Basic concepts - part 2

SOS 2018 May 28 - June 1, La Londe les Maures

Samples and parameter estimation

A random variable X can be described by its p.d. $f(x)$
f depends of (generally unknown) parameters $\vec{\theta}=\left\{\theta_{1}, \ldots, \theta_{p}\right\} \rightarrow f(x, \vec{\theta})$
An experiment measuring X provides a sample of values $\vec{x}=\left\{x_{1}, \ldots, x_{N}\right\}$
One can construct a function of \vec{x} to infer the properties of the p.d.f

- This function is called an estimator
- The estimator for a parameter $\boldsymbol{\theta}$ is often written: $\widehat{\boldsymbol{\theta}}$
- Parameter fitting: estimate $\boldsymbol{\theta}$ using estimator $\widehat{\boldsymbol{\theta}}$ and data $\overrightarrow{\boldsymbol{x}}$
- $\widehat{\boldsymbol{\theta}}(\overrightarrow{\boldsymbol{x}})$ is itself a random variable following a p.d.f $\boldsymbol{g}(\widehat{\boldsymbol{\theta}} ; \boldsymbol{\theta})$

A good estimator should be
Consistent: $\widehat{\boldsymbol{\theta}}$ converges to $\boldsymbol{\theta}$ for infinite sample $(N \rightarrow+\infty)$
Unbiased: average of $\widehat{\boldsymbol{\theta}}$ for infinite number of measurements is $\boldsymbol{\theta}$
\rightarrow that is: $\boldsymbol{E}[\widehat{\boldsymbol{\theta}}(\overrightarrow{\boldsymbol{x}})]-\boldsymbol{\theta}=\boldsymbol{b}=\mathbf{0}$

Basic estimators

Consider a sample of size N of a random variable $\mathrm{X}: \overrightarrow{\boldsymbol{x}}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}$ X follows a p.d.f $f(x)$ of truth mean $\boldsymbol{\mu}$ and variance $\boldsymbol{\sigma}^{2}$
A simple estimator is the arithmetic mean of values $x_{i}: \bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$

$$
E[\bar{x}]=\frac{1}{N} \sum_{i=1}^{N} E\left[x_{i}\right]=\mu \quad \rightarrow \text { Unbiased estimator of } \mu
$$

$$
V[\bar{x}]=\boldsymbol{E}\left[\bar{x}^{2}\right]-\boldsymbol{E}[\bar{x}]^{2}=\frac{\boldsymbol{\sigma}^{2}}{\boldsymbol{N}} \quad \begin{aligned}
& \text { This implies that the uncertainty } \\
& \text { on the sample mean } \bar{x} \text { is: } \sigma / \sqrt{N}
\end{aligned}
$$

Estimator of the variance: $v=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}=\overline{x^{2}}-\bar{x}^{2}$
Expected value of the estimator: $E[v]=\sigma^{2}-\frac{\sigma^{2}}{N}=\frac{N-1}{N} \sigma^{2}$
\rightarrow Biased estimator of $\sigma^{2}!$

Basic estimators

Consider a sample of size N of a random variable $\mathrm{X}: \overrightarrow{\boldsymbol{x}}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}$ X follows a p.d.f $f(x)$ of truth mean $\boldsymbol{\mu}$ and variance $\boldsymbol{\sigma}^{2}$
A simple estimator is the arithmetic mean of values $x_{i}: \bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$

$$
E[\bar{x}]=\frac{1}{N} \sum_{i=1}^{N} E\left[x_{i}\right]=\mu \quad \rightarrow \text { Unbiased estimator of } \mu
$$

$$
V[\bar{x}]=\boldsymbol{E}\left[\bar{x}^{2}\right]-\boldsymbol{E}[\bar{x}]^{2}=\frac{\boldsymbol{\sigma}^{2}}{\boldsymbol{N}} \quad \begin{aligned}
& \text { This implies that the uncertainty } \\
& \text { on the sample mean } \bar{x} \text { is: } \sigma / \sqrt{N}
\end{aligned}
$$

