test only sensitive to biases, not to shape
variations, and has terrible performance on tails (we'll see it in a minute)



The Kolmogorov Test: an Example

e CDF, circa 2000: 13 weird events identified in a subset of 2
sample used to extract top quark cross section e

— containa “superjet”: a jet with a b-quark tag also
containing a soft-lepton tag

— expected 4.4 +-0.6 events from background sources 0.75
— P(>=13 | 4.4+-0.6)=0.001 0.5

— Kinematic characteristics found in stark disagreement with %
expectation from SM sources 0

e Have no alternative model to compare = try a
Goodness-of-Fit test

(2]

-1 0 1 2

1) Primary Lepton

e Kolmogorov-Smirnov test: compare cumulative 0.8 '
distributions of data and model f(x); find largest 06 |
difference

X X 0.4 |
dys = Max | datatydt - [ f (t)dt
xela, st
a a 0 |

-2 -1 0 1

[

Value of dis can then be used to extract a p-value, given
data size.

1) Primary Lepton



On Tail Probabilities: Choosing the

Region of Interest
Feynman’s example:

“Upon walking here this morning, the strangest thing ever
happened to me. A car passed by, and | could read the
plate: JKZ 0533. How weird is that ??! The probability that |
saw such a combination of letters and numbers (assuming
they are all used in this country) is one in 10000*263, or
one in eighty-eight millions!”

Correct... The paradox arises from not having defined

beforehand the region of interest!

A more common one: you have a counting experiment
where background is predicted to be 100 events. You
observe 80 events. How rare is that ?

— lll-posed question ! Depends, to say the least, on whether
you are interested only in excesses or in absolute
departures!

— Inthe first case the region of interest is N>=x, which, for
x=80, corresponds to a fractional area p = 0.977.

— Inthe second case, the region of interest is [N-100|>=|x-
100| which for x=80 has an integral p = 0.0455.

— And one might imagine other ways to answer — a no-
brainer being p=e-1°° 1008°/80!
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Intermezzo: Combination of p-Values

Suppose you have several p-values, derived from different, independent tests. You
may ask yourself several questions with them.

— What is the probability that the smallest of them is as small as the one | got ?

— What is the probability that the largest one is as small as the largest | observed ?

— Wlhat is?the probability that the product is as small as the one | can compute with these N

values

Please note! Your inference on the data at hand strongly depends on what test
you perform, for a given set of data. In other words, you cannot choose which test
to run only upon seeing the data...

Suppose anyway you believe that each p-value tells something about the null
hypothesis you are testing, so you do not want to discard any of them. Then one
possibility is to use the product of the N values. The formula providing the
cumulative distribution of the density of x=Ix; can be derived by induction (see
[Roe 1992], p.129) and is

Fu() =X 109’ ()

This accounts for the speed with which the product of N numbers in [0,1] tends to
zero as N grows.



Some Examples
on the Product
of Probabilities

pdf of f(MNx;)

Cumulative of the pdf f(IMx;)

1

A

= (%)

To start let us take five really uniformly
distributed p-values, x,=0.1, x,=0.3, x3=0.5,
x,=0.7, xc=0.9. Their productis 0.00945, and
with the formula just seen we get
P(0.00945)=0.5017. As expected.

And what if instead x,=0.00001, x,=0.3, x;=0.5,
x,=0.7, xs=0.9 ? The result is P(9.45*107)
=0.00123, which is rather large: one might think
that the chance of getting one in five numbers
as small as 10~ must occur only a few times in
10~. But we are testing the product, not the
smallest of the five numbers !

And if now we let x,=0.05, x,=0.10, x3=0.15,
x,=0.20, x;=0.25, the test for the product yields
P(3.75*%10°)=0.0258 (see picture on the right).

Also not a compelling rejection of the null...

Compare with what you would get if you had
asked “what is the chance that five numbers are
all smaller than 0.25 ?”, whose answer is
(0.25)°>=0.00098. This demonstrates that the a-
posteriori choice of the testis to be avoided !



Global P From Set of p-Values

e Authors of CDF “superjet” analysis tested a
“complete set” of kinematical quantities; then
computed global P of set of KS p-values using

formula of combining p-values (assumed sampled
from a Uniform distribution):

Fu() =X 109’ (0)

- >6-sigma result!
... But in absence of an alternative model
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Events with a superjet Complementary sample
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GoF Tests with Max Likelihood

The maximum likelihood is a powerful method to estimate parameters, but no
measure of GoF is given, because the expected value of L at maximum is not known

The distribution of L., can be studied with toy MC = one derives a p-value that a
value as small as the one observed in the data arises, under the given assumptions

Alternatively, one can bin the data, obtaining estimated mean values of entries per
bin from the ML fit: e

1'/\i = Ny J f(Y;é)dX

min

XI
Then one can derive a y?, statistic using the ratio of likelihoods

L(n|v)
: 2 A=
and computing y =-2logA L(n|n)

since in this case the latter follows a y? distribution.

The quantity A(v)=L(n|v)/L(n|n) differs from the likelihood function by a
normalization factor, and can thus be used for both parameter estimation and
Goodness of Fit.



