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About Your Lecturer 
• I am a INFN researcher, working in the CMS 

experiment at CERN since 2002 
– member of the CMS Statistics Committee, 2009- 

(and chair, 2012-2015) 
– Scientific coordinator of AMVA4NewPhysics 

network, 2015- 
• Previously (1992-2010) I have worked in the 

CDF experiment at the Tevatron 
 

• Besides research, I do physics outreach in a 
blog since 2005. The blog is now at 
http://www.science20.com/quantum_diaries
_survivor 
 

• Ways to contact me: 
– Email: tommaso.dorigo@gmail.com 
– Skype: tonno923 (seldom online) 
– Twitter: dorigo 
– Phone: 3666995594  
– Office phone: 0039 – 049 967 7230 

• I recently published a book on how HEP 
discoveries are made and not made – 
contains discussions on how statistical 
inference is made in large particle 
physics experiments 
 
 
 
 
 
 
 
 
 
 
 
 

More info at the World Scientific page:  
http://www.worldscientific.com/worldscibo
oks/10.1142/q0032 

http://www.science20.com/quantum_diaries_survivor
http://www.science20.com/quantum_diaries_survivor
mailto:tommaso.dorigo@gmail.com
http://www.worldscientific.com/worldscibooks/10.1142/q0032
http://www.worldscientific.com/worldscibooks/10.1142/q0032


Better Advices for Books 

• Glen Cowan, "Statistical Data Analysis", Oxford 
Science Publications 1998 
– Easy, clear, concise. Provides basic understanding on all 

the common topics, but lacks in-depth treatment of 
some advanced material important for HEP (e.g. MVA) 
 

• F. James, "Statistical Methods in Experimental 
Physics", 2nd ed., World Scientific 2002 
– A serious handbook which contains advanced 

treatment of many important problems for HEP. Also 
not complete. 
 

• I. Narsky, F. Porter, "Statistical Analysis Techniques in 
Particle Physics", Wiley 2014 
– A sharp focus on Multivariate Analysis techniques and 

their applications to HEP. Aimed at problem solving 
and extensive, although concise on any given topic. 

 



Practicalities 

Code for exercises in:  
http://www.pd.infn.it/%7Edorigo/Poisson_prob_fix.C 
http://www.pd.infn.it/%7Edorigo/Poisson_prob_fluct.C 
http://www.pd.infn.it/%7Edorigo/FlipFlop_exercise.C 
http://www.pd.infn.it/%7Edorigo/FlipFlop.C 
http://www.pd.infn.it/%7Edorigo/Coverage.C 
http://www.pd.infn.ig/%7Edorigo/Die.C   
http://www.pd.infn.ig/%7Edorigo/Die5.C 
http://www.pd.infn.ig/%7Edorigo/Bootstrap_variance.C 

Mind the underscores  
they are where you 
see a space in the name 

You can find the code used for some of the 
examples of these lectures in the links below 

A couple more practicalities: 
 - text in green shows proposed exercises 
 - text in purple indicates questions to you 
 - references[xx] are given in the text, listed at the end 
And don't forget to ask questions when I am not clear 
(surprisingly it does happen!) 

These are simple ROOT 
macros – the code is 
ugly but hopefully easy 
to understand 

http://www.pd.infn.it/%7Edorigo/Poisson_prob_fix.C
http://www.pd.infn.it/%7Edorigo/Poisson_prob_fluct.C
http://www.pd.infn.it/%7Edorigo/FlipFlop_exercise.C
http://www.pd.infn.it/%7Edorigo/FlipFlop.C
http://www.pd.infn.it/%7Edorigo/Coverage.C
http://www.pd.infn.ig/%7Edorigo/Die.C
http://www.pd.infn.ig/%7Edorigo/Die5.C
http://www.pd.infn.ig/%7Edorigo/Die.C


Contents 

Today: 
• Classical interval estimation  
• Derivation of upper and lower limits  

 
Tomorrow: 
• Hypothesis testing  
• CLs and the Higgs search methodology  
 
 with examples and exercises scattered around.  
 
 
Note: these slides are packed full with text. This has the purpose of making them easy to use offline 
- but this makes it hard for you to follow, especially if you take notes. So don't: there's everything 
you need already  
 



Statistics Matters! 
• To be a good physicist, one MUST understand Statistics: 

 
– “Our results were inconclusive, so we had to use Statistics” 
 We are quite often in that situation in HEP ! 
– A good knowledge of Statistics allows you to make optimal use of your  

measurements, obtaining more precise results than your colleagues, other 
things being equal 

– It is very easy to draw wrong inferences from your data, if you lack some 
basic knowledge on Statistics (it is easy regardless!) 
 

– Foundational Statistics issues play a role in our measurements, because 
different statistical approaches provide different results 

• There is nothing wrong with this: the different results just answer different 
questions 

• The problem usually is, what is the question we should be asking ?  
Not always trivial to decide! 

 
• We also as scientists have a responsibility for the way we communicate 

our results. Sloppy jargon, imprecise claims, probability-inversion 
statements are bad. Who talks bad thinks bad !  



What Is a Measurement ? 
• When we (physicists) talk about the "measurement" of a physical 

quantity, what do we actually mean ? 
– I would say it is a procedure: 

1) use of a measuring device to extract observations (data) carrying 
information on the quantity 

2)  analyse the data to extract the value of the quantity most consistent with 
the observations 

3) use some prescription to associate an uncertainty to the value found 
 

• In Statistics, what one talks about is an "estimate" of the quantity, 
and the process involves two very distinct activities, called "point 
estimation" and "interval estimation", which roughly correspond to 
points 2) and 3) above  
– The two  take different chapters in any Statistics book, for a good 

reason or two 



Point and Interval Estimation 

• Point estimation can be awfully complicated, but it is almost always non-
controversial  
– It works by defining an estimator, a function of the data which has good properties 

(no bias, small variance, consistency, efficiency...) 
– In making this choice, a careful evaluation of what we know of the distribution of 

our data is CRUCIAL 
– Two all-important estimators: the chisquare, the likelihood 
– But even more common and simple to remember as good examples of estimators 

are the sample mean and the sample variance 
– PE is dealt with in J. Donini's lectures – but I will introduce estimators and the MLE 

below. 
 
• Interval estimation is more subtle – and it is what we really care about 

– provide the user with the range of values the parameter is likely to have 
– experimental design: minimize expected uncertainties on parameters of interest 
– BSM searches: "does it agree with the SM?"  cannot answer with the estimate 

alone; the uncertainty without estimate is instead still useful ! 
 
• The core question we should always be asking ourselves is "do my uncertainty 

bars cover at the stated confidence level ?" 
 



A Parenthesis: Estimators 
• Before we discuss interval estimation, coverage, and related topics, 

we need to introduce a few basic concepts we cannot do without 
– some of them are in J.D.'s lecture, but they might be covered only 

tomorrow – so this is my backup plan 
– If I repeat something it can only be beneficial 

 
• The next few slides provide a few definitions we are going to use in 

the following: 
– expectation value, variance 
– estimators and some of their crucial properties 
– the MLE method 

 
• We can skip whatever is trivial to you... But stop me if you need 

more explanation 



E[.]: the Mean 
• The probability density function (pdf) f(x) of a random variable x is a normalized 

function which describes the probability to find x in a given range:    
    P(x,x+dx) = f(x)dx 

– This is defined for continuous variables. For discrete ones,  
 e.g. P(n|µ) = e-µ µn / n!  , P is a probability tout-court. 

 
• The expectation value of the random variable x is then defined as 

 
 

 
• E[x], also called population mean , or simply mean, of x, thus depends on the 

distribution f(x).  Note that E[x] is not a function of x, but it is rather a fixed 
quantity dependent on the form of the PDF f(x). 

• The formulation of the expectation value is useful to define other properties of 
the PDF, as shown in the following. 
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The Variance 

• Of crucial importance to determine the property of a 
distribution is the “second central moment” of x, 
 

 
 
 also called variance. The variance describes the "spread" of 

the PDF around its expectation value. It enjoys the property 
that  

   
  E[(x-E[x])2] = E[x2]-µ2,   
  
 as it is trivial to show. 

 
• Also well-known is the standard deviation σ = sqrt(V[x]).  
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Parameter Estimation: Definitions 
The parameters of a pdf are constants that characterize 
 its shape, e.g. 

Suppose we have a sample of observed values: 

x is a random variable, theta is a parameter. If you change theta, you get a different PDF ! 

We often want to find some function of the data to estimate the  
parameter(s): 

Note: the estimator gets written with a hat (or a *) 

Usually we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
 



Two Properties of Estimators 
If we were to repeat the entire measurement many times, the estimates we get 
from each would follow a pdf: 

biased large 
variance 

best 

We usually (not always!!!) want small (or zero) bias (systematic error): 

this way, the average of repeated measurements should tend to the true value. 

And we want a small variance (statistical error): 

Note: small bias & small variance are in general conflicting criteria. You know 
this from your experimental physics practice, but in Statistics this is a rule 

(will define better below) 



Estimators: a Few More Definitions 
• Given a sample {xi} of n observations of a random variable x, drawn from a pdf f(x), 

one may construct a statistic: a function of {xi} containing no unknown parameters. An 
estimator is a statistic used to estimate some property of a pdf. Using it on a set of 
data provides an estimate of the parameter. 

 
• Estimators are consistent if they converge to the true value for large n. 

 
• The expectation value of an estimator θ* having a sampling distribution H(θ*;θ) is 

 
 

• Simple example of day-to-day estimators: the sample mean and the sample variance 
 
 
 
 

• An estimator can be consistent even if biased: the average of an infinite replica of 
experiments with finite n will not in general converge to the true value, even if E[θ*] 
will tend to θ as n tends to infinity. 
 

• Other properties of estimators (among which usually there are tradeoffs): 
– efficiency:  an efficient estimator (within some class) is the one with minimum variance 
– robustness: the estimate is  less dependent on the unknown true distribution f(x) for a more 

robust estimator (see example on OPERA later) 
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A Final Digression:  
the (Toy) Monte Carlo Technique 

• We often need to check the properties of our estimators in the specific conditions 
of our experiment – one example will be given later 

– For instance, we want to see if they are better than others, or if they depend on a tunable 
parameter we want to optimize it 
 

• Often these details cannot be calculated algebrically, but we can use the Monte 
Carlo technique: 

– Simulate data with random generators 
– Repeat many times, each time extracting properties under study (optionally as a function of 

parameter to be optimized) 
– Study properties of estimators as f(tunable parameters) 

 
• To generate pseudo-data one may rely on built-in functions in statistics packages 

(root, R, etc.)  
– We are spoiled by these built-in functions! We need to remember how to do the basic things 

by ourselves… 
• One important part is to know how to generate data according to f(x) using a 

simple rndm() function. To do this one needs to  find the cumulative F(x) and 
invert it. See next slide 

How many of you know how to do that ? 



The General Idea 

• You have a histogram, or a function, f(x). You want to create 
pseudo-data that are distributed like it, to study other properties 
 

• From that f(x) you can always derive the cumulative function F(x):   
𝐹𝐹 𝑥𝑥 =  ∫ 𝑓𝑓 𝑡𝑡 𝑑𝑑𝑡𝑡𝑥𝑥

−∞  
 
• Then just throw a random number in [0,1] 
• Find the x where the cumulative function has that value  

– and you are done! 
1 

0 x 



E.g. How To Get Data Distributed as 
f(x)=exp(-x) ? 

 • First obtain F(x), the cumulative function: 
• 𝐹𝐹 𝑥𝑥 = ∫ 𝑓𝑓 𝑥𝑥′ 𝑑𝑑𝑥𝑥′ = ∫ 𝑒𝑒−𝑥𝑥𝑥𝑥

0
𝑥𝑥
0 𝑑𝑑𝑥𝑥 = 1 − 𝑒𝑒−𝑥𝑥 = 𝑦𝑦 

• Next, invert it: 
• 𝑥𝑥 = −log(1 − 𝑦𝑦) 

• Finally, account for the range of x you wish to generate, 
e.g. [0, xmax]: 

• 𝑥𝑥 = − log[1 − 𝑦𝑦 1 − 𝑒𝑒−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ]  
 

 
• Voila – if y is uniformly distributed in [0,1], x as computed 

above is distributed as 𝑓𝑓 𝑥𝑥 = 𝑒𝑒−𝑥𝑥 in [0, xmax] ! 
 
– Try it at home: derive recipe to get f(x)=x2 

(you multiply y by the integral 
of the pdf in the required range (<1) 
to account for the restriction) 



Result 

Original distribution of y  
From gRandomUniform() 

Resulting transformed 
distribution 



The Method of Maximum Likelihood 
• Take a pdf for a random variable x, f(x; θ) which is analytically known, but for which the 

value of m parameters θ is unknown. The method of maximum likelihood allows us to 
estimate the parameters θ if we have a set of data xi distributed according to f. 

• The probability of our observed set {xi} depends on the distribution of the pdf. Assuming 
that the measurements are independent, we have  

 
• The likelihood function  
  
 is then a function of the parameters θ only. It is written as the joint pdf of the xi, but we 

treat those as fixed 
 
• Using L(θ) one can define “maximum likelihood estimators” for the parameters θ as the 

values which maximize the likelihood, i.e. the solutions      of the equation 
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Variance of the MLE 

• In the simplest cases, i.e. when one has unbiased estimates and 
Gaussian distributed data, one can estimate the variance of the 
maximum likelihood estimate with the simple formula 

  
 
 
 This is also the default used by MIGRAD to return the uncertainty of 

a MLE from a fit. 
  
 However, note that this is only a lower limit of the variance in 

conditions when errors are not Gaussian and when the ML 
estimator is unbiased. A general formula called the Rao-Cramer-
Frechet inequality gives this lower bound as 
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Example: the Loaded Die 
 Imagine you want to test whether a die is loaded. Your hypothesis might be that 

the probabilities of the six occurrences are not equal, but rather that 

Your data comes from N=20 repeated throws of the die, whereupon you get: 

The likelihood is the product of probabilities, so to estimate t you write L as 

Setting the derivative wrt t to zero of –logL yields a quadratic equation: 

This has one solution in the allowed range for t, [-1/6,1/3]: t=0.072. Its uncertainty can be 
obtained by the variance, computed as the inverse of the second derivative of the likelihood. 
This amounts to +-0.084. The point estimate of the “load”, the MLE, is different from zero,  
but compatible with it. We conclude that the data cannot establish the presence of a bias. 



Exercise With Root 
 Write a root macro that determines, using the likelihood of the previous slide, the 

value of the bias, t, and its uncertainty, given a random set of N (unbiased) die 
throws. 

 
 Directions: 
1) Your macro will be called “Die.C” and it will have a function called “void Die(int 

N) {}” 
2) Produce a set of N throws of the die by looping i=0...N-1 and storing the result of 

(int)(1+gRandom->Uniform(0.,6.));  
3) Call N1=number of occurrence of 1; N3=occurrences of 6; N2=other results. 
4) With paper and pencil, derive the coefficients of the quadratic equation in t for 

the likelihood maximum as a function of N1, N2, N3. 
5) Also derive the expression of –d2lnL/dt2 as a function of t and N1,N2,N3. 
6) Insert the obtained formulas in the code to compute t* and its uncertainty σ(t*). 
7) Print out the result of t in the allowed range [-1/6,1/3] and its uncertainty. If 

there are two solutions in that interval, print the result away from the boundary. 
8) How frequently do you get a result for t less than one standard deviation away 

from 0? 
 