Estimator of the variance: $v=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}=\frac{N}{N-1}\left(\overline{x^{2}}-\bar{x}^{2}\right)$
Expected value of the estimator: $E[v]=\sigma^{2}$
\rightarrow Unbiased estimator of $\sigma^{2}!$

Maximum Likelihood estimator (ML)

Suppose a random variable \mathbf{X} distributed according to a p.d.f $\boldsymbol{f}(\boldsymbol{x} ; \overrightarrow{\boldsymbol{\theta}})$

- The form of f being know but not the parameters $\vec{\theta}=\left\{\theta_{1}, \ldots, \theta_{P}\right\}$
- Consider a sample of X of N values: $\vec{x}=\left\{x_{1}, \ldots, x_{N}\right\}$

The method of ML is a technique to estimate $\overrightarrow{\boldsymbol{\theta}}$ given data $\overrightarrow{\boldsymbol{x}}$

Joint likelihood function (the x_{i} are fixed here)

$$
L(\vec{\theta})=\prod_{i=1}^{N} f\left(x_{i} ; \vec{\theta}\right)
$$

The estimators $\widehat{\theta}_{i}$ are given by: $\frac{\partial L}{\partial \theta_{i}}=0, i=1 \ldots P$

Notes:

- maximizing the likelihood provides and estimate of parameters θ
- In practice the log of L (log likelihoood) is often used
- The likelihood is not a p.d.f !
- Bayesian do transform the likelihood in a p.d.f

Simple examples

Exponential distribution $f(x ; \tau)=\frac{1}{\tau} e^{-\frac{x}{\tau}}$
Likelihood: $L(\tau)=\prod_{i=1}^{N} \frac{1}{\tau} e^{-\frac{x_{i}}{\tau}}$
Log-likelihood:
$\log L(\tau)=\sum_{i=1}^{N} \log f\left(x_{i} ; \tau\right)=-N \log \tau-\sum_{i=1}^{N} \frac{x_{i}}{\tau}$
Estimator: $\frac{d \log L}{d \tau}=0 \Leftrightarrow \tau=\hat{\boldsymbol{\tau}}=\frac{1}{\boldsymbol{N}} \sum_{i=1}^{\boldsymbol{N}} \boldsymbol{x}_{\boldsymbol{i}}$

$$
E[\hat{\tau}]=\tau \quad \text { (unbiased estimator) }
$$

$$
N=200
$$

Simple examples

Gaussian distribution $f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, \log L(\vec{\theta})=\sum_{i=1}^{N} \log f\left(x_{i} ; \mu, \sigma\right)$ Estimators:
$E[\hat{\mu}]=\mu \quad$ (unbiased)
$\frac{\partial \log L}{\partial \sigma^{2}}=0 \Leftrightarrow \widehat{\boldsymbol{\sigma}^{\mathbf{2}}}=\frac{\mathbf{1}}{\boldsymbol{N}} \sum_{i=1}^{N}\left(\boldsymbol{x}_{\boldsymbol{i}}-\widehat{\boldsymbol{\mu}}\right)^{2} \quad E\left[\widehat{\sigma^{2}}\right]=\frac{N-1}{N} \sigma^{2}$ (biased)

$$
N=1000
$$

Interlude : (Linear) regression

Simple example: polynomial curve fitting

Training dataset

- N observations of $x=\left(x_{1}, \ldots, x_{N}\right)^{\top}$: uniformly spaced in $[0,1]$
- Target values $\mathbf{t}=\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{N}}\right)^{\top}: \sin (2 \pi x)+$ Gaussian noise

Polynomial curve fitting

Fit function

- Polynomial function of degree \mathbf{M}, with coefficients $\mathbf{w}=\left(w_{1}, \ldots, w_{M}\right)^{\top}$

$$
y(x, \mathbf{w})=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{j=0}^{M} w_{j} x^{j}
$$