Systematic Uncertainties



A St U d y Of Re S i d U a | S The distribution of residuals

of 306 measurements in [20]

A study of the residuals of particle properties in the RPP in
1975 revealed that they were not Gaussian. Matts Roos et al.
[20] considered residuals in kaon and hyperon mean life and
mass measurements, and concluded that these seem to all
have a similar shape, well described by a Student distribution

S,o(h/1.11): s s
Slo( X j: (1+ X J
1.11) 2564100 121

Of course, one cannot extrapolate to 5-sigma the behaviour
observed by Roos and collaborators in the bulk of the
distribution; however, one may consider this as evidence that
the uncertainties evaluated in experimental HEP may have a
significant non-Gaussian component

Black: a unit Gaussian; Left: 1-integral distributions of the two functions.
red: the S,,(x/1.11) function  Right: ratio of the 1-integralvalues as a function of z
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A Bigger, Meaner Study of Residuals

e David Bailey (U. Toronto) recently
published an article[15] where o
use of large datasets is made (all
of RPP, Cochrane medical and
health database, Table of
Radionuclides)

e 41,000 measurements of 3200 B | e .
quantities studied 10— —
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e The methodology is similar to
that of Roos et al., but some
shortcuts are made, and data _ | |
input automation prevents more ot . 1|
vetting (e.g. correlations not z z
properly accounted for)

Probability per unit z
o

Results are quite striking - we seem to have ubiquitous Student-t
distributions in our Z values, with large tails — almost Cauchy-like.



Treatment of Systematic Uncertainties

Statisticians call these nuisance parameters

Any measurement is affected by them: the turning of an observation into a
measurement requires assumptions about parameters and other quantities whose
exact value is not perfectly known.

These parameters are typically correlated with the quantity being measured

- their uncertainty affects the main measurement

E.g. going from a event count to a cross section requires knowing a number of additional
inputs: Ny, L, &) Eqyig -

The uncertainty of each of these has to be accounted for

Error propagation is the standard tool, but typically analytical solutions are inapplicable.



The Nuisance of Dealing with Nuisances

Inclusion of effect of nuisances in interval estimation and
hypothesis testing introduces complications. Each method
has a recipe, but not universal nor always applicable

— Bayesian treatment: one constructs the multi-dimensional prior
pdf p(0)I1.p(A;) including all the parameters A,, multiplies by
pP(X,]0,A), and integrates all of the nuisances out, remaining
with p(0]X,)

— Classical frequentist treatment: scan the space of nuisance
parameters; for each point do Neyman construction, obtaining
multi-dimensional confidence region; project on parameter of
interest

— Likelihood ratio: for each value of the parameter of interest 6%,
one finds the value of nuisances that globally maximizes the
likelihood, and the corresponding L(0*). The set of such
likelihoods is called the profile likelihood.



Issues with the Three Methods

e Each “method” has problems:
— Bayesian techniques: involve multi-Dimensional priors
— Classical intervals: afflicted by overcoverage issues and intractability;
— Likelihood intervals: usually suffer from undercoverage

We will not discuss them here further, but note that this is a topic at the
forefront of research, for which no general recipe is valid.

e Often used are “hybrid” methods for integrating nuisance
parameters out

— for instance, treat nuisance parameters in a Bayesian way while

treating the parameter of interest in a frequentist way, or “profile
away” the nuisance parameters and then use any method.

— Also possible is using Bayesian techniques and then evaluate their
coverage properties.



Inclusion of Nuisances in the Model

With data x, and knowing the pdf P(x|6), you want to estimate a
parameter 0. However, the model is imperfect = you can improve it by
adding nuisances that affect it: p(x|6,A).

The inclusion of nuisances changes the problem and decreases the power
of your inference.

To reduce the impact of nuisance parameters one may constrain their
values by means of control or calibration measurements that produced
some other datayy.

If the measurements y are statistically independent from x and are

described by a model P(y|A), you can then write a joint likelihood: L (6,A) =
p(x[6,A) * P(y|A)

When using Monte Carlo to simulate the experiment, be sure to include
the variation of both datasets!



The Profile Likelihood Method

The PL method is best described in connection to an hypothesis
test.

If one wants to test a hypothesis (e.g. Hy: 6=0), one needs to define
a critical region where H, is disproven.

In presence of nuisances A, Hy must be disproven for all values of
the nuisances = one tries to define a test statistic gy whose pdf
f(qq,0) that is independent on A. A good approximation to this is

L 9‘ ”i} 0 double hat: ML value of nuisance that
)\})(9) — ( - ( )) maximizes L for the specified ©
L(Q ﬁ) Denominator has absolute max of L

Using Wilks' theorem one can show that -2log(A,) distributes like a chisquared and is
independent on the nuisance parameters. One can thus do HT and properly define a
critical region

We will see more application of this technique when we discuss the Higgs search



Poisson Probabilities

Exercise: write a root macro that inputs expected background
counts B (with no error) and observed events N, and computes the
probability of observing at least N, and the corresponding number
of sigma Z for a Gaussian one-tailed test.