 Die.C 





Another Exercise: Solve With LS Method 

• We just used the ML method to estimate the load 
on the die. But we could have also done it with 
the chisquared method 

try it at home, we can look at the results 
tomorrow 
Hints:  
 - write down the chisquare  
 - derive WRT the load t 
  - set the derivative to zero, solve for t 
 - find t1, t2 such that chi2(t1)=chi2(t2)=chi2(t)+1 



Loaded Die: Least-Square Solution 
• We just have to write a chisquare as a function of the data Ni=(3,3,3,3,3,5) 

and the load t: 

𝜒𝜒2 =  �
𝑁𝑁𝑖𝑖 − 𝑒𝑒𝑖𝑖(𝑡𝑡) 2

𝜎𝜎2𝑖𝑖

6

𝑖𝑖=1

 

where ei(t) are the expected times that result "i" appears in 20 throws, i.e. ei = 20 
P(i) where, as before, 
 
 
Note that we can use the information of N2, N3, N4, N5 distributions if 
we wish – it just amounts to consider them as separate in the chi2. 
 
Once we have the chi2(t), we may compute its derivative w.r.t. t, and set it to 
zero, then solve for t  this will yield our point estimate t* 
The interval will be obtained by finding t1, t2 such that  
  chi2(t1) = chi2(t2) = chi2(t*)+1 
Results: ....  
Comparing with the likelihood solution, we see that ...  ?  
Of the two ways to compute the chisquare the preferable one is ... ? 



Calculation 
Inputs: N, n1, nx, n6 (x= sum of 2,3,4,5) 
ei(t) = N*p(i,t)   e1(t) = N*(1/6-t/2); ex(t) = 4*N*(1/6-t/8) = N*(2/3-t/2); e6(t) = N*(1/6+t)           ( etot = N) 
S1= [n1-e1(t)]2 / n1 = [n1

2 - 2*n1*N*(1/6-t/2) + N2*(1/6-t/2)2] / n1 = 
n1 - N/3 + N*t + N2/(36*n1) - N2*t/(6*n1) + N2*t2/(4*n1) 
Sx= [nx-ex(t)]2 / nx = [nx

2 - 2*nx*N*(2/3-t/2) + N2*(2/3-t/2)2] / nx = 
nx - 4*N/3 + N*t + 4*N2/(9*nx) – 2*N2*t/(3*nx) + N2*t2/(4*nx) 
S6 = [n6-e6(t)]2 / n6 = [n6

2 - 2*n6*N*(1/6+t)+N2*(1/6+t)2] / n6 = 
n6 - N/3 - 2*N*t + N2/(36*n6) + N2*t/(3*n6) + N2*t2/n6 
 
dS1/dt = N - N2/(6*n1) + N2*t/(2*n1) 
dSx/dt = N – 2*N2/(3*nx) + N2*t/(2*nx) 
dS6/dt = - 2*N + N2/(3*n6) + 2*N2*t/n6 
 
dS1/dt + dSx/dt + dS6/dt = 0  
N - N2/(6*n1) + N2*t/(2*n1) + N – 2*N2/(3*nx) + N2*t/(2*nx) - 2*N + N2/(3*n6) + 2*N2*t/n6 = 0 
 
t*N2*[1/(2*n1) + 1/(2*nx) + 2/n6] - [N2*(1/(6*n1) + 2/(3*nx) - 1/(3*n6))] = 0 
 
t = [1/(6*n1) + 2/(3*nx) - 1/(3*n6)] / [1/(2*n1) + 1/(2*nx) + 2/n6)] = 
   = (nx*n6 + 4*n1*n6 - 2*n1*nx) / (6*n1*nx*n6)  /  (3*nx*n6 + 3*n1*n6 +12*n1*nx) / (6*n1*nx*n6) = 
   = (nx*n6 + 4*n1*n6 - 2*n1*nx / ( 3*nx*n6 + 3*n1*n6 + 12*n1*nx) 
 
 
 
 
 



Calculation, using all results (2,3,4,5) 
Inputs: N, n1, nx, n6 (x= 2,3,4,5) 
ei(t) = N*p(i,t)   e1(t) = N*(1/6-t/2); ex(t) = N*(1/6-t/8); e6(t) = N*(1/6+t)           ( etot = N) 
S1= [n1-e1(t)]2 / n1 = [n1

2 - 2*n1*N*(1/6-t/2) + N2*(1/6-t/2)2] / n1 = 
n1 - N/3 + N*t + N2/(36*n1) - N2*t/(6*n1) + N2*t2/(4*n1) 
Sx= [nx-ex(t)]2 / nx = [nx

2 - 2*nx*N*(1/6-t/8) + N2*(1/6-t/8)2] / nx = 
nx - N/3 + N*t/4 + N2/(36*nx) – N2*t/(24*nx) + N2*t2/(64*nx) 
S6 = [n6-e6(t)]2 / n6 = [n6

2 - 2*n6*N*(1/6+t)+N2*(1/6+t)2] / n6 = 
n6 - N/3 - 2*N*t + N2/(36*n6) + N2*t/(3*n6) + N2*t2/n6 
 
dS1/dt = N - N2/(6*n1) + N2*t/(2*n1) 
dSx/dt = N/4 – N2/(24*nx) + N2*t/(32*nx) 
dS6/dt = - 2*N + N2/(3*n6) + 2*N2*t/n6 
 
dS1/dt + dS2/dt + dS3/dt + dS4/dt + dS5/dt + dS6/dt = 0  
N - N2/(6*n1) + N2*t/(2*n1) + N/4 – N2/(24*n2) + N2*t/(32*n2) + N/4 – N2/(24*n3) + N2*t/(32*n3) + N/4 – 
N2/(24*n4) + N2*t/(32*n4) + N/4 – N2/(24*n5) + N2*t/(32*n5) - 2*N + N2/(3*n6) + 2*N2*t/n6 = 0 
 
t*N2*[1/(2*n1) + 1/(32*n2) + 1/(32*n3) + 1/(32*n4) + 1/(32*n5) + 2/n6] - [N2*(1/(6*n1) + 1/(24*n2) + 1/(24*n3) + 
1/(24*n4) + 1/(24*n5) - 1/(3*n6))] = 0 
 
t = [1/(6*n1) + 1/(24*n2) + 1/(24*n3) + 1/(24*n4) + 1/(24*n5) - 1/(3*n6)] / [1/(2*n1) + 1/(32*n2) + 1/(32*n3) + 
1/(32*n4) + 1/(32*n5) + 2/n6)] = 
   = 4/3* [4/n1 + 1/n2 + 1/n3 + 1/n4 + 1/n5  - 8/n6] /  [16/n1 + 1/n2 + 1/n3 + 1/n4 + 1/n5 + 64/n6] 
 
 
 
 



Intermezzo: Area Preservation 
 

or 
 

Two Chisquared and a Likelihood 



Know the Properties of Thy Estimators 

• Issues (and errors hard to trace) may arise in the simplest of 
calculations, if you do not know the properties of the tools you are 
working with. 

 
• Take the simple problem of combining three measurements of the 

same quantity. Make these be counting rates, i.e. with Poisson 
uncertainties: 
 
– A1 = 100 
– A2 = 90 
– A3 = 110 

 
 These measurements are fully compatible with each other, given that 

the estimates of their uncertainties are sqrt(Ai)={10, 9.5, 10.5} 
respectively. We may thus proceed to average them, obtaining  

 <A> = 100.0+-5.77 

If they aren’t, 
don’t combine! 



 Now imagine, for the sake of argument, that we were on a lazy mood, and 
rather than do the math we used a χ2 fit to evaluate <A>.  

  
 Surely we would find the same answer as the simple average of the three 

numbers, right?  
 
 

In general, a χ2  statistic results from a  
weighted sum of squares; the weights 
should be the inverse variances of the true 
values.  
Unfortunately, we do not know the latter! 
 

χ2 fit        Likelihood fit 

Let us dig a little bit into this matter. This 
requires us to study the detailed definition  
of the test statistics we employ in our fits. 

the χ2 fit does not “preserve 
the area” of the fitted histogram 

WTF is going on ?? 

… Wrong! 



Two Chisquareds and a Likelihood 
• The “standard” definition is called  “Pearson’s χ2”, which for Poisson data we write as 
 

 
 
 

• The other (AKA “modified” χ2) is called “Neyman’s χ2”: 
 

 
 
 

• While χ2
P uses the best-fit variances at the denominator, χ2

N uses the individual estimated 
variances. Although both of these least-square estimators have asymptotically a χ2 
distribution, and display optimal properties, they use approximated weights. 

 The result is a pathology:  neither definition preserves the area in a fit! 
 χ2

P overestimates the area, χ2
N underestimates it. In other words, neither works to 

make a simple weighted average ! 
 

• The maximization of  the Poisson maximum likelihood, 
 
 

  instead preserves the area, and obtains exactly the result of the simple average. 
     Proofs in the next slides. 
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Proofs – 1: Pearson’s χ2 

• Let us compute n from the minimum of χ2
P: 

 
 
 
 
 
 
 
 
 
 
 
 
 n is found to be the square root of the average of squares, and is 

thus by force an overestimate of the area! 
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2 – Neyman’s χ2 

• If we minimize χ2
N , 

  
 
 
 we have: 
 

 
 
 
 
 
 
 
 

  
 
 
 
 the minimum is found for n equal to the harmonic mean of the inputs – which is 

an underestimate of the arithmetic mean! 
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Just developing  
the fraction leads to  

which implies that 

from which we finally get  



3 – The Poisson Likelihood LP 
• We minimize LP by first taking its logarithm, and find: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 As predicted, the result for n is the arithmetic mean. Likelihood fitting 
preserves the area! 
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Putting it together 
• To check the behavior of the three fitting 

methods (remember: we are just 
considering them as ways to determine a 
weighted average here), we study a 
histogram with 100 bins 
 

• Each bin is filled with N sampled from a 
Poisson(N|μ)  
 

• We then fit the histogram to a constant 
by minimizing χ2

P , χ2
N , -2ln(LP)  in turn 

 
• We repeat many times, getting the 

average result for each fitting method 
 

• We can then also study the ratio 
between the average result and the true 
µ as a function of µ 
 
 

By the way, it's four lines of code: 
TH1D * A = new TH1D("A","",100, 0., 100.); 
For (int i=1; i<101; i++) {  
A->SetBinContent(i,gRandom->Poisson(50.));} 
A->Fit("pol0"); // for Neyman's chi2 



Comparison vs μ 

 
• One observes that the 

convergence is slowest for 
Neyman’s χ2, but the bias is 
significant also for χ2

P  
– This result depends only 

marginally on the number of 
bins   

 
• Keep that in mind when 

you fit a histogram!  
 

• Standard ROOT fitting uses 
V=Ni  Neyman’s 
definition! 
 
 



Discussion 
• What we are doing when we fit a constant through a set of k bin contents is to extract the common, 

unknown, true value µ from which the entries were generated, by combining the k measurements 
 

We have k Poisson measurement of this true value. Each equivalent measurement should have the same 
weight in the combination, because each is drawn from a Poisson of mean µ, whose true variance is µ. 
 

But having no µ to start with, we must use estimates of the variance as a (inverse) weight. So the χ2
N 

gives the different observations different weights 1/Ni. Since negative fluctuations (Ni < µ) have larger 
weights, the result is downward biased! 
 
What χ2

P does is different: it uses a common weight for all measurements, the fit result for the average, 
µ*. Since we minimize χ2

P to find µ*, larger denominators get preferred  positive bias: µ* > µ! 
 
All methods have optimal asymptotic properties: consistency, minimum variance. However, one seldom 
is in that regime. χ2

P  and χ2
N have problems when Ni is small. These drawbacks are solved by grouping 

bins, at the expense of loss of information. 
 
LP does not have the approximations of the two sums of squares, and it has in general better properties.  
Cases when the use of a LL yields problems are rare. Whenever possible, use a Likelihood! 



Interval Estimation 



Confidence Level 
• In classical statistics, the confidence level (CL) is a reference value chosen 

by the user 
– Most typical: CL=0.683 ("1-sigma") 
– Also quite used: CL=0.90, CL=0.95, CL=0.99 

• The CL is used to define the level of confidence one wishes to have on the 
possible values of a quantity under study 
– One can alternatively set the type-I error rate α, as  
 CL = 1-α. 

What does one do with the CL? One seeks to derive intervals (uncertainty 
bars, or upper or lower limits) that on average (in a frequentist sense) have 
the property of including the unknown, but fixed, true value of the quantity 
with a rate not smaller than CL. 
 
The notion of a CL stems from reasoning on the probability of getting data of 
some kind, under some hypothesis. To understand it, we need to discuss the 
Neyman construction. 



The Simplest Confidence Interval:  
the Standard Deviation  

 
• The standard deviation is used in most simple applications as a 

measure of the uncertainty of a point estimate 
 
– Sample standard deviation: 

  
• For example: N i.i.d. observations {xi} of random variable x with 

hypothesized pdf f(x;θ), with θ unknown.  X={xi} allows to compute 
the value that a suitable estimator θ*() takes on X, θ*(X) 
 

• Using an analytic method, or the RCF bound, or MC sampling 
techniques, one may usually cook up an estimate the standard 
deviation of θ* , σ*

θ*
 

• The value θ*+- σ*
θ* is then reported. What does this mean ? 

 
– Have a crack at it ! Spell out what it means to report that. 

 
 



θ*+- σ*
θ* is Reported. What Does This 

Mean ? 

• It means that in repeated estimates based on the same number N 
of observations of x, θ* would distribute according to some pdf 
G(θ*) centered around a true value θ with a true standard deviation 
σθ*, respectively estimated by θ* and σ*

θ* 
 

• In the large sample limit G() is a (multi-dimensional) Gaussian 
function 
 

• In most interesting cases for physics G() is not Gaussian, the large 
sample limit does not hold, 1-sigma intervals do not cover 68.3% of 
the time the true parameter, and we have better be careful in 
constructing intervals.  

• But we need to have a hunch of the pdf f(x;θ) to start with! (Or 
maybe not: when we can't, we assume it is itself Gaussian, and use 
the chisquare method.) 
 



One Example, to Clarify 
 

• A strongly produced resonance of unknown mass in 
LHC data would result in events with two energetic 
jets. Let us assume we have a significant signal in our 
data, x 
 

• The PDF f(x;M) depends on M; we may derive an 
estimate M*+-σ*M* using x and some estimator – the 
easiest one being the sample mean 
 

• Our interval estimation procedure returns intervals 
that hopefully fulfil the requirements on the 
confidence level chosen 
 

• Still, there is no guarantee that the true value M is 
within the quoted interval around M* ! 

• Yet in a frequentist sense our interval covers it 68.3% 
of the time 
 

• The fact is that intervals constructed in a less than 
rigorous manner often FAIL to fulfil that requirement 
 
 
 M* Different estimates 

may have different sampling 
distributions 

The question is how to construct 
confidence intervals that "work" in general 

F(x|M) 

G(M*) 

x 



Neyman’s Confidence Interval Recipe 

• Specify a model which provides the probability density 
function of a particular observable x being found, for each 
value of the unknown parameter of interest: p(x|μ)  

• Also choose a Type-I error rate α (e.g. 31.7%, or 5%), or the 
corresponding CL 
 

• For each µ, draw a horizontal acceptance interval [x1,x2] such 
that  

  p (x∈[x1,x2] | μ) = 1 ‐ α.  
 There are infinitely many ways of doing this: it all depends on 

what you want from your data 
– for upper limits, integrate the pdf from x to infinity 
– for lower limits do the opposite 
– might want to choose central intervals 
– or shortest intervals ? 