- Non-linear function of x, but linear function of $\mathbf{w} \rightarrow$ linear model
- Values of coefficient obtained by minimizing an error function
- Common choice: sum of the square of the errors $E(w)$

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}
$$

Fitted weights w*
$E\left(w^{*}\right)$

Linear basis function models

Basis functions

$$
y(\mathbf{x}, \mathbf{w})=w_{0}+\sum_{j=1}^{M-1} w_{j} \phi_{j}(\mathbf{x}) \quad \begin{aligned}
& \mathrm{w}_{0}: \text { offset } \\
& \varphi_{j}(\mathrm{x}): \text { basis function }
\end{aligned}
$$

$$
\begin{aligned}
y(\mathbf{x}, \mathbf{w}) & =\sum_{j=0}^{M-1} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) \quad \text { with } \varphi_{0}(\mathrm{x})=1 \\
\mathbf{w} & =\left(w_{0}, \ldots, w_{M-1}\right)^{\mathrm{T}} \quad \phi=\left(\phi_{0}, \ldots, \phi_{M-1}\right)^{\mathrm{T}}
\end{aligned}
$$

By using nonlinear basis functions, we allow the function $y(\mathbf{x}, \mathbf{w})$ to be a non-linear function of the input vector \mathbf{x}. These functions are called linear models, however, because they are linear in \mathbf{w}.
For high number of dimensions linear models suffer from limitations, and other approaches (as NN) are more suited.

Likelihood and regression

Likelihood

Consider \mathbf{N} measurements of x distributed along a given probability law $\mathrm{p}(\mathrm{x})$.

$$
\mathbf{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)^{\top}
$$

where values x_{i} are independent and identically distributed (i.i.d).
Ex: Normal (a.k.a Gaussian) law with 2 parameters: mean μ and variance σ^{2}

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}
$$

Likelihood and regression

Likelihood and parameter estimation

Since the variables x are i.i.d we can write the joint probability distribution, therefore the likelihood of the dataset, given μ and σ is:

$$
p\left(\mathbf{x} \mid \mu, \sigma^{2}\right)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

To estimate μ and σ given \mathbf{x} one maximizes p w.r.t these parameters. In practice often maximize $\ln (p)$ or minimize $-\ln (p)$.

$$
\ln p\left(\mathbf{x} \mid \mu, \sigma^{2}\right)=-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}-\frac{N}{2} \ln \sigma^{2}-\frac{N}{2} \ln (2 \pi)
$$

$$
\left\{\begin{array}{l}
\frac{\partial\left(\ln p\left(\mathbf{x} \mid \mu, \sigma^{2}\right)\right)}{\partial \mu}=0 \rightarrow \mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
\frac{\partial\left(\ln p\left(\mathbf{x} \mid \mu, \sigma^{2}\right)\right)}{\partial \sigma}=0 \rightarrow \sigma_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\mu_{\mathrm{ML}}\right)^{2}
\end{array}\right.
$$

Expected values

$$
\mathbb{E}\left[\mu_{\mathrm{ML}}\right]=\mu
$$

$$
\mathbb{E}\left[\sigma_{\mathrm{ML}}^{2}\right]=\left(\frac{N-1}{N}\right) \sigma^{2}
$$

Likelihood and regression

Curve fitting with noise

Assume target variable in training dataset is subject to Gaussian noise

$$
p(t \mid x, \mathbf{w}, \beta)=\mathcal{N}\left(t \mid y(x, \mathbf{w}), \beta^{-1}\right)
$$

where $\beta=1 / \sigma^{2}$ is a precision parameter.