The p-value calculation should be straightforward: just RECALL: N
sum from 0 to N-1 the values of the Poisson P(n' ) 2 e
(computing the factorial as you go along in the cycle), M) = n!

and derive p as 1-sum.

mirie:
Mean
R

Deriving the number of sigmas that p corresponds to
requires the inverse error function, Erflnverse(x) as

Z = sqrt(2) * ErfInverse(1-2p)

(it should be available as TMath::ErfInverse(double) )

s 5 5 = 5 & 5 =
- B E B B 2 & 2 3 &

You can also fill two distributions, one with the

Poisson(B), the other with only the bins >=N filled (and
with SetFillColor(kBlue) or something) and plot

them overimposed, to get something like the graph on
the right (top: linear y scale; bottom: log y scale)




Parenthesis — Erf and Erflnverse

. 2 [T .
erf(x) = ﬁ/ e " dt.
0 =

The error function and its inverse are useful
tools in statistical calculations — you will 073
encounter them frequently. oo

The Erf can be used to obtain the integral of a
Gaussian as

o= [

The erfinverse function is used to convert alpha

values into number of sigmas. We will see examples
of that later on.
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One Possible Implementation

// Macro that computes p-value and Z-value
// of N observed vs B predicted Poisson counts

[ o
void Poisson_prob_fix (double B, double N) {

int maxN = N*3/2; // extension of x axis
if (N<20) maxN=2*N;

TH1D * Pois = new TH1D ("Pois", "", maxN, -0.5, maxN,
0.5);

TH1D * PoisGt = new TH1D ("PoisGt", "", maxN, -0.5,
maxN-0.5); // we also fill a “highlighted” portion

double sum=0.;
double fact=1.;
for (int i=0; i<xmaxN; i++) {
if (i>1) fact*=i; // calculate factorial
poisson = exp(-B)*pow(B,i)/fact;
if (ikN) sum+= poisson; // calculate 1-tail integral
Pois->SetBinContent(i+1,poisson);
if (i>=N) PoisGt->SetBinContent(i+1,poisson);
}
double P=1-sum; // get probability of >=N counts
double Z = sgrt(2) * TMath::Erfinverse(1-2*P);

cout << "P of observing N=" << N << " or more events
if B=" << B<<":P="<< 1-sum << endl;

cout << "This corresponds to " << Z << " sigma for a
Gaussian one-tailed test." << endl;

Pois->SetLineWidth(3);
PoisGt->SetFillColor(kBlue);

TCanvas® T = new TCanvas ("T","Poisson
distribution", 500, 500);

// Plot the stuff
T->Divide(1,2);
T->cd(1);
Pois->Draw();
PoisGt->Draw("SAME");
T->cd(2);
T->GetPad(2)->SetLogy();
Pois->Draw();
PoisGt->Draw("SAME");



Adding a Nuisance

e Let usassume now that B’ is not fixed, but known to
some accuracy og. We want to add that functionality to
our macro. We can start with a Gaussian uncertainty.

Example below: B=5+-4, N=12

You just have to throw a random number

B=G(B’,0;) to set B, and collect a large tea0
number (say 10k) of p-values as before, -
then take the average of them. 1000

Upon testing it, you will discover that you oo
need to enforce that B be non-negative. ;
What we do with the negative B
determines the result we get, so we have
to be careful, and ask ourselves what

exactly do we mean when we say, e.g.,
“B=2.0+-1.0"

A0 4 & .7 & S5 4 3 2 A 0 A5 A0 .8 Li] 5 i 168 200 28



A Possible Implementation

void Poisson_prob_fluct (double B, double SB, double N) {
double Niter=10000;
intmaxN = N*3/2;
if (N<20) maxN=2*N;
TH1D * Pois = new TH1D ("Pois", "", maxN, -0.5, maxN-0.5);
TH1D * PoisGt= new TH1D ("PoisGt","", maxN, -0.5, maxN-0.5);
// We throw a random GaussiansmearingSB to B, compute P,
// and iterate Niter times; we then study the distribution
// of p-values, extractingthe average
double Psum=0;
TH1D * Pdistr=new TH1D ("Pdistr","", 100, -10., 0.);
TH1D * TB = new TH1D ("TB", "",100, B-5*SB,B+5*SB);
cout << "Start of cycle" << end];
for (intiter=0; iter<Niter; iter++) {
// Extract B from G(B,SB)
double thisB=gRandom->Gaus(B,SB);
TB->Fill(thisB); // We keep track of the pdf of the background

if (thisB<=0) thisB=0.;// Note this— what if we had rethrown it ?

double sum=0.;

doublefact=1,;

for (inti=0; i<xmaxN; i++) {
if (i>1) fact*=i;
double poisson = exp(-thisB)*pow(thisB,i)/fact;
if (i<N) sum+= poisson;
Pois->Fill((double)i,poisson);
if (i>=N) PoisGt->Fill((double)i,poisson);

double thisP=1-sum;

if (thisP>0) Pdistr->Fill(log(thisP));

Psum+=thisP;
}
double P = Psum/Niter; // we use the average for ourinference here
doubleZ = sqrt(2) * ErfInverse(1-2*P);
cout << "Expected P of observing N="<< N <<" or more events if

B=ll
<< B<<"+-"<<SB<<":P="<<P<<endl

cout << "This correspondsto " << Z << " sigma for a Gaussian one-
tailed test." << endl;

// Plot the stuff
Pois->SetLineWidth(3);
PoisGt->SetFillColor(kBlue);
TCanvas*T=new TCanvas ("T","Poissondistribution", 500, 500);
T->Divide(2,2);

T->cd(1);

Pois->DrawClone();
PoisGt->DrawClone("SAME");
T->cd(2);
T->GetPad(2)->SetLogy();
Pois->DrawClone();
PoisGt->DrawClone("SAME");
T->cd(3);
Pdistr->DrawClone();
T->cd(4);

TB->Draw();



Homework Assignment:
Change to Log-Normal =

Substitute the gRandom->Gaus() call such that yougeta B . 9
distributed with a log-Normal pdf, being careful to plug in
the variance you really want, and check what difference it
makes. o5

i)

p=0, o=0.5

fel

p=0,o=

It should be intuitive that the LogNormal() is the correct . , | , ,
nuisance to use in many common situations. It correspond b eI Iy e s
to saying “I know B to within a factor of 2”. Or think at a

luminosity uncertainty...