•  In general: an ordering principle is needed to well-define. 
 

• Upon performing an experiment, you measure x=x*. You can 
then draw a vertical line through it.  

  
  The vertical confidence interval [µ1,µ2]  (with Confidence Level 

C.L. = 1 ‐α) is the union of all values of μ for which the 
corresponding acceptance interval is intercepted by the 
vertical line. 

Note: the recipe is designed to 
cover correctly. Thus, one could 
not, on average, win money by 
betting that the result of a 
measurement does not contain the 
true value, by using payoff odds 
corresponding to the stated type-I 
error rate (eg. 5%  20:1) 



Important Notions on C. I.’s 

 Let the unknown true value of μ be μt . In repeated experiments, the confidence intervals 
will have different endpoints [μ1, μ2], depending on the random variable x.   

 A fraction C.L. = 1 –α of intervals obtained by Neyman’s contruction will contain (“cover”) the 
fixed but unknown μt :  P( μt∈[μ1, μ2]) = C.L. = 1 -α. 

What is a vector ?  

Also note: “repeated sampling” does not require one to perform the same experiment all 
of the times for the confidence interval to have the stated properties. Can even be different  
experiments and conditions! A big issue is what is the relevant space of experiments to consider. 

A vector is an element of a vector space (a set with certain properties). 

           defined to be “an element of a confidence set”, the latter 
being a set of intervals defined to have the property of frequentist coverage under sampling! 
Similarly, a confidence interval is 

It is important thus to realize two facts: 
1) the random variables in this equation are μ1and μ2, and not μt   
2) Coverage is a property of the set, not of an individual interval ! For a Frequentist, the interval either 

covers or does not cover the true value, regardless of α.  
  Classic FALSE statement you should avoid making:  
 “The probability that the true value is within µ1 and µ2 is 68%” !  

The confidence interval instead does consist of those values of μ for which the observed x 
is among the most probable (in sense specified by ordering principle) 



Upper Limits: How We Use Them 

• If we do not see a signal we can 
exclude the new physics model  

 (simple hypothesis test) 
 

• More often we have a unknown 
parameter, and we exclude 
ranges of its value 

– Typically this is the mass of the 
particle 

 
• We can e.g. derive lower limits 

on the particle mass from upper 
limits on the signal strength, by 
comparing those to a theoretical 
model 

Luckily, the lower mass limit is useful information, worth a publication ! 



The Problem Is Relevant in 
Fundamental Physics and Astrophysics ! 

• To give you the flavour of the relevance 
of the problem of setting correct upper 
limits, suffices to tell the story of the 
Higgs search 
 
 

• For a long time (late 1990s) all we could 
say was where the particle could *not* 
be 
 
 

• The competition (also for funding) 
centred on that information rather than 
the observation of the particle 
 
 

• At the end of the seminar I will discuss 
the details of the method used.  



Coverage, or the Lack Thereof 
Take a typical HEP graph: event counts in 
a mass histogram, with sqrt(N) bars 
    [Remember: for a Poisson, μ=σ2] 
 
What are those uncertainty bars 
supposed to mean? They report central 
intervals and nothing is said, so these 
should "cover" at 68.3%. Do they ? 
Alas, usually they don't, as the Gaussian 
approximation for the Poisson 
distribution breaks down for small N 
 
Suppose John claims x is in [a,b] with 
68.3% confidence, but in fact the CL of 
the procedure is only 50%.  
 
 John is a liar ! He gave a 
misrepresentation of the information 
content of the measurement ! 

Of course, a solution exists: it was 
obtained in the fifites by Garwood, who 
used Neyman's construction for the 
Poisson distribution 

By the way: what is it that 
uncertainty bars on event 

counts mean ? 



On Undercoverage 
• It is BAD. A frequentist shouldn’t allow it. 
• E.g: if you state a limit or an interval at 95% CL and it turns out that, 

for the true value μ, the coverage is actually 85%, you have 
significantly underestimated the uncertainty bars of your 
measurement – and your type-I error rate is 3-fold larger !!! 
 

• Undercoverage results from approximate expressions for the variance, 
or from other specific aspects of the problem  
– See example of likelihood of loaded die later 

 
 

• Undercoverage can also results from apparently innocuous procedures 
in the derivation of our results, like 
– deciding whether to quote a limit or a confidence interval a posteriori 
– modifying details of analysis “because something does not look right” in 

your background estimate 
– Not publishing results that are controversial !  



Overcoverage 
• Coverage is usually guaranteed by the 

frequentist Neyman construction. But this 
includes overcoverage. 

• Overcoverage: sometimes the pdf p(x|θ) is 
discrete  it may not be possible to find exact 
boundary values x1, x2 for each θ; one thus errs 
conservatively by  including x values (according 
to one’s ordering rule) until Σip(xi|θ)>1-α  

  θ1 and θ2 will overcover 
Let's make an example with the Binomial 

 

0      1      2      3      4      5           x 

p 

0.5 

0.2 

For N=5 trials 

 F(N;r,p) = N! pr(1-p)N-r/[r!(N-r)!] 

 
For N=5, p=0.5: 
F(5;0,0.5)=0.55=0.031 
F(5;1,0.5)=5*0.55=0.156 
F(5;2,0.5)=10*0.55=0.313 
F(5;3,0.5)=10*0.55=0.313 
F(5;4,0.5)=5*0.55=0.156 
F(5;5,0.5)=0.55=0.031 

For N=5, p=0.8: 
F(5;0,0.8)=0.25=0.0003 
F(5;1,0.8)=5*0.24*0.8=0.0064 
F(5;2,0.8)=10*0.23*0.82=0.0512 
F(5;3,0.8)=10*0.2^2*0.83=0.2048 
F(5;4,0.8)=5*0.2*0.84=0.4096 
F(5;5,0.8)=0.85=0.3277 

0.8 

0.938 

0.737 



• The Binomial error bars for a small number of trials is indeed a complex problem!  
• The (true) variance is σ=sqrt(ρ(1-ρ)/N) , but its ESTIMATE σ∗=sqrt(ρ∗(1-ρ∗)/N)  (with 

ρ*=Successes/N) (so-called Wald interval) fails badly for small N and ρ∗0,1 
 

• Clopper-Pearson: intervals obtained from Neyman’s construction with a central 
interval ordering rule. They overcover sizeably for some values of the 
trials/successes. 

• Lots of technology has been deployed  to improve properties of binomial intervals  
  

 

N= 10; 68.27% coverage 

In HEP (and astro-HEP) the interest is related to the 
famous on-off problem (determine a expected 
background from a sideband) 
 



Wilson 
Score 

Interval  
for 

Binomial 
Cousins and Tucker, 0905.3831  
 

N=10; red=Wilson; 
Black=Wald 

http://arxiv.org/PS_cache/arxiv/pdf/0905/0905.3831v2.pdf


Confidence Intervals and Flip-Flopping 

• Here we want to understand a couple of issues that the Neyman 
construction can run into, for the very common case of the measurement 
of a bounded parameter and the derivation of upper limits on its value 
 

• Typical observables falling in this category: cross section for a new 
phenomenon; or neutrino mass 
 

• We take the simplifying assumption that we do  
 a unbiased Gaussian-resolution measurement;  
 we also renormalize measured values such that  
 the variance is 1.0. In that case if μ is the true  
 value, our experiment will return a value x which  
 is distributed as  

observed value x 

tr
ue

 v
al

ue
 μ

 

Nota bene: x may assume negative values! 



Neyman Construction  
for Bounded Parameter 

• Gaussian measurement with known sigma 
(σ=1 assumed in graph) of bounded 
parameter μ>=0 

• Classical method for α=0.05 produces upper 
limit μ<x+1.64σ  (or μ<x+1.28σ for α=0.1)  

• for x<-1.64 this results in the empty set! 
• in violation of one of Neyman’s own demands 

(confidence set does not contains empty sets) 
– Also note: x<<0 casts doubt on σ=1 hypothesis 
 rather than telling about value of μ the result 
could be viewed as a GoF test 

Flip-flopping: “since we observe no significant signal, we proceed to derive upper limits…” 
As a result, the upper limits undercover ! (Unified approach by Feldman and Cousins solves 
the issue) 
 

α=0.05 



 The attitude that one might take, upon measuring, say, 
a particle cross section which is negative (say if your 
backgrounds fluctuated up such that Nobs<Bexp), is to 
quote zero, and report an upper limit which, in units of 
sigma, is  

 xup=sqrt(2)*ErfInverse(1-2α) 
 where α is the desired confidence level. Xup is such that 

the integral of the Gaussian from minus infinity to xup is 
1-α (one-tailed test). 

  If, however, one finds x>D, where D is one’s 
discovery threshold (say, 3-sigma or 5-sigma), one 
feels entitled to say one has “measured” a non-
zero value of the parameter – a discovery of the 
Higgs, or a measurement of a non-zero neutrino 
mass. What the physicist will then report is rather 
an interval: to be consistent with the chosen test 
size α, he will then quote central intervals which 
cover at the same level:  xmeas+-E(α/2), with 
 E(α) = sqrt(2)*ErfInverse(1-2*α).  
The confidence belt may then take the form 
shown on the graph on the right. 
 

α=0.10, 
Z>5 discovery 
threshold 
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Flip-Flopping Illustrated 
• E.g. α=0.05, Disc. Threshold =4.5 

Under 
coverage! 

The issue of Flip-Flopping and 
the empty set problem can be 
cured in the frequentist setting 
by the recipe advocated by 
G.Feldman and R.Cousins in 1998, 
based on a likelihood-ratio ordering 
of the acceptance intervals. 
The FC technique is widely used in HEP 



Bounded μ Problem: Proposed Solutions 

The graph illustrates 
various choices for 
confidence belts one 
can construct for the 
bounded parameter 
problem 
 
The most principled 
among classical 
constructions is the 
one provided by 
Feldman and 
Cousins in 1998 
Bayesians have their 
own solution too 

(1) Neyman’s recipe for 90% upper limits: μUL=x+1.28. 
(4) Bayesian solution: step-function prior 
(6) Mc Farlane's "loss of confidence" 



One Further Example of Coverage 
• We can re-use the program "Die.C" You may modify it 

to compute the coverage of the likelihood intervals.  
Die5.C 

By running it you will find that the coverage is only 
approximate for small number of throws, 
especially when your true value of the  
parameter t (the “increase in probability”  
of throws giving a 6)  lies close to the  
boundaries -1/6, 1/3. 
 

To do that, one must add a TH1D* called 
“Coverage” and a cycle on the true 
parameter values, taking 
care of simulating the die throws correctly 
taking into account the bias t. Then one 
counts how often the likelihood has the true 
value within its interval, as a function of the 
true value. 
 



Food for Thought: Relevant Subsets 

Neyman’s method applied to Gaussian measurement with known σ of a parameter 
with unknown positive mean μ yields upper limits at 95% CL in the form 
μUL=x+1.64σ . The procedure guarantees coverage, and yet... 
 
• Yet one can devise a betting strategy against it at 19:1 odds, using no more 

information than the observed x, and be guaranteed to win in the long run! 
– How ? Just choose a real constant k: bet that the interval does not cover 

when x<k, pass otherwise. 
– For k<-1.64 this wins EVERY bet! For larger k, advantage is smaller but is still 

>0. 

 
Surely then, the procedure is not making the best inference on 
the data ?  



Conditioning and Ancillary Statistics 
 

In the bounded parameter problem, the flaw of being subject to winning bet strategies can be 
amended by adding a horizontal line or interval (such that any c.i. will contain that value of μ), 
but it feels like a hack 
 
In other cases one can identify ancillary statistics and use them to partition the space into 
relevant subsets.  
 
• “Ancillary statistic”: f(data) yielding information about the precision of the estimate of the 

parameter of interest, but no information about the parameter’s value. 
 

• Most typical case in HEP: branching fraction measurement. With NA, NB event counts in two 
channels one finds that  
 

  P(NA,NB)      = Poisson (NA) x Poisson (NB) =  
       = Poisson (NA+NB) x Binomial (NA|NA+NB) 
  
 By using the second expression, one may condition to having observed NA+NB in total, and 

then ignore the ancillary statistic NA+NB, since all the information on the BR is in the 
conditional binomial factor  

   
     by restricting the sample space, the problem is simplified.  
 



Cox Weighting Procedure 
Things get even more intriguing in the famous example by B. Cox[2]:  
 
 
 
 
 
 
 
 
 

 
Flip a coin to decide whether to use a 10% scale (if you get tails) or a 1% scale (if you get 
heads) to measure an object's weight. Which error do you quote for your measurement, 
upon getting heads ? 
 
Of course the knowledge of your device allows you to estimate that your precision is 1% -
but a full NP construction (which is unconditional on the outcomes) would require you to 
include the coin flipping in the procedure! 

 
 



Locating the Box 

• Another example:  
 Find μ using x1, x2 sampled from  
 p(x|μ) = Uniform [μ-1/2, μ+1/2] 
 
Suppose e.g. that μ=1, and take the two datasets,  
A: {0.99,1.01} ; B: {0.6,1.4}. What would you prefer to 

measure? 
– NP procedures maximizing power in the unconditional space 

yield the same confidence interval for both data sets A and B; 
however, B restricts the set of possible μ to [0.9,1.1] while A 
only restricts it to [0.51,1.49] ! 

– There exists in fact an ancillary statistics |x1-x2| which carries 
no information on μ, yet it can be used to divide the sample 
space in subsets where inference can be more or less powerful.  

– See R. Cousins for more discussion 
 

μ-1/2       μ         μ+1/2 

p(x|μ) 

x 

x1         x2 

1 



Relevant Subsets: Take-Away Bit 

Point made: The quality of your inference depends 
on the breadth of the “whole space” you are 
considering. The more you can restrict it, the better 
(i.e. the more relevant) your inference becomes 
 
• Ancillary statistics are not easy to find, but they 

are quite useful! 
 

 
Look for ancillary statistics in your everyday 

measurements! 
 

 



Properties of Estimators Relevant for 
Interval Estimation 

• A uniformly minimum variance unbiased estimator (UMVU) for a parameter is the one 
which has the minimum variance possible, for any value of the unknown parameter it 
estimates. 

• The form of the UMVU estimator depends on the distribution of the parameter! 
•  Minimum variance bound: it is given by the RCF inequality 

 
 
 
 A unbiased estimator (b=0) may have a variance as small as the inverse of the second derivative  
 of the  likelihood function, but not smaller.  

• Two related properties of estimators are efficiency and robustness. 
– Efficiency: the ratio of the variance to the minimum variance bound 
 Robustness: more robust estimators are less dependent on deviations from the assumed underlying pdf  

 
• Simple examples: 

– Sample mean: most used estimator for centre of a distribution - it is the UMVU estimator of the mean, 
if the distribution is Normal; however, for non-Gaussian distributions it may not be the best choice.  