Likelihood and regression

Predictive probabilistic model

By maximizing the likelihood on the training dataset we obtain a probabilistic predictive model for t (instead of a single point estimate):

$$
p\left(t \mid x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}\right)=\mathcal{N}\left(t \mid y\left(x, \mathbf{w}_{\mathrm{ML}}\right), \beta_{\mathrm{ML}}^{-1}\right)
$$

where \mathbf{w}_{n} is obtained by minimizing the sum of square error $E(\mathbf{w})$

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}
$$

and β_{ML} is given by

$$
\frac{1}{\beta_{\mathrm{ML}}}=\frac{1}{N} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}_{\mathrm{ML}}\right)-t_{n}\right\}^{2}
$$

Chi-square method

Consider N independent variables \mathbf{y}_{i} function of a another variable \mathbf{x}_{i}

- The y_{i} are Gaussian distributed of mean $\boldsymbol{\mu}_{\mathrm{i}}$ and (known) std $\boldsymbol{\sigma}_{\mathrm{i}}$
- Suppose that $\mu=f(x ; \overrightarrow{\boldsymbol{\theta}})$ with unknow parameters $\overrightarrow{\boldsymbol{\theta}}$

Likelihood: $L(\vec{\theta})=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma_{i}} e^{-\frac{1}{2}\left(\frac{y_{i}-f\left(x_{i} \vec{\theta}\right)}{\sigma_{i}}\right)^{2}}$
Maximizing $\log L(\vec{\theta})$ to estimate parameters $\vec{\theta}$ is equivalent to minimize:

$$
\chi^{2}(\vec{\theta})=\sum_{i=1}^{N}\left(\frac{y_{i}-f\left(x_{i} ; \vec{\theta}\right)}{\sigma_{i}}\right)^{2}
$$

Simple example

Fit data with a line $f(x ; a, b)=a x+b$

Simple linear regression: minimize the variance of $y_{i}-f\left(x_{i} ; a, b\right)$
$w(a, b)=\sqrt{\frac{1}{n} \sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}}$

$$
\left\{\begin{array}{l}
\frac{\partial w(a, b)}{\partial a}=0 \\
\frac{\partial w(a, b)}{\partial b}=0
\end{array}\right.
$$

$$
\left\{\begin{aligned}
a & =\frac{\operatorname{cov}(x, y)}{\operatorname{var}(x)}=r \frac{\sigma(y)}{\sigma(x)} \\
b & =\bar{y}-r \frac{\sigma(y)}{\sigma(x)} \bar{x}
\end{aligned}\right.
$$

(r: correlation factor between x and y)

Simple example

Fit data with a line $f(x ; a, b)=a x+b$
Chi-square fit: minimize $\chi^{2}(a, b)$

$a=\frac{A E-D C}{B E-C^{2}} \quad b=\frac{D B-A C}{B E-C^{2}}$
$A=\sum_{i} \frac{x_{i} y_{i}}{\left(\Delta y_{i}\right)^{2}}, B=\sum_{i} \frac{x_{i}^{2}}{\left(\Delta y_{i}\right)^{2}}, C=\sum_{i} \frac{x_{i}}{\left(\Delta y_{i}\right)^{2}}, D=\sum_{i} \frac{y_{i}}{\left(\Delta y_{i}\right)^{2}}, E=\sum_{i} \frac{1}{\left(\Delta y_{i}\right)^{2}}$

Uncertainty of ML estimator

Uncertainty of ML estimator

Variance of estimator, $V[\hat{\tau}]$ can be tricky to estimate. Several methods exist:

1) Analytical method

For example for the previous exponential distribution

$$
\hat{\tau}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \quad \text { and } \quad V[\hat{\tau}]=(\ldots)=\frac{\tau^{2}}{N}
$$

2) Monte-Carlo method

Very useful for complex cases (multiparameters, systematic uncertainties)
Ex: generate samples distributed exponentially

$$
N_{\text {sample }}=200
$$

$N_{\text {experiments }}=500$

Uncertainty of ML estimator

3) Cramér-Rao bound

Gives a lower bound on any estimator variance (not only ML)

$$
V[\theta] \geq \frac{\left(1+\frac{\partial b}{\partial \theta}\right)^{2}}{E\left[-\frac{\partial^{2} \log L}{\partial \theta^{2}}\right]},(b: \text { bias })
$$