This follows from the fact that while the Gaussian is the limit | |n the web area you find a version of
of the sum of many small random contributions, the limit of | poisson_prob_fluct.C that does this
a product of small factors is a log-normal.

To get a logN quickly, just throw y = G(u,0) ; then x=exp(y) is what you need.
However, note that with the ansatz “know B to within a certain factor”, we want the
median exp(u) to represent our central value, not the mean e(p+0?/2) ! So we set

u=log(B). To know what to set sigma to, we need to consider our ansatz: o=0,/B
corresponds to it.

1
1 (nzp)? E[X] = ¢t 2%

. L —_— —t 2 . T l:l
Ix(@ip o) roV/2n T Var[X] = (e7 — 1)e2+



The Higgs Boson Search at the LHC

CMS Experiment at LHC, CERN

Data recorded: Thu Oct 13 03:39:46 2011 CEST
Run/Event: 178421 / 87514902
Lumi section: 86




Higgs Searches at LHC

 The Higgs boson has been sought for by ATLAS and CMS in all the
main production processes and in a number of different final
states, resulting from the varied production and decay modes:
— qq—2Hqq |
— gg%H i | LHC |
— qq(l)QVH mf

;\ 1
10‘\\ | e 7 T _ T

— HOWW el
— H->gg |
— H->tt
— H>bb

SM Higgs production
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e The importance of the goal broughttogether some of the best
minds of CMS and ATLAS, to define and refine the procedures to
combine the above many different search channels, most of which
have marginal sensitivity by themselves



Method

e The method used to set upper limits on the Higgs boson
cross section uses the CL, criterion and the test statisticis a
profile log-likelihood ratio. Dozens of nuisance parameters,
with either 0% or 100% correlations, are considered

e Results have been produced as a combined upper limit on
the “strength modifier” u=o/o,,, as well as a “best fit value”
for i, and a combined p-value of the null hypothesis. All of
these are produced as a function of the unknown Higgs
boson mass.

e The technologyis an advanced topic. We can give a peek at
the main points, including the construction of the CL,
statistics and the treatment of nuisances, to understand the
main architecture



Nuts and Bolts of Higgs Combination

The recipe must be explained in steps. The first one is of course the one of writing down extensively the
likelihood function!

One writes a global likelihood function, whose parameter of interest is the strength modifier p. If s and
b denote signal and background, and 6 is a vector of systematic uncertainties, one can generically write
for a single channel:

L(data | i, #) = Poisson ( data |yt - s(6) + b(6) ) - p(0]6)

Note that 8 has a “prior” coming from a hypothetical auxiliary measurement.

In the LHC combination of Higgs searches, nuisances are treated in a frequentist way

by taking for them the likelihood which would have produced as posterior, given a flat prior,
the PDF one believes the nuisance is distributed from. This differs from the Tevatron and LEP
Higgs searches.

In L one may combine many different search channels where a counting experiment is performed as
the product of their Poisson factors:

mn,

H (JU’S'I'; T bl) o HS: —b,
_ H;;I

or from a unbinned likelihood over k events, factors such as: t

- [ ] (nSfu(i) + Bfy(ay) - e @S+



L(datalp, é#)
L(datalf, 0)

2) One then constructs a profile likelihood test statistic q,, as gy = —2In

Note that the denominator has L computed with the values of u" and 8" that globally
maximize it, while the numerator has 6=8", computed as the conditional maximum

likelihood estimate, given .

A constraint is posed on the MLE u" to be confined in 0<=p"<=p: this avoids negative
solutions for the cross section, and ensures that best-fit values above the signal
hypothesis i are not counted as evidence against it.

The above definition of a test statistic for CL, in Higgs analyses differs from earlier
instantiations

- LEP: no profiling of nuisances

- Tevatron: p=0in L at denominator 104§ —H§ Iu=0)

3) MLvalues 6" for H; and 6" for H, =1
. — f(q ~ |},L=1)

are then computed, given the data p=1

and pu=0 (bgr-only) and u>0

4) Pseudo-datais then generated for the
two hypotheses, using the above ML
estimates of the nuisance parameters.
With the data, one constructs the pdf
of the test statistic given a signal of
strength p (H,) and p=0 (H,). This way _
has good coverage properties. Test Statistic q,

Observed value

Number of toys
2

—
<

o




5) With the pseudo-data one can then compute the integrals defining p-values for the two
hypotheses. For the signal plus background hypothesis H, one has

p, = P(g, > q#b | signal+background) = A

. q;‘jh

H jobs ﬂl' Q;#

and for the null, background-only H, one has

l—p, = P(q,> qﬁbs | background-only) = / f(q,10, f—fv‘Dh" ) dq,
q

. ﬁth
6) Finally one can compute the value called CL, as

CL, = p,/(1-py)

CL, is thus a “modified” p-value, in the sense that it describes how likely it is that the
value of test statistic is observed under the alternative hypothesis by also accounting for
how likely the nullis: the drawing incorrect inferences based on extreme values of p,, is
“damped”, and cases when one has no real discriminating power, approaching the limit
f(q|u)=f(q|0), are prevented from allowing to exclude the alternate hypothesis.