– Sample mid-range (defined later): UMVU estimator of the mean of a uniform distribution 
 

• Both sample mean and sample mid-range are efficient (asymptotically efficiency=1) for the 
quoted distribution (Gaussian and box, respectively). But for others, they are not. Robust 
estimators have efficiency less dependent on distribution 
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A Robust Estimator: Trimmed Mean 

• Often we have a sample of measurements, most of which 
are drawn from a narrow PDF, but we know that there is 
some "background" that follows a wider distribution 
– Simple example: a Zee peak from collider data 

 
• We might want to quickly estimate the mean of the 

narrow "signal" PDF using our data  
• If we take the sample mean, we may err because we do 

not know the overall distribution and events in the tails 
ruin the accuracy of our estimate 
 Use a "Trimmed mean": take the sample mean from the 
central quantiles of the data. 
The estimate becomes less dependent on random outliers 



Trimmed Mean Example:  
Zee Mass Distribution 

Here we have 100 Zee candidates, 
and want a quick-and-dirty check of 
the energy scale in the EM 
calorimeter 
There is obviously some background, 
distributed at random values 
To get the peak position we could fit 
the distribution, but a quicker way is 
to take the trimmed mean. 
Average error of estimate indicates 
we should not average all data 
 
In this case, for r<0.8 we are 
insensitive to the background noise!  

Reconstructed dielectron mass 

Fraction of data considered in average 

One obviously needs to find the proper 
working point for one's own problem 
 Use toy MC technique! 

Sample distribution 
of 100 mass values 

Study of uncertainty on peak location 
with toy Monte Carlo 



Choosing Estimators: Another Example 

 OPERA quoted its best estimate of the δt as the 
sample mean of the measurements. Would you 
have a better idea ? 

 
– This is NOT the best choice of estimator for the 

location of the center of a square distribution! 
– OPERA quotes the following result: 
  <δt> = 62.1 +- 3.7 ns 
– The UMVU estimator for the Box is the mid-range,  

 δt=(tmax+tmin)/2 
– You may understand why sample mid-range is better 

than sample mean: once you pick the extrema, the 
rest of the data carries no information on the 
center!!! It only adds noise to the estimate of the 
average! 

– The larger N is, the larger the disadvantage of the 
sample mean.   

You are all familiar with the OPERA measurement of neutrino velocities 
You may also have seen the graph below, which shows the distribution of δt (in nanoseconds) 
for individual neutrinos sent from narrow bunches at the end of October 2011 
Because times are subject to random offset (jitter from GPS clock), you might expect this to be 
a Box distribution 
 



Expected Uncertainty  
on Mid-Range and Average 

• 100,000  n=20-entries histograms, with data 
distributed uniformly in [-25:25] ns 
 

– Average is asymptotically distributed as a Gaussian; 
for 20 events this is already a good approximation. 
Expected width is 3.24 ns 

– Error on average consistent with Opera result 
– Mid-point has expected error of 1.66 ns 
– if δt=(tmax+tmin)/2, mid-point distribution P(n δt) is 

asymptotically a Laplace distribution; again 20 events 
are seen to already be close to asymptotic behaviour 
(but note departures at large values) 
 

– If OPERA had used the mid-point, they would have 
halved their statistical uncertainty: 

– <δt> = 62.1 +- 3.7 ns  <δt> = 65.2+-1.7 ns  
 

NB If you were asking yourselves what is a Laplace 
distribution: 

  
 f(x) = 1/2b exp(-|x-µ|/b) 



sample mean 

sample midrange 

However… The Devil Is in the Details 
• Although the conclusions above are correct if the underlying pdf of the data is exactly a 

box distribution, things change rapidly if we look at the real problem in more detail 
• Additional random smearings affect timing measurements: 

• the proton bunch has a peaked shape with 3ns FWHM 
• other effects contribute to smear randomly each timing measurement 

– of course there may also be biases –fixed offsets due to imprecise corrections made to the delta t 
determination; these systematic uncertainties do not affect our conclusions, because they do not 
change the shape of the p.d.f 

• But the random smearings do affect our conclusions regarding the least variance 
estimator, since they change the p.d.f. ! 

• One may assume that the smearings are 
Gaussian. The real p.d.f. from which the 20 
timing measurements are drawn is then a 
convolution of a Gaussian with a Box 
distribution. 

• Inserting that modification in the generation 
of toys one can study the effect. With 20-
event samples, a Gaussian smearing with 6ns 
sigma is already enough to make the 
expected variance equal for the two 
estimators 

• Timing smearings in Opera are likely O(6ns)  
They did well in using the sample mean 

σ of Gaussian smearing (ns) 



Choice of Estimators: Take-Away Bit 

• Point made: the intrinsic properties of estimators are 
not enough to choose them: the problem at hand 
[defined by the pdf, e.g. p(x|μ), and the amount of 
data] must be considered carefully when deciding how 
to perform a point and interval estimate 
– for point estimates, bias is usually a concern 
– But variance is equally important 
– In fact what one should minimize is the Minimal Squared 

Error  MSE = b2+σ2 , which is the expectation value of the 
squared difference between true and estimated value.                       

 
• To determine the UMVU (or a good substitute) is  

sometimes easy, sometimes hard. A toy MC analysis can 
often be quite useful to understand what is optimal, as 
analytical calculations are not always feasible 



Intermezzo: On The Weighted Average 



Weighted Average: the Basics  
• Suppose we need to combine two different, independent measurements 

with variances σ1,σ2 of the same physical quantity x0:  
– we denote them with  
   x1(x0,σ1), x2(x0,σ2)     the PDFs are G(x0,σi) 

 
• Let us combine them linearly to get the result with the smallest possible 

variance, 
 x = cx1+dx2 
           What are c, d such that σF is smallest ? 

 Answer: we first of all note that d=1-c if we want <x>=x0  (reason with expectation 
values to convince yourself of this). Then, we express the variance of x in terms of the 
variance of x1 and x2 
 
 
             , and find c which minimizes the expression. This yields: 
 
      
   The generalization of these    
   formulas to N measurements is   
   trivial 
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Let us try this simple 
exercise 



Linearization and Correlation 
 In the method of LS the linear approximation in the covariance (Taylor series 

expansion to first order) may lead to strange results  
 Let us consider the LS minimization of a combination of two measurements of 

the same physical quantity k, for which the covariance terms be all known.  
 In the first case let there be a common offset error σc . We may combine the 

two measurements x1, x2 with LS by computing the inverse of the covariance 
matrix: 

 
 

22
2

2
1

2
2

2
1

2
21

22
1

2
2

22
2

2
12

22
1

2

222
2

22
2

2
1

2
2

2
1

1
22

2
2

222
1

)(
))((2)()()()(

)(
1

c

ccc

cc

cc

ccc

cc

kxkxkxkx

VV

σσσσσ
σσσσσχ

σσσ
σσσ

σσσσσσσσ
σσσ

++
−−−+−++−

=










+−
−+

++
=⇒









+
+

= −

The minimization of the above expression leads to the following 
expressions for the best estimate of k and its standard deviation: 
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2The best fit value does not depend on σc, and corresponds 
to the weighted average of the results when the individual 
variances σ1

2 and σ2
2 are used. 

This result is what we expected, and all is good here.  



Normalization Error: Hic Sunt Leones 

 In the second case we take two measurements of k having a common scale error.  
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This time the minimization produces these results  
for the best estimate and its variance: 
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Before we discuss these formulas, let us test 
them on a simple case: 
 x1=10+-0.5,   
 x2=11+-0.5,  
 σf=20% 
 

Try this at home to see 
how it works! 

This yields the following disturbing result: 
 k = 8.90+-2.92 ! 
What is going on ??? 
 



Shedding Some Light  
on the Disturbing Result 

• The fact that we get a result outside the 
range of inputs requires investigation. 

• Rewrite the result by dividing it by the 
weighted average result obtained ignoring 
the scale correlation: 
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If the two measurements differ, their  
squared difference divided by the sum of the individual  
variances plays a role in the denominator. In that case the LS fit “squeezes the scale”  
by an amount allowed by σf in order to minimize the χ2. 
This is because the LS expression uses only first derivatives of the covariance: 
the individual variances σ1, σ2 do not get rescaled when the normalization factor is lowered, 
but the points get closer.  
 
This may be seen as a shortcoming of the linear approximation of the covariance, but it 
might also be viewed as a careless definition of the covariance matrix itself instead 
(see next slide) ! 



• In fact, let us try again. We had defined earlier the covariance matrix as 
 
 
 

• The expression above contains the estimates of the true value, not the true value 
itself. We have learned to beware of this earlier… What happens if we instead try 
using the following ? 
 
 

 The minimization of the resulting χ2, 
 
 

  
 produces as result the weighted average  
 
 
• The same would be obtained by maximizing the likelihood 

 
 

 or even minimizing the χ2 defined as  
 
 
 
 Note that the latter corresponds to “averaging first, dealing with the scale later”. 
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When Do Results Outside Bounds 
Make Sense ? 

• Let us now go back to the general case of taking the average of two correlated 
measurements, when the correlation terms are expressed in the general form : 
 
 
 

• The LS estimators provide the following result for the weighted average [Cowan 1998]: 
 
 

 whose (inverse) variance is 
 
 
 
 From the above we see that once we take a measurement of x of variance σ1

2, a second 
measurement of the same quantity will reduce the variance of the average unless ρ=σ1/σ2. 

 But what happens if ρ>σ1/σ2 ? In that case the weight w gets negative, and the average goes 
outside the “psychological” bound [x1,x2]. 

 
 The reason for this behaviour is that with a large positive correlation the two results are 

likely to lie on the same side of the true value! On which side they are predicted to be by the 
LS minimization depends on which result has the smallest variance. 
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Exercise 

• Suppose you have a measurement x_1 of a physical 
quantity x, with a variance sigma_1^2=1.0. You are 
offered to improve the knowledge of x by performing a 
second measurement x_2 with variance sigma_2=4.0 
and taking the weighted average of the two. You can 
choose to do this with two different methods. The first 
method offers a result with a 50% correlation with x_1; 
the second offers a correlation of 75%.  
 

• Which one should you choose and why ? 



How Can That Be ? 

 It seems a paradox, but it is not. Again, the reason why we cannot digest the 
fact that the best estimate of the true value µ be outside of the range of the 
two measurements is our incapability of understanding intuitively the 
mechanism of large correlation between our measurements. 
 

• John: “I took a measurement, got x1. I now am going to take a second 
measurement x2 which has a larger variance than the first. Do you mean to 
say I will more likely get x2>x1 if µ<x1, and x2<x1 if µ>x1 ??” 

Jane: “That is correct. Your second measurement ‘goes along’ with the first, 
because your experimental conditions made the two highly correlated and x1 
is more precise.” 
John: “But that means my second measurement is utterly useless!” 
Jane: “Wrong. It will in general reduce the combined variance. Except for the 
very special case of ρ=σ1/σ2,  the weighted average will converge to the true 
µ. LS estimators are consistent !!”. 
 



Jane vs John, Round 1 

Jane: “Now please tell me whether they are mostly on the same side (orange rectangles) 
or on different sides (pink rectangles) of the true value.” 
John: “Ah! Sure, all but one are on orange areas”. 
Jane: “That’s because their correlation makes them likely to “go along” with one another.”  
 

John: “Okay, so ?” 
Jane: “Please, would you pick a few points at 
random within the ellipse?”  
John: “Done. Now what ?” 

John: “I still can’t figure out how on  
earth the average of two numbers can be 
ouside of their range. It just fights with my 
common sense.” 
Jane: “You need to think in probabilistic 
terms. Look at this error ellipse: it is thin and 
tilted (high correlation, large difference in 
variances).” 
 



Round 2: a Geometric Construction 
 

 Jane: “And I can actually make it even easier for you. Take a two-dimensional plane, draw 
axes, draw the bisector: the latter represents the possible values of µ. Now draw the error 
ellipse around a  point of the diagonal. Any point, we’ll move it later.” 

 John: “Done. Now what ?” 
  
 Jane: “Now enter your measurements x=a, y=b. That corresponds to picking a point P(a,b) in 

the plane. Suppose you got a>b: you are on the lower right triangle of the plane. To find the 
best estimate of µ, move the ellipse by keeping its center along the diagonal, and try to scale 
it also, such that you intercept the measurement point P.” 

 John: “But there’s an infinity of ellipses that fulfil that requirement”. 
  
  

 
Jane: “That’s correct. But we are only interested in the smallest ellipse! Its center will give 
us the best estimate of µ, given (a,b), the ratio of their variances, and their correlation.” 
  
John: “Oooh! Now I see it! It is bound to be outside of the interval!” 
  
Jane: “Well, that is not true: it is outside of the interval only because the ellipse you have 
drawn is thin and its angle with the diagonal is significant. In general, the result depends on 
how correlated the measurements are (how thin is the ellipse) as well as on how different 
the variances are (how  big is the angle of its major axis with the diagonal). Note also that in 
order for the “result outside bounds” to occur, the correlation must be positive! 



P(a,b) 

a x1 

When a large positive correlation 
exists between the measurements 
and the uncertainties differ, the best  
estimate of the unknown µ may lie 
outside of the range of the two  
measurements [a,b] 

LS estimate of µ 

Tangent in P to 
minimum ellipse is 
parallel to  
bisector 



Trivia – Try It at Home 
 Here is a simple 

arrangement with 
which you can test 
whether or not a 
significant 
correlation 
between two 
measurements  
causes the effect 
we have been 
discussing. 

y 

d1 

d2 

Here we measure y with a ruler shorter than y, by taking d1 and d2 and using the yellow stick 
as an offset. The arrangement is such that we set the yellow stick from the edge of the red bar, and the red bar may have an 
angle error WRT the orthogonal to y. The non-zero angle causes a correlation between the two measurements d1 and d2. It 
turns out that y1=d1+a and y2=d2+a (a being the length of the yellow stick) will be on the same side of the true value of y, if 
the angle error is larger than the other uncertainties in the measurements.  



 Which of the PDF (parton 
distribution functions!) models 
shown in the graph is a best fit to 
the data:  

 CTEQ4M (horizontal line at 0.0) or 
MRST (dotted curve) ? 

When Chi-By-Eye Fails ! 

Source: 1998 CDF measurement of the differential 
dijet mass cross section using 85/pb of Run I data, 
F. Abe et al., The CDF Collaboration,  
Phys. Rev. Lett. 77, 438 (1996) 

You cannot tell by eye!!! 
 The presence of large correlations 
makes the normalization much less important 
than the shape. 
 p-value(χ2 CTEQ4M)=1.1E-4,  
 p-value(χ2 MRST) = 3.2E-3 :  
The MRST fit has a 30 times higher p-value 
than the CTEQ4M fit ! 
 Take-home lessons: 
- Be careful with LS fits in the presence of 
large common systematics! 
- Do not trust your eye when data points 
carry significant bin-to-bin correlations! 



Drawing Home a Few Lessons 
• If I managed to thoroughly confuse you, I have reached my goal! 

There are a number of lessons to take home from this: 
 
– Even the simplest problems can be easily mishandled if we do not pay 

a lot of attention… 
 

– Correlations may produce surprising results. The average of highly-
correlated measurements is an especially dangerous case, because a 
small error in the covariance leads to large errors in the point estimate. 

– Knowing the PDF your data are drawn from is CRUCIAL (but you then 
have to use that information correctly!) 