7) We can then exclude H; when CL, < a, the (defined in advance !) size of the test. In the
case of Higgs searches, all mass hypotheses H,(M) for which CL.<0.05 are said to be
excluded (one would rather call them “disfavoured”...)



Derivation of Expected Li

One starts with the background-only
hypothesis p=0, and determines a

mits

distribution of possible outcomes of
the experiment with toys, obtaining
the CLs test statistic distribution for
each investigated Higgs mass point

From CLs one obtains the PDF of upper
limits pY*on w for each M,.. [E.g. on the — >
right we assumed b=1 and s=0 for u=0,

whereas u=1 would produce <s>=1]

Then one computes the cumulative
PDF of pYt \

Finally, one can derive the median and
the intervals for u which correspond to
2.3%, 15.9%, 50%, 84.1%, 97.7%
guantiles. These define the “expected-
limit bands” and their center.
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Quantifying the Significance of a Signal
in the Higgs Search

e To test for the significance of an excess of events, given a Mh

hypothesis, one uses the bgr-only hypothesis and constructs a
modified version of the q test statistic:

L£(datal0, 6y)
L(datalfi, 0)

go = —2In and 4 > 0.

e This time we are testing any u>0 versus the H, hypothesis. One
builds the distribution f(q,|0,6,"°") by generatmg pseudo-data,
and derives a p-value correspondlng to a given observation as

po = Plgo > i) = / £(q0]0,05") dago.
q;;n':.'s
e One then converts p into Z using the relation

1 :
exp(—z*/2)dz = 5 Pﬁ(Z‘z)

=]
h / V2r
where p 2 is the survival function for the 1-dof chisquared.



Often it is impractical to generate
large datasets given the
complexity of the search (dozens
of search channels and sub-
channels, correlated among each
other). One then relies on a very
good asymptotic approximation:

The derived p-value and the
corresponding Z value are “local”:
they correspond to the specific
hypothesis that has been tested (a
specific M) as g, also depends on
M, (the search changes as M,
varies)

When dealing with many
searches, one needs to get a
global p-value and significance,
i.e. evaluate a trials factor. How to
do it in complex situations is
explained in the next slide.
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Trials Factors in the Higgs Search

When dealing with complex cases (Higgs combination), a study comesto help.

Wilks’ theorem does not apply, and the complicationof combining many different
search channels makes the option of throwing huge number of toys impractical

Fortunately it has been shown how the trials factor can be counted in. First of all
one defines a test statistic encompassing all possible Higgs mass values:

qo(1757) = max go(myr)
T

This is the maximum of the test statistic defined above for the bgr-only, across the
many tests performed at the various possible masses of the Higgs boson.

One can use an asymptotic “regularity” of the distribution of the above g to get a
global p-value by using a technique derived by Gross and Vidells [Vitells 2010].



Local Minima and Upcrossings

One counts the number of “upcrossings” of the distribution of the test statistic, as a function
of mass. Its wiggling tells you how many independent places you have been searching in.

The number of local minima in the fit to a distribution is closely connected to the freedom of
the fit to pick signal-like fluctuations in the investigated range

The number of times that the test statistic (below, the likelihood ratio between H, and H,)
crosses some reference point is a measure of the trials factor. One estimates the global p-
value with the number N, of upcrossings from a minimal value of the q, test statistics (for
which p=p,) by the formula 1
P = Plaolig) > u) < (N} + 5 Pg(u)

Lh
(=)

The number of upcrossings can be best estimated
using the data themselves at a low value of
significance, as it has been shown that the
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Trial Factors Example

Imagine that you scan the Higgs mass and find a maximum q, of 9,
which according to vstimate | . o
D 5 | — erf g6 /2

corresponds to a local p-value of 0.13% and a local Z-value of 30,
the latter computed using /x |
p =
A

1 )

2 e 73
xp(—x/2)de = - Poa2(Z
3_2} € P( L / ]"r"i 2 Xf( ]

You then look at the distribution of q, as a function of M, and count
the number of upcrossings at a level u;=1 (where the significance is
Z=1 as per above formulas) finding that there are 8 of them. You
can then get <N > for u=9 using

(N,) = (N,,)e (uuel?
which gives <Nu>=0.1465

The global p-value can be then computed as p,,,,=0.1465+0.0013
using the formula below. One concludes that tghe trial factor s

about 100 in this case. ,
pﬂ'iuhuﬁ — P((}ﬂ(f?lﬂj ~ 'M) < {-Nru:} + 5 P 2(“_)

b X1



Conclusions

Statisticsis NOT trivial. Not even in the simplest applications!

A understanding of the different methods to derive results (eg.
for upper limits) is crucial to make sense of the often conflicting
results one obtains even in simple problems

— The key in HEP is to try and derive results with different methods —if
they do not agree, we get wary of the results, plus we learn
something

Making the right choices for what method to use is an expert-
only decision, so...

You should become an expert in Statistics, if you want to be a
good particle physicist (or even if you want to make money in
the financial market)

The slide of this course are nothing but an appetizer. To really
learn the techniques, you must put them to work
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Loaded Die: Least-Square Solution

e We just have to write a chisquare as a function of the data N=(3,3,3,3,3,5)

and the load t:
6

, z (N; — e;(t))?
X =
o2,

i=1 i
where e;(t) are the expected times that result "i" appears in 20 throws, i.e. e;= 20
P(i) where, as before, P(1) = 1/6 — /2

P(2)=P(3)=Pi4)=P(5)=1/6 —1/8

P(6) =1/6+1

Note that we can use the information of N2, N3, N4, N5 distributions if
we wish — it just amounts to consider them as separate in the chi2.