– Statistics is hard! Pay attention to it if you want to get correct results ! 



Hypothesis Testing and GOF 

• A few basic definitions 
• Statistical significance: what is it ? 
• The Jeffrey-Lindley Paradox 
• Some examples 

 



Hypothesis Testing: Generalities 
We are often concerned with proving or disproving a theory, or comparing and 
choosing between different hypotheses. 
 
In general this is a different problem than that of estimating a parameter, but the two 
are tightly connected. 
 
If nothing is known a priori about a parameter, naturally one uses the data to estimate it; 
if however theory predictions exist, the problem is better formulated as a test of hypothesis. 
 
 
Within the idea of hypothesis testing one 
must also consider goodness-of-fit tests: 
in that case there is only one hypothesis 
to test (e.g. a particular value of a parameter  
as opposed to any other value), so some of the  
possible techniques are not applicable 
 
A hypothesis is simple if it is completely 
specified; otherwise (e.g. if depending on 
the unknown value of a parameter) it is called composite. 



Nuts and Bolts of Hypothesis Testing 
• H0: null hypothesis  
• H1: alternate hypothesis 
• Three main parameters in the game: 

– α: type-I error rate; probability that H0 is true although you accept the 
alternative hypothesis 

– β: type-II error rate; probability that you fail to claim a discovery (accept H0) 
when in fact H1 is true 

– θ, parameter of interest (describes a continuous hypothesis, for which H0 is a 
particular value). E.g. θ=0 might be a zero cross section for a new particle 

• Common for H0 to be nested in H1 

Can compare different methods by plotting the test statistic 
for H0 and H1 and look at α vs β  
- Usually there is a tradeoff between α and β; often a subjective 
decision, involving cost of the two different errors.  
- Tests may be more powerful in specific regions of an interval  
 
In classical hypothesis testing, test of θ=0 equates to asking 
whether 0 is in the confidence interval  
(HT Interval estimation) 

Above, a smaller α is paid  
with a larger type-II error 
rate (yellow area)  
 smaller power 1-β 



Alpha vs Beta and 
Power Graphs 

• Very general framework of classification 
• Choice of α and β is conflicting: where to stay in the 

curve provided by your analysis method highly 
depends on habits in your field 

• What makes a difference is the test statistic: note how 
the N-P likelihood-ratio test outperforms others in the 
figure – reason is N-P lemma (see below) 

The power of a test usually also 
depends on the parameter of 
interest: different methods may 
have better performance in 
different parameter space points 
 
UMP (uniformly most powerful): 
has the highest power for any θ 

As data size increases, power curve becomes closer to step function 
 



Statistical Significance: What It Is 
Statistical significance reports the probability that an experiment obtains data at 
least as discrepant as those actually observed, under a given "null hypothesis“ H0 

 
– In physics H0 usually describes the currently accepted and established theory  

 
• Given data X and a test statistic T (a function of X), one may obtain a p-value as 

the probability of obtaining a value of T at least as extreme as the one observed, 
if H0 is true.  

 
p can then be converted into the corresponding number of "sigma," i.e. standard 
deviation units from a Gaussian mean. This is done by finding x such that the integral 
from x to infinity of a unit Gaussian equals p: 
   

 
 

According to the above recipe, a 15.9% probability is a one-standard-deviation 
effect; a 0.135% probability is a three-standard-deviation effect; and a 0.0000285% 
probability corresponds to five standard deviations - "five sigma" in jargon. 

pdte
x

t

=∫
∞ −

2

2

2
1
π



The convention is to use a “one-tailed” Gaussian: we do not care about departures 
of x from the mean in the un-interesting direction 
 
The conversion of p into σ is independent of experimental detail. Using Νσ rather 
than p is just a shortcut, nothing more !  
 
In particular, using “sigma” units does in no way mean  
we are operating some kind of Gaussian approximation  
anywhere in the problem 

 

Notes 

The whole construction rests on a proper 
definition of the p-value. Any shortcoming of 
the properties of p (e.g. a tiny non-flatness of 
its PDF under the null hypothesis) totally 
invalidates the meaning of the derived Nσ 

 

 

Empirical PDF of p|H0 

0                                      1    p 

GOOD 

BAD – don't even 
think of converting 
ill-defined p into Z !! 



An Important Ingredient:  
Wilks’ Theorem 

• An almost ubiquitous method to derive a  
 significance from a likelihood fit is the one of  
 invoking Wilks’ theorem 

– that is, some invoke it although they are not aware they are doing it ! 
 

• One has a likelihood under the null hypothesis, L0 (say, a background-only 
fit), and a likelihood for an alternative, L1 (a signal+background fit) 

• One takes -2(lnL1-lnL0)=-2Δ(lnL) and interprets it as a chisquare 
• P(χ2) can then be obtained, and from it a Z-value 

– But people regularly forget that this is only applicable when the two 
hypotheses are connected by H0 being a particular case of H1 (fixing of one 
parameter): they must be nested models. 

– In most cases this is not so: we routinely test a H1 where one of the 
parameters is not present in H0 (mass m for σ=0).  

 
Fortunately, often even when the regularity conditions demanded by the 
theorem are not met, the asymptotic properties of ΔlnL are good enough 

 



Power of the Die Load Test 

• We can revisit the macro Die5.C, which studies the hypothesis that 
there is a load in the die, and study the power of the test (is t=0 in 
the critical region?) as the data size increases 

100 die throws  

500 die throws  

2000 die throws  



The Poisson 
distribution 

• We all know what the Poisson distribution is: 
 
 
 
 
– The expectation value of a Poisson variable with mean μ is E(n) = µ 
– its variance is V(n) = µ 

 
 The Poisson is a discrete distribution. It describes the probability of getting 

exactly n events in a given time, if these occur independently and randomly at 
constant rate (in that given time) μ 

 
 
Other fun facts: 
 
– it is a limiting case of the Binomial [                                    ]  for p0, in the limit 

of large N 
– it converges to the Normal for large µ 
 

 

!
);(

n
enP

n µµµ
−

=

nNn pp
n
N

nP −−







= )1()(

BEWARE 



The Compound Poisson Distribution 

• Less known is the compound Poisson distribution, which describes the 
sum of N Poisson variables, all of mean µ, when N is also a Poisson 
variable of mean λ: 
 
 
 
– Obviously the expectation value is E(n)=λµ 
– The variance is V(n) = λµ(1+µ) 

 
• One seldom has to do with this distribution in practice. Yet it is necessary 

for a physicist to know it exists, and to recognize it is different from the 
simple Poisson distribution. 
 

    Why ? Should you really care ? 
 
 Let me ask before we continue: how many of you knew about the existence 

of the compound Poisson distribution? 
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An Example of the  
Compound Poisson: Bootstrapping 

• Bootstrapping: creating new samples from a dataset by fishing 
events at random, with replacement 

• The idea of bootstrapping is that inference on properties of a 
unknown distribution from which we have a sample of data can be 
obtained by inference on resampled sets 
 

• Example (from Wikipedia):  assume we are interested in the 
average height of people worldwide. We only measure the heights 
of N (say 10000) individuals. From that single sample, only one 
estimate of the mean can be obtained. In order to reason about the 
population, we need some sense of the variability of the mean that 
we have computed. 
 By resampling with replacement we may construct many (say 1000) 
sets of size N, and study the distribution of the mean (or of the variance, 
or whatever statistic we are interested in) 

 



The PDF of Bootstrapped Sets 
Most common situation: you have a histogram of events in the original 
dataset, such that each bin content has Poisson properties. 
 
What are the statistical properties of the bin entries in the 
bootstrapped histograms ?  

– Quantitatively: if the expectation value of a bin's content is μ, what is 
the associated variance σ2 ?  

 
As you might have correctly guessed, the variance in the number of 
entries in each bin is larger than σ2=μ as the Poisson distribution would 
imply. 

 
 
 ∑

∞

=

−−









=,

0 !!
)();(

N

NNn

N
e

n
eNnP

λµ λµλµ V(n) = λµ(1+µ) 

EXERCISE: write a program that tests this. 
 



void Bootstrap_variance (double Ndata=10000, int Nrep=100, double 
fracBoot=1.0) { 
  // Ndata = Expectation value of number of events in original histogram 
  // Nrep   = Number of Bootstrap replicas drawn 
  // fracBoot = fraction of Ndata drawn in Bootstrapped sets 
  double NdataB=Ndata*fracBoot; 
  const int Nbins = 100; // We fix the number of bins to 100 
  if (Ndata>100000) { 
    cout << "Too much data per sample, reduce to <100000. Exiting..." << 
endl; 
    return; 
  } 
  // Repeat many times to get average of variance over replicas 
  double sumvar =0; 
  double Average_content=0; 
  for (int i=0; i<Nrep; i++) {         
    double data[100000]; 
    int thisdata = gRandom->Poisson(Ndata); 
    for (int j=0; j<thisdata; j++) { // Generate histogram data 
      double x = gRandom->Uniform(0.,(double)Nbins); 
      data[j]= x; 
    } 
 // Create Bootstrap sample 
    double Bdata[100000]; 
    thisdata = gRandom->Poisson(NdataB); 
    Average_content+=thisdata; 

  for (int j=0; j<thisdata; j++) { 
      int index=(int)gRandom->Uniform(0.,Ndata); 
      if (index==Ndata) index=Ndata-1;  
      Bdata[j]=data[index]; 
    } 
// Study statistical properties of Bdata in each bin by computing 
the bin-by-bin variances 
    int Contents[Nbins]; 
    double sum=0; 
    double sum2=0; 
    for (int k=0; k<Nbins; k++) { 
      Contents[k]=0; 
      for (int j=0; j<thisdata; j++) { 
        if (Bdata[j]>=(double)k && Bdata[j]<(double)k+1.) { 
          Contents[k]++;    
        } 
      } 
      sum+= Contents[k]; 
      sum2+= Contents[k]*Contents[k]; 
    } 
    double var = sum2/Nbins-pow(sum/Nbins,2); 
    sumvar +=var; 
  } 
  Average_content = Average_content/Nrep; 
  double Average_variance = sumvar/Nrep; 
  cout << endl; 
  cout << "    Average variance in bootstrapped sets is " << 
Average_variance << endl; 
  cout << "    Expectation for compound Poisson is " << 
NdataB/Nbins*(1+Average_content/Ndata) << endl; 
  cout << "    Variance for a Poisson distribution is " << 
NdataB/Nbins << endl; 
} 

Bootstrap_variance.C 



Example: 100 Bins With μ=20 
• We generate bootstrapped replicas of 2000 events each sampled 

from the same data, with 100 bins  
– We can then measure the variance within each bin and compare to 

Poisson and Compound Poisson expectations 
– We vary the fraction of resampling from 0.2 to 0.8 to see the effect on 

the actual variance of multiple entries in the same bin 



Take-Away Bits 

1) Bootstrapping is powerful, but be careful 
with the handling of resulting uncertainty 
estimates! 

2) The compound Poisson is more common 
than you'd think 

3) Knowing the properties of the PDF you 
sample from is crucial 

- this is a common theme of these lessons 



In 1968 the gentlemen named in the above clip observed four 
tracks in a Wilson chamber whose apparent ionization was 
compatible with the one expected for particles of charge  2/3e.  
Successively, they published a paper where they showed a track 
which could not be anything but a fractionary charge particle! 
In fact, it produced 110 counted droplets per unit path length 
against an expectation of 229 (from the 55,000 observed tracks). 
 
What is the probability to observe such a phenomenon ?  
We compute it in the following slide. 
 
Note that if you are strong in nuclear physics and thermodynamics, 
you may know that a scattering interaction produces on  
average about four droplets. The scattering and the  
droplet formation are independent Poisson processes. 
However, if your knowledge of Statistics is poor, this observation  
does not allow you to reach the right conclusion. What is the  
difference, after all, between a Poisson process and the  
combination of two ? 

PRL 23, 658 (1969) 



Significance of the Observation 
Case A: single Poisson process, with μ=229: 
 

 
 
 

Since they observed 55,000 tracks, seeing at least one track with P = 1.6x10-18 
has a chance of occurring of 1-(1-P)55000, or about 10-13 
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Bottomline:  
You may know your detector and the underlying physics as well as you know your ***, 
but only your knowledge of basic Statistics prevents you from being fooled ! 
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Case B: compound Poisson process, with λµ=229, µ=4: 
One should rather compute 
 
 
 
 
from which one gets that the probability of seeing at least one such track is 
rather 1-(1-P’)55000, or 92.5%. Ooops! 
  

 



Going Bayesian: 
The Jeffreys-Lindley Paradox 

 So what happens if one tries to move to Bayesian territory ? 
 
 Consider a null hypothesis, H0, on which we base a strong belief. In physics we do 

believe in our “point null” – a theory valid for a specific value θ0 of a parameter θ (say 
the photon mass being 0); in other sciences a true “point null” hardly exists 

 
 Comparing a point null θ=θ0 to an alternative which has a continuous support for θ, we 

need to suitably encode this in a prior belief. Bayesians use a “probability mass” at θ=θ0 
for H0. 
 

 The use of probability masses to encode priors for a simple-vs-composite test throws a 
monkey wrench in the Bayesian paradigm, as it can be proven that no matter how large 
and precise is the data, Bayesian inference strongly depends on the scale over which the 
prior is non-null – that is, on the prior belief of the experimenter. 
 

 The Jeffreys-Lindley paradox[16] arises as frequentists and Bayesians draw opposite 
conclusions on some data when comparing a point null to a composite alternative. This 
fact bears relevance to the kind of tests we are discussing, so let us give it a look. 



The Paradox 

 
 

  where zα/2 is the significance corresponding to test size α for a 
 two-tailed normal distribution 

  
 The paradox is that the posterior probability that H0 

is true, conditional on seeing data in the critical 
region (i.e. ones which exclude H0 in a classical α-
sized test) approaches 1 (not α, NB!)  as the sample 
size becomes arbitrarily large. 

θ 

θ0 

π(H0) 

π(H1) 

θ0-I/2 θ0+I/2 

Take X1...Xn i.i.d. as Xi|θ ~ N(θ,σ2), and a prior belief on θ constituted by a mixture of a point 
mass p at θ0 and (1-p) uniformly distributed in [θ0-I/2, θ0+I/2]. 
 
In classical hypothesis testing the “critical values” of the sample mean delimiting the rejection 
region of H0: θ = θ0 in favor of H1: θ <> θ0 at significance level α are 
 

As evidenced by R. Cousins[17], the paradox arises  
if there are three independent scales in the problem,  
ε << σ/sqrt(n) << I, i.e. the width of the point mass,  
the measurement uncertainty, and the scale I of the  
prior for the alternative hypothesis 

Common situation in HEP!! 

X 

ε 

σ/sqrt(n) 

I 



JLP Example: Charge Bias of a Tracker 
Imagine you want to investigate whether your detector has a bias in reconstructing positive 
versus negative curvature, say at a lepton collider (e+e-). You take a unbiased set of collisions, 
and count positives and negatives in a set of n=1,000,000. 
• You get n+=498,800, n-=501,200. You want to test the hypothesis that the fraction of 

positive tracks, say, is R=0.5 with a size α=0.05. 
• Bayesians will need a prior π(R): a typical choice would be to assign equal probability to 

the chance that R=0.5 and to it being different (R<>0.5): a “point mass” of p=1/2 at R=0.5, 
and a uniform distribution of the remaining p=1/2 in [0,1] 

• We are in high-statistics regime and away from 0 or 1, so Gaussian approximation holds 
for the Binomial. The probability to observe a number of positive tracks n+ can then be 
written, with x=n+/n, as N(x,σ) with σ2=x(1-x)/n.  

 The posterior probability that R=0.5 is then 
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from which a Bayesian concludes that there is no evidence against R=0.5, 
and actually the data strongly supports the null hypothesis (P>>α) 

0.5 

R 

π(R) 



JLP Charge Bias: Frequentist Solution 

 Frequentists calculate how often a result “at least as extreme” as the one 
observed arises by chance, if the underlying distribution is N(R,σ) with R=1/2 and 
σ2=x(1-x)/n  

   
  One then has  

 
 
 
 
  (we multiplied by two since we would be just as surprised to observe an excess of positives as a deficit).  

 
 From this, frequentists conclude that the tracker is biased, since there is a less-

than 5% probability, P’<α, that a result as the one observed could arise by 
chance!  

 
 A frequentist thus draws the opposite conclusion of a Bayesian from the same 

(large body of) data ! 
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Notes on the JL Paradox 
• The paradox has been used by Bayesians to criticize the way inference is 

drawn by frequentists:  
– Jeffreys: “What the use of [the p-value] implies, therefore, is that a 

hypothesis that may be true may be rejected because it has not predicted 
observable results that have not occurred” [18] 

 
• Still, the Bayesian approach offers no effective substitute to the p-value  

– Bayes factors, which describe by how much prior odds are modified by the 
data, do not factor out the subjectivity of the prior when the JLP applies: even 
asymptotically, they retain a dependence on the scale of the prior of H1. 

 
• In JLP debates, Bayesians have argued that “the precise null” is never true. 

– However, we do believe our point nulls in HEP and astro-HEP!!  
  (mass of photon==0; total electric charge of a system==0) 
  
 There is a large body of literature on the subject. The issue is an active 

research topic and is not resolved.  
  The trouble of picking α in classical hypothesis testing is not 

automatically solved by moving to Bayesian territory. 



The Neyman-Pearson Lemma 
• For simple hypothesis testing there is a recipe to find the most powerful test. It is 

based on the likelihood ratio. 
• Take data X={X1…XN} and two hypotheses depending on  
 the values of a discrete parameter: H0={θ=θ0} vs H1{θ=θ1}.  
 If we write the expressions of size α and power 1-β we have 

 
 

 The problem is then to find the critical region wα such that 1-β is maximized, given α. 
We rewrite the expression for power as 

 
 
 which is an expectation value: 
 
 This is maximized if we accept in wα all the values for which 
 
 So one chooses H1 if   
 and H0 if instead 
 
 In order for this to work, hypotheses must be simple. The test above is called 

Neyman-Pearson test, and a test with such properties is the most powerful. 
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Goodness-of-Fit Tests 
 

• If H0 is specified but the alternative H1 is not, then only the Type I 
error rate α can be calculated, since the Type II error rate β depends 
on having specified a particular H1.  

 In this case the test is called a test for goodness-of-fit (to H0). 
 

• Hence the question “Which g.o.f. test is best?” is ill-posed, since the 
power depends on the alternative hypothesis, which is not given.  
 

• In spite of the popularity of tests which give a statistic which one may 
directly connect with the size α (in particular χ2 and Kolomogorov 
tests), their ability to discriminate against variations with respect to H0 
may be poor, i.e. they may have  small power (1-β) against relevant 
alternative hypotheses 
– χ2  throws away information (sign, ordering) 
– Kolmogorov –Smirnov test only sensitive to biases, not to shape 

variations, and has terrible performance on tails (we'll see it in a minute) 
 
 
 



The Kolmogorov Test: an Example 
• CDF, circa 2000: 13 weird events identified in a subset of 

sample used to extract top quark cross section 
– contain a “superjet”: a jet with a b-quark tag also 

containing a soft-lepton tag 
– expected 4.4 +-0.6 events from background sources 
– P(>=13|4.4+-0.6)=0.001 
– Kinematic characteristics found in stark disagreement with 

expectation from SM sources 
• Have no alternative model to compare  try a 

Goodness-of-Fit test 
 

• Kolmogorov-Smirnov test: compare cumulative 
distributions of data and model f(x); find largest 
difference 
 
 
 

 Value of dKS can then be used to extract a p-value, given 
data size. 
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On Tail Probabilities: Choosing the 
Region of Interest 

• Feynman’s example:  
 “Upon walking here this morning, the strangest thing ever 

happened to me. A car passed by, and I could read the 
plate: JKZ 0533. How weird is that ??! The probability that I 
saw such a combination of letters and numbers (assuming 
they are all used in this country) is one in 10000*263, or 
one in eighty-eight millions!” 

 Correct… The paradox arises from not having defined 
beforehand the region of interest! 

• A more common one: you have a counting experiment 
where background is predicted to be 100 events. You 
observe  80 events. How rare is that ? 
 
– Ill-posed question ! Depends, to say the least, on whether 

you are interested only in excesses or in absolute 
departures!  

– In the first case the region of interest is N>=x, which, for 
x=80, corresponds to a fractional area p = 0.977.  

– In the second case, the region of interest is |N-100|>=|x-
100| which for x=80 has an integral p = 0.0455. 
 

– And one might imagine other ways to answer – a no-
brainer being p=e-100 10080/80!  



Intermezzo: Combination of p-Values 
• Suppose you have several p-values, derived from different, independent tests. You 

may ask yourself several questions with them. 
– What is the probability that the smallest of them is as small as the one I got ? 
– What is the probability that the largest one is as small as the largest I observed ? 
– What is the probability that the product is as small as the one I can compute with these N 

values ? 
• Please note! Your inference on the data at hand strongly depends on what test 

you perform, for a given set of data. In other words, you cannot choose which test 
to run only upon seeing the data… 
 

• Suppose anyway you believe that each p-value tells something about the null 
hypothesis you are testing, so you do not want to discard any of them. Then one 
possibility is to use the product of the N values. The formula providing the 
cumulative distribution of the density of x=Πxi can be derived by induction (see 
[Roe 1992], p.129) and is 
 
 
 
 

 This accounts for the speed with which the product of N numbers in [0,1] tends to 
zero as N grows.  
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Some Examples 
on the Product 
of Probabilities 

 To start let us take five really uniformly 
distributed p-values, x1=0.1, x2=0.3, x3=0.5, 
x4=0.7, x5=0.9.  Their product is 0.00945, and 
with the formula just seen we get 
P(0.00945)=0.5017. As expected. 
 
 

• And what if instead x1=0.00001, x2=0.3, x3=0.5, 
x4=0.7, x5=0.9 ? The result is P(9.45*10-7) 
=0.00123, which is rather large: one might think 
that the chance of getting one in five numbers 
as small as 10-5 must occur only a few times in 
10-5. But we are testing the product, not the 
smallest of the five numbers ! 
 
 

• And if now we let x1=0.05, x2=0.10, x3=0.15, 
x4=0.20, x5=0.25, the test for the product yields 
P(3.75*10-5)=0.0258 (see picture on the right).  

 Also not a compelling rejection of the null…  
 Compare with what you would get if you had 

asked “what is the chance that five numbers are 
all smaller than 0.25 ?”, whose answer is 
(0.25)5=0.00098. This demonstrates that the a-
posteriori choice of the test is to be avoided ! 
 
 

pdf of f(Πxi) 

Cumulative of the pdf f(Πxi) 



Global P From Set of p-Values 
• Authors of CDF “superjet” analysis  tested a 

“complete set” of kinematical quantities; then 
computed global P of set of KS p-values using  

 formula of combining p-values (assumed sampled 
from a Uniform distribution): 

 
 

 
   >6-sigma result! 
… But in absence of an alternative model  
(really hard to cook given the weird  
kinematic properties of the set)  
one cannot thus “disprove” the Standard Model… 
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GoF Tests with Max Likelihood 
• The maximum likelihood is a powerful method to estimate parameters, but no 

measure of GoF is given, because the expected value of L at maximum is not known 
 
• The distribution of Lmax can be studied with toy MC  one derives a p-value that a 

value as small as the one observed in the data arises, under the given assumptions 
 

• Alternatively, one can bin the data, obtaining estimated mean values of entries per 
bin from the ML fit:  

  
 
 Then one can derive a χ2

L statistic using the ratio of likelihoods  
 

 and computing  
  
 since in this case the latter follows a χ2 distribution.  
  
 The quantity λ(ν)=L(n|ν)/L(n|n) differs from the likelihood function by a 

normalization factor, and can thus be used for both parameter estimation and 
Goodness of Fit. 
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Systematic Uncertainties 



A Study of Residuals 
 A study of the residuals of particle properties in the RPP in 

1975 revealed that they were not Gaussian. Matts Roos et al. 
[20] considered residuals in kaon and hyperon mean life and 
mass measurements, and concluded that these seem to all 
have a similar shape, well described by a Student distribution 
S10(h/1.11): 
 

Of course, one cannot extrapolate to 5-sigma the behaviour 
observed by Roos and collaborators in the bulk of the 
distribution; however, one may consider this as evidence that 
the uncertainties evaluated in experimental HEP may have a 
significant non-Gaussian component 

Black: a unit Gaussian;  
red: the S10(x/1.11) function 

Left: 1-integral distributions of the two functions.  
Right: ratio of the 1-integral values as a function of z 
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The distribution of residuals 
of 306 measurements  in [20] 

x1000! 



A Bigger, Meaner Study of Residuals 
• David Bailey (U. Toronto) recently 

published an article[15] where 
use of large datasets is made (all 
of RPP, Cochrane medical and 
health database, Table of 
Radionuclides) 

• 41,000 measurements of 3200 
quantities studied 
 

• The methodology is similar to 
that of Roos et al., but some 
shortcuts are made, and data 
input automation prevents more 
vetting (e.g. correlations not 
properly accounted for) 
 

Results are quite striking - we seem to have ubiquitous Student-t 
distributions in our Z values, with large tails – almost Cauchy-like. 
 



Treatment of Systematic Uncertainties 

Statisticians call these nuisance parameters 
 
Any measurement is affected by them: the turning of an observation into a 
measurement requires assumptions about parameters and other quantities whose 
exact value is not perfectly known.  
 
These parameters are typically correlated with the quantity being measured 
 
 their uncertainty affects the main measurement 

 
E.g. going from a event count to a cross section requires knowing a number of additional 
inputs: Nb, L, εsel, εtrig … 
The uncertainty of each of these has to be accounted for 
 
Error propagation is the standard tool, but typically analytical solutions are inapplicable. 

 



The Nuisance of Dealing with Nuisances 

• Inclusion of effect of nuisances in interval estimation and 
hypothesis testing introduces complications. Each method 
has a recipe, but not universal nor always applicable 
– Bayesian treatment: one constructs the multi-dimensional prior 

pdf p(θ)Πip(λi) including all the parameters λi, multiplies by 
p(X0|θ,λ), and integrates all of the nuisances out, remaining 
with p(θ|X0) 

– Classical frequentist treatment: scan the space of nuisance 
parameters; for each point do Neyman construction, obtaining 
multi-dimensional confidence region; project on parameter of 
interest 

– Likelihood ratio: for each value of the parameter of interest θ*, 
one finds the value of nuisances that globally maximizes the 
likelihood, and the corresponding L(θ*). The set of such 
likelihoods is called the profile likelihood. 
 

 



Issues with the Three Methods 
• Each “method” has problems: 

– Bayesian techniques: involve multi-Dimensional priors  
– Classical intervals: afflicted by overcoverage issues and intractability;  
– Likelihood intervals: usually suffer from undercoverage  
 
We will not discuss them here further, but note that this is a topic at the 
forefront of research, for which no general recipe is valid.  

 
• Often used are “hybrid” methods for integrating nuisance 

parameters out 
– for instance, treat nuisance parameters in a Bayesian way while 

treating the parameter of interest in a frequentist way, or “profile 
away” the nuisance parameters and then use any method.  

– Also possible is using Bayesian techniques and then evaluate their 
coverage properties. 

 



Inclusion of Nuisances in the Model 

With data x, and knowing the pdf P(x|θ), you want to estimate a 
parameter θ.  However, the model is imperfect  you can improve it by 
adding nuisances that affect it: p(x|θ,λ).  
 
The inclusion of nuisances changes the problem and decreases the power 
of your inference. 
 
To reduce the impact of nuisance parameters one may constrain their 
values by means of control or calibration measurements  that produced 
some other data y.  
 
If the measurements y are statistically independent from x and are 
described by a model P(y|λ), you can then write a joint likelihood: L (θ,λ) = 
p(x|θ,λ) * P(y|λ) 
 
When using Monte Carlo to simulate the experiment, be sure to include 
the variation of both datasets! 



The Profile Likelihood Method 
The PL method is best described in connection to an hypothesis 
test.  
If one wants to test a hypothesis (e.g. H0: θ=0), one needs to define 
a critical region where H0 is disproven.  
In presence of nuisances λ, H0 must be disproven for all values of 
the nuisances  one tries to define a test statistic qθ whose pdf 
f(qθ,θ) that is independent on λ. A good approximation to this is  
 
 double hat: ML value of nuisance that 

maximizes L for the specified θ 
Denominator has absolute max of L 

Using Wilks' theorem one can show that -2log(λp) distributes like a chisquared and is 
independent on the nuisance parameters. One can thus do HT and properly define a  
critical region  
 
We will see more application of this technique when we discuss the Higgs search 



Poisson Probabilities 
 Exercise: write a root macro that inputs expected background 

counts B (with no error) and observed events N, and computes the 
probability of observing at least N, and the corresponding number 
of sigma Z for a Gaussian one-tailed test. 

The p-value calculation should be straightforward: just 
sum from 0 to N-1 the values of the Poisson 
(computing the factorial as you go along in the cycle), 
and derive p as 1-sum. 

Deriving the number of sigmas that p corresponds to 
requires the inverse error function, ErfInverse(x) as  
Z = sqrt(2) * ErfInverse(1-2p) 
(it should be available as TMath::ErfInverse(double) ) 

You can also fill two distributions, one with the 
Poisson(B), the other with only the bins >=N filled (and 
with SetFillColor(kBlue) or something) and plot 
them overimposed, to get something like the graph on 
the right (top: linear y scale; bottom: log y scale) 
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Parenthesis – Erf and ErfInverse 

• The error function and its inverse are useful 
tools in statistical calculations – you will 
encounter them frequently. 

• The Erf can be used to obtain the integral of a 
Gaussian as  

The erfinverse function is used to convert alpha 
values into number of sigmas. We will see examples 
of that later on. 