Once we have the chi2(t), we may compute its derivative w.r.t. t, and set it to
zero, then solve for t = this will yield our point estimate t*

The interval will be obtained by finding t;, t, such that
chi?(t,) = chi?(t,) = chi?(t*)+1
Results: ....
Comparing with the likelihood solution, we see that ... ?
Of the two ways to compute the chisquare the preferable oneis ... ?



Calculation

Inputs: N, ny, n,, ng (x=sum of 2,3,4,5)

e(t) = N*p(i,t) = ey(t) = N*(1/6-t/2); e,(t) = 4*N*(1/6-1/8) = N*(2/3-t/2); eq(t) = N*(1/6+t) (2 et =N)
S1= [n1-e4(1)]/ ny = [ny?- 2% *N*(1/6-t/2) + N**(1/6-t/2)*] / ny =

ny- N/3 + N*t + N2/(36*n,) - N2*t/(6*n,) + N2*t?/(4*n,)

S= [ne-e(t)]2/n, = [n2- 2*n *N*(2/3-t/2) + N2*(2/3-t/2)2] / n, =

n, - 4*N/3 + N*t + 4*N2/(9%n,) — 2*N2*t/(3*n ) + N2*t2/(4*n)

Se = [N6-e5(t)]%/ ng = [Ne” - 2¥Ng*N*(1/6+t)+N**(1/6+t)*] / ng =

Neg - N/3 - 2*N*t + N2/(36*ng) + N2*t/(3*ng) + N2*t?/n,

dS,;/dt = N - N2/(6*n) + N>*t/(2*n,)
ds,/dt = N—2*N2/(3*n ) + N2*t/(2*n,)
dSe/dt = - 2*N + N2/(3*ng) + 2*¥*N2*t/n,

dS]_/dt + dSX/dt + dSG/dt =0 9
N - N2/(6%n,) + N2*t/(2%n,) + N — 2*N2/(3%n.) + N2*t/(2*n,) - 2*N + N2/(3%*n;) + 2*N2*t/n, = 0

t*N?*[1/(2%nq) + 1/(2*n,) + 2/ng] - [N**(1/(6%n4) +2/(3*n,) - 1/(3*ng))] = 0
t=[1/(6*n;) +2/(3*n,) - 1/(3*ng)1 / [1/(2*ny) + 1/(2*n,) + 2/ng)] =

= (n*ng + 4*n;*ng - 2*n,*n,) / (6*n*n,*ng) / (3*n,*ng + 3*n;*ng +12*n,*n,) / (6*ny*n,*ng) =
= (n*ng + 4*n;*ng - 2*n,*n, / (3*n,*ng + 3*n;*ng + 12*n,*n,)



Calculation, using all results (2,3,4,5)

Inputs: N, ny, n,, ng (x=2,3,4,5)

e(t) = N*p(i,t) 2 ey(t) = N*(1/6-t/2); e\(t) = N*(1/6-1/8); eg(t) = N*(1/6+t) (2 ewr =N)
S1= [n1-e4(1)]/ ny = [ny?- 2% *N*(1/6-t/2) + N**(1/6-t/2)*] / ny =

ny- N/3 + N*t + N2/(36*n,) - N2*t/(6*n,) + N2*t?/(4*n,)

S,= [nc-e(t)2/n, = [n2 - 2*n *N*(1/6-t/8) + N2*(1/6-t/8)?] / n, =

n, - N/3 + N*t/4 + N?/(36*n,) — N?*t/(24*n,) + N2*t?/(64*n,)

Se = [N6-e5(t)]%/ ng = [Ne” - 2¥Ng*N*(1/6+t)+N**(1/6+t)*] / ng =

Neg - N/3 - 2*N*t + N2/(36*ng) + N2*t/(3*ng) + N2*t?/n,

dS,;/dt = N - N2/(6*n) + N>*t/(2*n,)
dS,/dt = N/4 — N2/(24*n,) + N2*t/(32*n,)
dSe/dt = - 2*N + N2/(3*ng) + 2*¥*N2*t/n,

dS]_/dt + dSz/dt + dS3/dt + dS4/dt + dS5/dt + dSS/dt =0 9
N - N2/(6*n;) + N>*t/(2*n,) + N/4 — N?/(24%*n,) + N?*t/(32*n,) + N/4 — N2/(24*n;) + N2*t/(32*n3) + N/4 -
N2/(24*n,) + N?*t/(32*n,) + N/4 — N?/(24*nc) + N2*t/(32*nc) - 2*N + N?/(3*ng) + 2*¥*N?*t/ng =0

t*N2*[1/(2%ny) + 1/(32*n,) + 1/(32*n3) + 1/(32*n,) + 1/(32*ns) + 2/ng] - [N?*(1/(6*n,) + 1/(24%*n,) + 1/(24%*n;) +
1/(24%n,) + 1/(24%ns) - 1/(3*ng))] = 0

t=[1/(6*ny) +1/(24*n,) +1/(24*n3) + 1/(24*n,) + 1/(24*ns) - 1/(3*n¢)]1/ [1/(2*ny) + 1/(32*n,) + 1/(32%*n3) +
1/(32*n,) +1/(32*ns) + 2/ng)] =

=4/3*[4/n;+ 1/n,+1/n3+ 1/ny+ 1/ng -8/ng]l/ [16/n;+1/ny+ 1/n3+1/n,+ 1/ng+ 64/n]