One Possible Implementation 
 

// Macro that computes p-value and Z-value  
// of N observed vs B predicted Poisson counts 
// -------------------------------------------------------------------- 
void Poisson_prob_fix (double B, double N) { 
 
  int maxN = N*3/2; // extension of x axis 
  if (N<20) maxN=2*N; 
  TH1D * Pois = new TH1D ("Pois", "", maxN, -0.5, maxN, 
0.5); 
  TH1D * PoisGt = new TH1D ("PoisGt", "", maxN, -0.5, 
maxN-0.5); // we also fill a “highlighted” portion 
 
  double sum=0.; 
  double fact=1.; 
  for (int i=0; i<maxN; i++) { 
    if (i>1) fact*=i;  // calculate factorial 
    poisson = exp(-B)*pow(B,i)/fact; 
    if (i<N) sum+= poisson; // calculate 1-tail integral 
    Pois->SetBinContent(i+1,poisson); 
    if (i>=N) PoisGt->SetBinContent(i+1,poisson); 
  } 
  double P=1-sum;  // get probability of >=N counts 
  double Z = sqrt(2) * TMath::ErfInverse(1-2*P); 

 

cout << "P of observing N=" << N << " or more events 
if B="  << B << " : P= " << 1-sum << endl; 
  cout << "This corresponds to " << Z << " sigma for a 
Gaussian one-tailed test." << endl; 

 
  Pois->SetLineWidth(3); 
  PoisGt->SetFillColor(kBlue); 
  TCanvas* T = new TCanvas ("T","Poisson 
distribution", 500, 500); 
// Plot the stuff 
  T->Divide(1,2); 
  T->cd(1); 
  Pois->Draw(); 
  PoisGt->Draw("SAME"); 
  T->cd(2); 
  T->GetPad(2)->SetLogy(); 
  Pois->Draw(); 
  PoisGt->Draw("SAME"); 
} 



Adding a Nuisance 
• Let us assume now that B’ is not fixed, but known to 

some accuracy σB. We want to add that functionality to 
our macro. We can start with a Gaussian uncertainty. 

You just have to throw a random number 
B=G(B’,σB) to set B, and collect a large 
number (say 10k) of p-values as before, 
then take the average of them. 
 
Upon testing it, you will discover that you 
need to enforce that B be non-negative.  
What we do with the negative B 
determines the result we get, so we have 
to be careful, and ask ourselves what 
exactly do we mean when we say, e.g., 
“B=2.0+-1.0” 

Example below: B=5+-4, N=12 



A Possible Implementation 
void Poisson_prob_fluct (double B, double SB, double N) { 
  double Niter=10000; 
  int maxN = N*3/2; 
  if (N<20) maxN=2*N; 
  TH1D * Pois = new TH1D ("Pois", "", maxN, -0.5, maxN-0.5); 
  TH1D * PoisGt = new TH1D ("PoisGt", "", maxN, -0.5, maxN-0.5); 
  // We throw a random Gaussian smearing SB to B, compute P, 
  // and iterate Niter times; we then study the distribution 
  // of p-values, extracting the average  
  double Psum=0; 
  TH1D * Pdistr = new TH1D ("Pdistr", "", 100, -10., 0.); 
  TH1D * TB = new TH1D ("TB", "",100, B-5*SB,B+5*SB); 
  cout << "Start of cycle" << endl; 
  for (int iter=0; iter<Niter; iter++) { 
    // Extract B from G(B,SB) 
    double thisB = gRandom->Gaus(B,SB); 
    TB->Fill(thisB);  // We keep track of the pdf of the background 
    if (thisB<=0) thisB=0.; // Note this – what if we had rethrown it ? 
    double sum=0.; 
    double fact=1.; 
    for (int i=0; i<maxN; i++) { 
      if (i>1) fact*=i; 
      double poisson = exp(-thisB)*pow(thisB,i)/fact; 
      if (i<N) sum+= poisson; 
      Pois->Fill((double)i,poisson); 
      if (i>=N) PoisGt->Fill((double)i,poisson); 
    } 
 

    double thisP=1-sum; 
    if (thisP>0) Pdistr->Fill(log(thisP)); 
    Psum+=thisP; 
  } 
  double P = Psum/Niter; // we use the average for our inference here 
  double Z = sqrt(2) * ErfInverse(1-2*P); 
  cout << "Expected P of observing N=" << N << " or more events if 

B="  
       << B << "+-" << SB << " : P= " << P << endl; 
  cout << "This corresponds to " << Z << " sigma for a Gaussian one-

tailed test." << endl; 
   
  // Plot the stuff 
  Pois->SetLineWidth(3); 
  PoisGt->SetFillColor(kBlue); 
  TCanvas* T = new TCanvas ("T","Poisson distribution", 500, 500); 
  T->Divide(2,2); 
  T->cd(1); 
  Pois->DrawClone(); 
  PoisGt->DrawClone("SAME"); 
  T->cd(2); 
  T->GetPad(2)->SetLogy(); 
  Pois->DrawClone(); 
  PoisGt->DrawClone("SAME"); 
  T->cd(3); 
  Pdistr->DrawClone(); 
  T->cd(4); 
  TB->Draw(); 
} 



Homework Assignment:  
Change to Log-Normal 

 Substitute the gRandom->Gaus() call such that you get a B 
distributed with a log-Normal pdf, being careful to plug in 
the variance you really want, and check what difference it 
makes. 

 
 It should be intuitive that the LogNormal() is the correct 

nuisance to use in many common situations. It corresponds 
to saying “I know B to within a factor of 2”. Or think at a 
luminosity uncertainty... 

 This follows from the fact that while the Gaussian is the limit 
of the sum of many small random contributions , the limit of 
a product of small factors is a log-normal. 

To get a logN quickly, just throw y = G(μ,σ) ; then x=exp(y) is what you need. 
However, note that with the ansatz “know B to within a certain factor”, we want the 
median exp(μ) to represent our central value, not the mean e(μ+σ2/2) ! So we set 
μ=log(B). To know what to set sigma to, we need to consider our ansatz: σ=σB/B 
corresponds to it. 

In the web area you find a version of 
Poisson_prob_fluct.C that does this 



The Higgs Boson Search at the LHC 



Higgs Searches at LHC 
• The Higgs boson has been sought for by ATLAS and CMS in all the 

main production processes and in a number of different final 
states, resulting from the varied production and decay modes: 
– qqHqq 
– ggH 
– qq(‘)VH 
 
– HZZ 
– HWW 
– Hgg 
– Htt 
– Hbb 

 
• The importance of the goal  brought together some of the best 

minds of CMS and ATLAS, to define and refine the procedures to 
combine the above many different search channels, most of which 
have marginal sensitivity by themselves 



Method 
• The method used to set upper limits on the Higgs boson 

cross section uses the CLs criterion and the test statistic is a 
profile log-likelihood ratio. Dozens of nuisance parameters, 
with either 0% or 100% correlations, are considered 
 

• Results have been produced as a combined upper limit on 
the “strength modifier” μ=σ/σSM, as well as a “best fit value” 
for μ, and a combined p-value of the null hypothesis. All of 
these are produced as a function of the unknown Higgs 
boson mass. 
 

• The technology is an advanced topic. We can give a peek at 
the main points, including the construction of the CLs 
statistics and the treatment of nuisances, to understand the 
main architecture 
 



Nuts and Bolts of Higgs Combination 
 The recipe must be explained in steps. The first one is of course the one of writing down extensively the 

likelihood function! 
 

1) One writes a global likelihood function, whose parameter of interest is the strength modifier μ. If s and 
b denote signal and background, and θ is a vector of systematic uncertainties, one can generically write 
for a single channel: 
 
 

 
 Note that θ has a “prior” coming from a hypothetical auxiliary measurement.  
 In the LHC combination of Higgs searches, nuisances are treated in a frequentist way 
 by taking for them the likelihood which would have produced as posterior, given a flat prior, 
 the PDF one believes the nuisance is  distributed from. This differs from the Tevatron and LEP 
 Higgs searches. 
  
 In L one may combine many different search channels where a counting experiment is performed as 

the product of their Poisson factors: 
 
 
 
 or from a unbinned likelihood over k events, factors such as: 
 



2) One then constructs a profile likelihood test statistic qμ as 
 
 
 Note that the denominator has L computed with the values of μ^ and θ^ that globally 

maximize it, while the numerator has θ=θ^
μ computed as the conditional maximum 

likelihood estimate, given μ.    
 A constraint is posed on the MLE μ^ to be confined in 0<=μ^<=μ: this avoids negative 

solutions for the cross section, and ensures that best-fit values above the signal 
hypothesis μ are not counted as evidence against it. 

 
 The above definition of a test statistic for CLs in Higgs analyses differs from earlier 

instantiations 
 - LEP: no profiling of nuisances 
 - Tevatron: μ=0 in L at denominator 
3) ML values θμ

^ for H1 and θ0
^ for H0  

 are then computed, given the data 
 and μ=0 (bgr-only) and μ>0  
4) Pseudo-data is then generated for the  
 two hypotheses, using the above ML  
 estimates of the nuisance parameters.  
 With the data, one constructs the pdf  
 of the test statistic given a signal of  
 strength μ  (H1) and μ=0 (H0). This way 
 has good coverage properties. 
 



5) With the pseudo-data one can then compute the integrals defining p-values for the two 
hypotheses. For the signal plus background hypothesis H1 one has 
 
 
 
 

 and for the null, background-only H0 one has 
 
 
  
 
6) Finally one can compute the value called CLs as  
 
   CLs = pμ/(1-pb) 
 
 CLs is thus a “modified” p-value, in the sense that it describes how likely it is that the 

value of test statistic is observed under the alternative hypothesis by also accounting for 
how likely the null is: the drawing incorrect inferences based on extreme values of pμ is 
“damped”, and cases when one has no real discriminating power, approaching the limit 
f(q|μ)=f(q|0), are prevented from allowing to exclude the alternate hypothesis.  

 
7) We can then exclude H1 when CLs < α, the (defined in advance !) size of the test. In the 

case of Higgs searches, all mass hypotheses H1(M) for which CLs<0.05 are said to be 
excluded (one would rather call them “disfavoured”…) 

 
 
 
 
 



Derivation of Expected Limits 

 One starts with the background-only 
hypothesis μ=0, and determines a 
distribution of possible outcomes of 
the experiment with toys, obtaining 
the CLs test statistic distribution for 
each investigated Higgs mass point 

 
 From CLs one obtains the PDF of upper 

limits μUL on μ for each Mh. [E.g. on the 
right we assumed b=1 and s=0 for μ=0, 

 whereas μ=1 would produce <s>=1] 
 
 Then one computes the cumulative 

PDF of μUL 

 
 Finally, one can derive the median and 

the intervals for μ which correspond to 
2.3%, 15.9%, 50%, 84.1%, 97.7% 
quantiles. These define the “expected-
limit bands” and their center. 



Quantifying the Significance of a Signal 
in the Higgs Search 

• To test for the significance of an excess of events, given a Mh 
hypothesis, one uses the bgr-only hypothesis and constructs a 
modified version of the q test statistic: 
 
 
 

• This time we are testing any μ>0 versus the H0 hypothesis. One 
builds the distribution f(q0|0,θ0

^obs) by generating pseudo-data, 
and derives a p-value corresponding to a given observation as  

 
 
• One then converts p into Z using the relation  

 
 

 where pχ
2 is the survival function for the 1-dof chisquared. 



• Often it is impractical to generate 
large datasets given the 
complexity of the search (dozens 
of search channels and sub-
channels, correlated among each 
other). One then relies on a very 
good asymptotic approximation: 

 
• The derived p-value and the 

corresponding Z value are “local”: 
they correspond to the specific 
hypothesis that has been tested (a 
specific Mh) as q0 also depends on 
Mh (the search changes as Mh 
varies) 
 

• When dealing with many 
searches, one needs to get a 
global p-value and significance, 
i.e. evaluate a trials factor. How to 
do it in complex situations is 
explained in the next slide. 
 



Trials Factors in the Higgs Search 
 When dealing with complex cases (Higgs combination), a study  comes to help.  
 
 Wilks’ theorem does not apply, and the complication of combining many different 

search channels makes the option of throwing huge number of toys impractical 
 
 Fortunately it has been shown how the trials factor can be counted in. First of all 

one defines a test statistic encompassing all possible Higgs mass values: 
 
 
 
 This is the maximum of the test statistic defined above for the bgr-only, across the 

many tests performed at the various possible masses of the Higgs boson. 
 
 One can use an asymptotic “regularity” of the distribution of the above q to get a  
 global p-value by using a technique  derived by Gross and Vidells [Vitells 2010]. 
 
 
 
  

 



Local Minima and Upcrossings 
  
 One counts the number of “upcrossings” of the distribution of the test statistic, as a function 

of mass. Its wiggling tells you how many independent places you have been searching in. 
 The number of local minima in the fit to a distribution is closely connected to the freedom of 

the fit to pick signal-like fluctuations in the investigated range 
 

 The number of times that the test statistic (below, the likelihood ratio between H1 and H0) 
crosses some reference point is a measure of the trials factor. One estimates the global p-
value with the number N0 of upcrossings from a minimal value of the q0 test statistics (for 
which p=p0) by the formula 

The number of upcrossings can be best estimated 
using the data themselves at a low value of  
significance, as it has been shown that the 
dependence on Z is  
a simple negative  
exponential: 



Trial Factors Example 
• Imagine that you scan the Higgs mass and find a maximum q0 of 9, 

which according to  
 

 corresponds to a local p-value of 0.13% and a local Z-value of 3σ, 
the latter computed using 
 
 

• You then look at the distribution of q0 as a function of Mh and count 
the number of upcrossings at a level u0=1 (where the significance is 
Z=1 as per above formulas) finding that there are 8 of them. You 
can then get <Nu> for u=9 using 

 
 which gives <Nu>=0.1465 
 
• The global p-value can be then computed as pglob=0.1465+0.0013 

using the formula below. One concludes that the trial factor is 
about 100 in this case. 



Conclusions 
• Statistics is NOT trivial.  Not even in the simplest applications! 
• A understanding of the different methods to derive results (eg. 

for upper limits) is crucial to make sense of the often conflicting 
results one obtains even in simple problems 
– The key in HEP is to try and derive results with different methods –if 

they do not agree, we get wary of the results, plus we learn 
something 

 
• Making the right choices for what method to use is an expert-

only decision, so… 
 You should become an expert in Statistics, if you want to be a 

good particle physicist (or even if you want to make money in 
the financial market) 

• The slide of this course are nothing but an appetizer. To really 
learn the techniques, you must put them to work 
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Backup Material 



Loaded Die: Least-Square Solution 
• We just have to write a chisquare as a function of the data Ni=(3,3,3,3,3,5) 

and the load t: 

𝜒𝜒2 =  �
𝑁𝑁𝑖𝑖 − 𝑒𝑒𝑖𝑖(𝑡𝑡) 2

𝜎𝜎2𝑖𝑖

6

𝑖𝑖=1

 

where ei(t) are the expected times that result "i" appears in 20 throws, i.e. ei = 20 
P(i) where, as before, 
 
 
Note that we can use the information of N2, N3, N4, N5 distributions if 
we wish – it just amounts to consider them as separate in the chi2. 
 
Once we have the chi2(t), we may compute its derivative w.r.t. t, and set it to 
zero, then solve for t  this will yield our point estimate t* 
The interval will be obtained by finding t1, t2 such that  
  chi2(t1) = chi2(t2) = chi2(t*)+1 
Results: ....  
Comparing with the likelihood solution, we see that ...  ?  
Of the two ways to compute the chisquare the preferable one is ... ? 



Calculation 
Inputs: N, n1, nx, n6 (x= sum of 2,3,4,5) 
ei(t) = N*p(i,t)   e1(t) = N*(1/6-t/2); ex(t) = 4*N*(1/6-t/8) = N*(2/3-t/2); e6(t) = N*(1/6+t)           ( etot = N) 
S1= [n1-e1(t)]2 / n1 = [n1

2 - 2*n1*N*(1/6-t/2) + N2*(1/6-t/2)2] / n1 = 
n1 - N/3 + N*t + N2/(36*n1) - N2*t/(6*n1) + N2*t2/(4*n1) 
Sx= [nx-ex(t)]2 / nx = [nx

2 - 2*nx*N*(2/3-t/2) + N2*(2/3-t/2)2] / nx = 
nx - 4*N/3 + N*t + 4*N2/(9*nx) – 2*N2*t/(3*nx) + N2*t2/(4*nx) 
S6 = [n6-e6(t)]2 / n6 = [n6

2 - 2*n6*N*(1/6+t)+N2*(1/6+t)2] / n6 = 
n6 - N/3 - 2*N*t + N2/(36*n6) + N2*t/(3*n6) + N2*t2/n6 
 
dS1/dt = N - N2/(6*n1) + N2*t/(2*n1) 
dSx/dt = N – 2*N2/(3*nx) + N2*t/(2*nx) 
dS6/dt = - 2*N + N2/(3*n6) + 2*N2*t/n6 
 
dS1/dt + dSx/dt + dS6/dt = 0  
N - N2/(6*n1) + N2*t/(2*n1) + N – 2*N2/(3*nx) + N2*t/(2*nx) - 2*N + N2/(3*n6) + 2*N2*t/n6 = 0 
 
t*N2*[1/(2*n1) + 1/(2*nx) + 2/n6] - [N2*(1/(6*n1) + 2/(3*nx) - 1/(3*n6))] = 0 
 
t = [1/(6*n1) + 2/(3*nx) - 1/(3*n6)] / [1/(2*n1) + 1/(2*nx) + 2/n6)] = 
   = (nx*n6 + 4*n1*n6 - 2*n1*nx) / (6*n1*nx*n6)  /  (3*nx*n6 + 3*n1*n6 +12*n1*nx) / (6*n1*nx*n6) = 
   = (nx*n6 + 4*n1*n6 - 2*n1*nx / ( 3*nx*n6 + 3*n1*n6 + 12*n1*nx) 
 
 
 
 
 



Calculation, using all results (2,3,4,5) 
Inputs: N, n1, nx, n6 (x= 2,3,4,5) 
ei(t) = N*p(i,t)   e1(t) = N*(1/6-t/2); ex(t) = N*(1/6-t/8); e6(t) = N*(1/6+t)           ( etot = N) 
S1= [n1-e1(t)]2 / n1 = [n1

2 - 2*n1*N*(1/6-t/2) + N2*(1/6-t/2)2] / n1 = 
n1 - N/3 + N*t + N2/(36*n1) - N2*t/(6*n1) + N2*t2/(4*n1) 
Sx= [nx-ex(t)]2 / nx = [nx

2 - 2*nx*N*(1/6-t/8) + N2*(1/6-t/8)2] / nx = 
nx - N/3 + N*t/4 + N2/(36*nx) – N2*t/(24*nx) + N2*t2/(64*nx) 
S6 = [n6-e6(t)]2 / n6 = [n6

2 - 2*n6*N*(1/6+t)+N2*(1/6+t)2] / n6 = 
n6 - N/3 - 2*N*t + N2/(36*n6) + N2*t/(3*n6) + N2*t2/n6 
 
dS1/dt = N - N2/(6*n1) + N2*t/(2*n1) 
dSx/dt = N/4 – N2/(24*nx) + N2*t/(32*nx) 
dS6/dt = - 2*N + N2/(3*n6) + 2*N2*t/n6 
 
dS1/dt + dS2/dt + dS3/dt + dS4/dt + dS5/dt + dS6/dt = 0  
N - N2/(6*n1) + N2*t/(2*n1) + N/4 – N2/(24*n2) + N2*t/(32*n2) + N/4 – N2/(24*n3) + N2*t/(32*n3) + N/4 – 
N2/(24*n4) + N2*t/(32*n4) + N/4 – N2/(24*n5) + N2*t/(32*n5) - 2*N + N2/(3*n6) + 2*N2*t/n6 = 0 
 
t*N2*[1/(2*n1) + 1/(32*n2) + 1/(32*n3) + 1/(32*n4) + 1/(32*n5) + 2/n6] - [N2*(1/(6*n1) + 1/(24*n2) + 1/(24*n3) + 
1/(24*n4) + 1/(24*n5) - 1/(3*n6))] = 0 
 
t = [1/(6*n1) + 1/(24*n2) + 1/(24*n3) + 1/(24*n4) + 1/(24*n5) - 1/(3*n6)] / [1/(2*n1) + 1/(32*n2) + 1/(32*n3) + 
1/(32*n4) + 1/(32*n5) + 2/n6)] = 
   = 4/3* [4/n1 + 1/n2 + 1/n3 + 1/n4 + 1/n5  - 8/n6] /  [16/n1 + 1/n2 + 1/n3 + 1/n4 + 1/n5 + 64/n6] 
 
 
 
 



Coverage of Flip-Flopping Experiment 
• We want to write a routine that determines the true coverage of the procedure 

discussed above for a Gaussian measurement of a bounded parameter: 
– xmeas<0  quote size-α upper limit as if xmeas=0, xup=sqrt(2)*ErfInverse(1-2α) 
– 0<=xmeas<D quote size-α upper limit, xup=sqrt(2)*ErfInverse(1-2α) + xmeas 
– xmeas>=D  quote central value +-α/2 error bars, xmeas+-sqrt(2)*ErfInverse(1-α) 

Guidelines: 
1. insert proper includes (we want to compile it or it’ll be too slow) 
2. header: pass through it alpha, D, and N_pexp 
3. define useful variables and histogram containing coverage values 
4. loop on x_true values from 0 to 10 in 0.1 steps  i=0...<100 steps, x_true=0.05+0.1*i 
5. for each x_true:  

1. zero a counter C 
2. loop many times (eg. N_pexp, defined in header) 
3. throw x_meas = gRandom->Gaus(x_true,1.) 
4. derive x_down and x_up depending on x_meas: 

1. if x_meas<0  then x_down=0 and x_up = sqrt(2)*ErfInverse(1-2*alpha) 
2. if 0<=x_meas<D then x_down=0 and x_up=x_meas+sqrt(2)*EI(1-2*alpha) 
3. if x_meas>=D then x_down,up = x_meas +- sqrt(2)*EI(1-alpha) 

5. if x_true is in [x_down,x_up] C++ 
6. fill histogram of coverage at x_true with C/N_pexp 
7. plot and enjoy 

 



Coverage of Flip-flopping measurement 
void FlipFlop (double alpha=0.05, double D=4.5, double Npexp=1000) { 
 
  double x_true; 
  double x_meas;  
  double sigma = 1; 
  double x_down; 
  double x_up; 
  double covers=0.; 
  double EIa = sqrt(2)*TMath::ErfInverse(1-alpha); 
  double EI2a= sqrt(2)*TMath::ErfInverse(1-2*alpha); 
 
  TH1D * Coverage_vs_xtrue = new TH1D("Coverage_vs_xtrue", "Coverage vs x_true", 100, 0., 10.); 
  TH1D * BeltUp = new TH1D ("BeltUp", "Flip-flopping Confidence belt", 15000, -5.,10.); 
  TH1D * BeltDo = new TH1D ("BeltDo", "Flip-flopping Confidence belt", 15000, -5.,10.); 
 
  cout << "Critical values: " << endl; 
  cout << "For xmeas < 0 : 0 < xtrue < " << EI2a*sigma << endl; 
  cout << "For 0<xmeas<" << D << " : 0 < xtrue < xmeas+"  
       << EI2a*sigma << endl; 
  cout << "For xmeas>=D : xmeas-" << EIa*sigma << " < xtrue < xmeas+"  
       << EIa*sigma << endl; 
  cout << endl; 
  for (int ix=0; ix<100; ix++) { 
 
    x_true = 0.05 + 0.1*ix; 
    covers=0; 
    for (int pexp=0; pexp<Npexp; pexp++) { 
       
      // A Gaussian measurement with uncertainty sigma 
      x_meas = gRandom->Gaus(x_true,sigma); 
 
      if (x_meas<D) {  // Not significantly different from zero, will  report upper l imit 
 x_down = 0; 
 x_up = EI2a*sigma; 
 if (x_meas>0) x_up = x_meas + x_up;  
      } else { // will  report an interval 
 x_down = x_meas-EIa*sigma; 
 x_up = x_meas+EIa*sigma; 
      } 
 

// compute coverage 
      if (x_true>=x_down && x_true<x_up) covers++; 
    } 
 
    Coverage_vs_xtrue->Fil l(x_true,covers/Npexp); 
  } 
 
  // Belt plot 
  for (int i=0; i<15000; i++) { 
    x_meas = -4.9995 + i*0.001; 
    if (x_meas<0) { 
      BeltUp->Fil l(x_meas,EI2a); 
      BeltDo->Fil l(x_meas,0.); 
    } else if (x_meas<D) { 
      BeltUp->Fil l(x_meas,x_meas+EI2a); 
      BeltDo->Fil l(x_meas,0.); 
    } else { 
      BeltUp->Fil l(x_meas,x_meas+EIa); 
      BeltDo->Fil l(x_meas,x_meas-EIa); 
    } 
  } 
 
  gStyle->SetOptStat(0); 
 
  TCanvas * W2 = new TCanvas ("W2", "Coverage of fl ip-flopping NP construction", 500, 500); 
  W2->cd(); 
  Coverage_vs_xtrue->SetLineWidth(3); 
  Coverage_vs_xtrue->Draw(); 
 
  TCanvas * W = new TCanvas ("W", "Confidence belt", 500, 500); 
  W->cd(); 
  BeltUp->SetMinimum(-1); 
  BeltUp->SetMaximum(15); 
  BeltUp->SetLineWidth(3); 
  BeltDo->SetLineWidth(3); 
  BeltUp->Draw(); 
  BeltDo->Draw("SAME"); 
} 



Coverage.C 

void Coverage (double alpha, double disc_threshold=5.) { 
// Only valid for the following: 
// ----------------------------- 
  if (disc_threshold-sqrt(2)*ErfInverse(1.-2*alpha/2.)< 
      sqrt(2)*ErfInverse(1.-2*alpha)) { 
    cout << "Too low discovery threshold, code not suitable. " << endl; 
    cout << "Try a larger threshold" << endl; 
    return; 
  } 
  char title[100]; 
  int idisc_threshold=disc_threshold; 
  int fracdiscthresh =10*(disc_threshold-idisc_threshold); 
  if (alpha>=0.1) { 
    sprintf (title, "Coverage for #alpha=0.%d with Flip-Flopping at %d.%d-sigma",  
(int)(10.*alpha),idisc_threshold, fracdiscthresh); 
  } else { 
    sprintf (title, "Coverage for #alpha=0.0%d with Flip-Flopping at %d.%d- 
 sigma",  (int)(100.*alpha),idisc_threshold, fracdiscthresh); 
  } 
  TH1D * Cov = new TH1D ("Cov", title, 1000, 0., 2.*disc_threshold); 
  Cov->SetXTitle("True value of #mu (in #sigma units)"); 

 
 // Int Gaus-1:+1 sigma is TMath::Erf(1./sqrt(2.)) 
  // To get 90% percentile (1.28): sqrt(2)*ErfInverse(1.-2*0.1)  
  // To get 95% percentile (1.64): sqrt(2)*ErfInverse(1.-2*0.05) 
 double cov; 
  for (int i=0; i<1000; i++) { 
    double mu = (double)i/(1000./(2*disc_threshold))+ 
      0.5*(2*disc_threshold/1000); 

 

 
if (mu<sqrt(2)*ErfInverse(1.-2*alpha)) { // 1.28, so mu within upper 90% CL 
      cov = 0.5*(1+TMath::Erf((disc_threshold-mu)/sqrt(2.))); 
    } else if (mu< disc_threshold-sqrt(2)*ErfInverse(1.-2*alpha/2.)) { // <3.36  
      cov = 1.-alpha-0.5*(1.-TMath::Erf((disc_threshold-mu)/sqrt(2.))); 
    } else if (mu<disc_threshold+ 
        sqrt(2)*ErfInverse(1.-2*alpha)) { // 6.28 
      cov = 1.-1.5*alpha; 
    } else if (mu<disc_threshold+sqrt(2)*ErfInverse(1.-2*alpha/2.) ) { // 6.64) { 
      cov = 1.-alpha/2.-0.5*(1+TMath::Erf((disc_threshold-mu)/sqrt(2.))); 
    } else { cov = 1.-alpha; } 
    Cov->Fill(mu,cov); 
  } 
  char filename[40]; 
  if (alpha>=0.1) { 
    sprintf(filename,"Coverage_alpha_0.%d_obs_at_%d_sigma.eps", 
(int)(10.*alpha),idisc_threshold); 
  } else { 
    sprintf(filename,"Coverage_alpha_0.0%d_obs_at_%d_sigma.eps", 
(int)(100.*alpha),idisc_threshold); 
  } 
  TCanvas * C = new TCanvas ("C","Coverage", 500,500); 
  C->cd(); 
  Cov->SetMinimum(1.-2*alpha); 
  Cov->SetLineWidth(3); 
  Cov->Draw(); 
  C->Print(filename); 
  // Now plot confidence belt 
    
 

(add at the top the #include commands 
needed to compile it) 



Here is e.g. the exact 
calculation of coverage for 
flip-flopping at 4-sigma and a 
test size alpha=0.05 
 
Can get it by running: 
 
root> .L Coverage.C+; 
root> Coverage(0.05,4.); 



Maximum Likelihood 
• Take a pdf for a random variable x, f(x; θ) which is analytically known, but for which the value of m 

parameters θ is not. The method of maximum likelihood allows us to estimate the parameters θ if 
we have a set of data xi distributed according to f. 
 

• The probability of our observed set {xi} depends on the distribution of the pdf. If the 
measurements are independent, we have  

 
 

• The likelihood function  
  
 
 is then a function of the parameters θ only. It is written as the joint pdf of the xi, but we treat those 

as fixed.  L is not a pdf!  NOTA BENE! The integral under L is MEANINGLESS. 
 
• Using L(θ) one can define “maximum likelihood estimators” for the parameters θ as the values 

which maximize the likelihood, i.e. the solutions   of the equation 
       
     
    for j=1…m 
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Note: The ML requires (and exploits!) 
the full knowledge of the distributions 

to find xi in [xi,xi+dxi[ 



Maximum Likelihood for Gaussian pdf 
• Let us take n measurements of a random variable distributed according to a 

Gaussian PDF with µ, σ unknown parameters. We want to use our data {xi} to 
estimate the Gaussian parameters with the ML method.  
 
 

• The log-likelihood is 
 
 
 

• The MLE of µ is the value for which dlnL/dµ=0: 
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So we see that the ML estimator of the 
Gaussian mean is the sample mean. 



 We can easily prove that the sample mean is a unbiased estimator of the 
Gaussian µ, since its expectation value is 
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The same is not true of the ML estimate of σ2,    
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since one can find as above that 
 
The bias vanishes for large n. Note that a unbiased  
estimator of the Gaussian σ  exists: it is the sample variance 
 
which is a unbiased estimator of the variance for any pdf. But it is not the ML one. 
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