Coverage of Flip-Flopping Experiment

We want to write a routine that determines the true coverage of the procedure
discussed above for a Gaussian measurement of a bounded parameter:
Xmeas<0 =2 quote size-a upper limit as if X;,0,=0, X"P=sqrt(2)*Erflnverse(1-2a)
—  0<=X;,eas<D=2 quote size-a upper limit, x"P=sqrt(2)*ErflInverse(1-2a) + X, 0.
Xmeas>=D =2 quote central value +-a/2 error bars, X,..s+-sqrt(2) *Erflnverse(1-a)

Guidelines:

1. insert proper includes (we want to compile it or it’ll be too slow)

2. header: pass through it alpha, D, and N_pexp

3. define useful variables and histogram containing coverage values

4. loop on x_true values from 0 to 10 in 0.1 steps = i=0...<100 steps, x_true=0.05+0.1*i
5. foreach x_true:

1. zero acounterC
2. loop many times (eg. N_pexp, defined in header)
3. throw x_meas = gRandom->Gaus(x_true,1.)
4. derive x_down and x_up depending on x_meas:
1. if x_meas<0 then x_down=0 and x_up = sqrt(2)*Erfinverse(1-2*alpha)
2. if 0O<=x_meas<D then x_down=0 and x_up=x_meas+sqrt(2)*El(1-2*alpha)
3. if x_meas>=D then x_down,up = x_meas +- sqrt(2)*El(1-alpha)
5. if x_true is in [x_down,x_up] C++
6. fill histogram of coverage at x_true with C/N_pexp
7. plot and enjoy



Coverage of Flip-flopping measurement

void FlipFlop (doublealpha=0.05,double D=4.5, double Npexp=1000) {

double x_true;

double x_meas;

double sigma=1;

double x_down;

double x_up;

double covers=0.;

double Ela = sqrt(2)*TMath::Erflnverse(1-alpha);
double El2a=sqrt(2)*TMath::Erfinverse(1-2*alpha);

TH1D * Coverage_vs_xtrue =new TH1D("Coverage_vs_xtrue", "Coverage vs x_true", 100, 0., 10.);
TH1D * BeltUp =new TH1D ("BeltUp", "Flip-flopping Confidence belt", 15000, -5.,10.);
TH1D * BeltDo = new TH1D ("BeltDo", "Flip-flopping Confidencebelt", 15000, -5.,10.);

cout << "Critical values:" << endl;

cout << "For xmeas <0 : 0< xtrue < " << El2a*sigma << endl;

cout << "For O<xmeas<" << D << " : 0 < xtrue < xmeas+"
<< El2a*sigma << endl;

cout << "For xmeas>=D : xmeas-" << Ela*sigma << " < xtrue < xmeas+"
<< Ela*sigma << endl;

cout << endl;

for (intix=0; ix<100; ix++) {

x_true =0.05 +0.1%ix;
covers=0;

for (int pexp=0; pexp<Npexp; pexp++) {

// A Gaussian measurement with uncertainty sigma
x_meas =gRandom->Gaus(x_true,sigma);

if (x_meas<D) { // Not significantly differentfrom zero, will reportupper limit
x_down =0;
Xx_up =El2a*sigma;
if (x_meas>0) x_up = x_meas + x_up;
}else{ // will reportan interval
x_down = x_meas-Ela*sigma;
X_up =x_meas+Ela*sigma;

// compute coverage
if (x_true>=x_down && x_true<x_up) covers++;

}

Coverage_vs_xtrue->Fill(x_true,covers/Npexp);

}

// Belt plot
for (inti=0;i<15000;i++) {

X_meas =-4.9995 +i*0.001;

if (x_meas<0) {
BeltUp->Fill(x_meas,El2a);
BeltDo->Fill(x_meas,0.);

}elseif (x_meas<D) {
BeltUp->Fill(x_meas,x_meas+El2a);
BeltDo->Fill(x_meas,0.);

}else{

BeltUp->Fill (x_meas,x_meas+Ela);
BeltDo->Fill(x_meas,x_meas-Ela);
}
}

gStyle->SetOptStat(0);

TCanvas * W2 =new TCanvas ("W2", "Coverage of flip-flopping NP construction", 500, 500);
W2->cd();
Coverage_vs_xtrue->SetlLineWidth(3);

Coverage_vs_xtrue->Draw();

TCanvas * W = new TCanvas ("W", "Confidence belt", 500, 500);
W->cd();

BeltUp->SetMinimum(-1);

BeltUp->SetMaximum(15);

BeltUp->SetLineWidth(3);

BeltDo->SetLineWidth(3);

BeltUp->Draw();

BeltDo->Draw("SAME");



Coverage.C

(add at the top the #include commands
needed to compile it)

void Coverage (double alpha, double disc_threshold=5.) {
// Only valid for the following:
/] -
if (disc_threshold-sqrt(2)*Erflnverse(1.-2*alpha/2.)<
sqrt(2)*ErfInverse(1.-2*alpha)) {
cout << "Too low discovery threshold, code not suitable. " << endl;
cout << "Try a larger threshold" << endl;
return;
1
char title[100];
int idisc_threshold=disc_threshold;
int fracdiscthresh =10*(disc_threshold-idisc_threshold);
if (alpha>=0.1) {
sprintf (title, "Coverage for#alpha=0.%d with Flip-Flopping at %d.%d-sigma",
(int)(10.*alpha),idisc_threshold, fracdiscthresh);
}else {

sprintf (title, "Coverage for #alpha=0.0%d with Flip-Flopping at %d.%d-
sigma", (int)(100.*alpha),idisc_threshold, fracdiscthresh);
1

TH1D * Cov =new TH1D ("CoVv", title, 1000, 0., 2.*disc_threshold);
Cov->SetXTitle("True value of #mu (in #sigma units)");

// Int Gaus-1:+1 sigma is TMath::Erf(1./sqrt(2.))
// To get 90% percentile (1.28): sqrt(2)*ErfInverse(1.-2*0.1)
// To get 95% percentile (1.64): sqrt(2)*Erflnverse(1.-2*0.05)
double cov;
for (int i=0; i<1000; i++) {
double mu = (double)i/(1000./(2*disc_threshold))+
0.5*(2*disc_threshold/1000);

if (mu<sqrt(2)*Erfinverse(1.-2*alpha)){// 1.28, so mu within upper 90% CL
cov =0.5*(1+TMath::Erf((disc_threshold-mu)/sqrt(2.)));
}else if (mu< disc_threshold-sqrt(2)*Erfinverse(1.-2*alpha/2.)){// <3.36
cov =1.-alpha-0.5*(1.-TMath::Erf((disc_threshold-mu)/sqrt(2.)));
}else if (mu<disc_threshold+
sgrt(2)*Erflnverse(1.-2*alpha)){// 6.28
cov=1.-1.5*alpha;
}else if (mu<disc_threshold+sqrt(2)*Erfinverse(1.-2*alpha/2.)){// 6.64){
cov =1.-alpha/2.-0.5*(1+TMath::Erf((disc_threshold-mu)/sqrt(2.)));
}else { cov=1.-alpha; }
Cov->Fill(mu,cov);
1
char filename[40];
if (alpha>=0.1){
sprintf(filename,"Coverage_alpha_0.%d_obs_at_%d_sigma.eps",
(int)(10.*alpha),idisc_threshold);
}else {
sprintf(filename,"Coverage_alpha_0.0%d_obs_at_%d_sigma.eps",
(int)(100.*alpha),idisc_threshold);
1
TCanvas * C=new TCanvas ("C","Coverage", 500,500);
C->cd();
Cov->SetMinimum(1.-2*alpha);
Cov->SetLineWidth(3);
Cov->Draw();
C->Print(filename);
// Now plot confidence belt



Here is e.g. the exact
calculation of coverage for
flip-flopping at 4-sigma and a
test size alpha=0.05

Can get it by running:

root>.L Coverage.C+;
root> Coverage(0.05,4.);

Coverage for «=0.05 with Flip-Flopping at 4.0-sigma

0.98

0.96

0.94

0.92

0.9

0 1 2 3 4 5 6 7 8

True value of pu (in ¢ units)



Maximum Likelihood

Take a pdf for a random variable x, f(x; 8) which is analytically known, but for which the value of m
parameters 0 is not. The method of maximum likelihood allows us to estimate the parameters 0 if
we have a set of data x; distributed according to f.

The probability of our observed set {x;} depends on the distribution of the pdf. If the
measurements are independent, we have

P = H f (x;;9)dx, to find x; in [x,x,+dx[
i=1

The likelihood function

LO)=] ] (x:0)

is then a function of the parameters 0 only. It is written as the joint pdf of the x;, but we treat those
as fixed. Lis not a pdf! NOTA BENE! The integral under L is MEANINGLESS.

Using L(8) one can define “maximum likelihood estimators” for the parameters 0 as the values
which maximize the likelihood, i.e. the solutions 6=(4,4,...6,) of the equation

oL(0)

00. for j=1...m Note: The ML requires (and exploits!)
J

~

0=0 the full knowledge of the distributions




Maximum Likelihood for Gaussian pdf

Let us take n measurements of a random variable distributed according to a
Gaussian PDF with u, ¢ unknown parameters. We want to use our data {x;} to

estimate the Gaussian parameters with the ML method.

The log-likelihood is

” “ 1 1, 1 (x-u)
logL(u,0?)=) f(X:u oc?)= log—— + =10 SRS
g (,UG) ; (HUG) ;( g\/g 2 gJZ 202 j

The MLE of pu is the value for which dinL/du=0:

dInL_Z( 2,u 2x)

0=Z(—2ﬂ—2xi)

n
_”}:EZX So we see that the ML estimator of the
N Gaussian mean is the sample mean.



We can easily prove that the sample mean is a unbiased estimator of the
Gaussian |, since its expectation value is

E[4]= _[..jﬁ(xl..xn)F(xl..xn;y)dxl..dxn
1 ~(xj=)” -p)?

__[J' Zx HT 20* ldx,..dx_

(X—u)® n 1 (xj-p)°
e 2 dx |] J4e 2% dx.
2

1 1
= — Xi
n;j \ 2o =) " 270 J d|nL_i[ 1 N 1 (Xi—ﬂ)z
do? -

:Eiﬂ = 1 i=1 202 0'4 2
n 5=
The same is not true of the ML estimate of GZ,\ o’ Z( 20

-6’ :HZ(Xi - p)’
i1

: : ~2;_ N-1,
since one can find as above that E[c°]= TG

The bias vanishes for large n. Note that a unbiased
estimator of the Gaussian ¢ exists: it is the sample variance 5% = —Z(Xi _;&)2

which is a unbiased estimator of the variance for any pdf. But it is not the ML one.
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