Equality: estimator is efficient ML are asymptotically efficient

For multiple parameters $\vec{\theta}=\left\{\theta_{1}, \ldots, \theta_{P}\right\}: \quad\left(V^{-1}\right)_{i j}=E\left[-\frac{\partial^{2} \log L}{\partial \theta_{i} \partial \theta_{j}}\right]$
(and assuming efficiency and $\mathrm{b}=0$)
For large samples: an estimate of the inverse covariant matrix V^{-1} is:

$$
\left(\widehat{V^{-1}}\right)_{i j}=-\frac{\partial^{2} \log L}{\partial \theta_{i} \partial \theta_{j}}(\theta=\hat{\theta})
$$

1 parameter:

$$
\widehat{\sigma^{2}}=\frac{-1}{\frac{\partial^{2} \log L}{\partial \theta^{2}}(\hat{\theta})}
$$

Uncertainty of ML estimator

4) Graphical method

Taylor expansion of $\log L$ on estimate :

$$
\begin{aligned}
\log L(\theta) & =\log L(\hat{\theta})+(\theta-\hat{\theta}) \frac{\partial \log L}{\partial \theta}(\hat{\theta})+\frac{1}{2}(\theta-\hat{\theta})^{2} \frac{\partial^{2} \log L}{\partial \theta^{2}}(\hat{\theta}) \\
& =\log L_{\max }-\frac{1}{2 \widehat{\sigma}^{2}}(\theta-\hat{\theta})^{2}
\end{aligned}
$$

$$
\Rightarrow \log L(\hat{\theta} \pm \hat{\sigma})=\log L_{\max }-\frac{1}{2}
$$

$\hat{\boldsymbol{\tau}} \pm \widehat{\sigma_{\tau}}$ corresponds to a 68.3\% confidence interval

$$
\begin{aligned}
\Delta \log L & =0.5: 68.3 \% \mathrm{CI} \\
\Delta \log L & =2: 95.4 \% \mathrm{CI} \\
\Delta \log L & =4.5: 99.7 \% \mathrm{CI}
\end{aligned}
$$

Error ellipse

Case for 2 parameters $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$:

Error ellipse

Case for 2 parameters $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$:

Chi-square: generalization

If $\mathbf{y}_{\mathbf{i}}$ measurements are not independent but related by their cov. matrix V_{ij}

$$
\log L(\vec{\theta})=-\frac{1}{2} \sum_{i, j=1}^{N}\left(y_{i}-f\left(x_{i} ; \vec{\theta}\right)\right)\left(V^{-1}\right)_{i j}\left(y_{j}-f\left(x_{j} ; \vec{\theta}\right)\right)+\text { additive terms }
$$

$\log L(\vec{\theta})$ is maximized by minimizing:

$$
\chi^{2}(\vec{\theta})=\sum_{i, j=1}^{N}\left(y_{i}-f\left(x_{i} ; \vec{\theta}\right)\right)\left(V^{-1}\right)_{i j}\left(y_{j}-f\left(x_{j} ; \vec{\theta}\right)\right.
$$

Written in matrix notation: $\chi^{2}(\vec{\theta})=(\vec{y}-\vec{f})^{T} V^{-1}(\vec{y}-\vec{f})$
If $f\left(x_{i} ; \vec{\theta}\right)$ is linear in the parameters $\vec{\theta}: 1-\sigma$ uncertainty contour given by:

$$
\chi^{2}(\vec{\theta})=\chi^{2}(\overrightarrow{\hat{\theta}})+1=\chi_{\text {min }}^{2}+q
$$

N param.	1	2	3
q	1.00	2.30	3.53

Test hypothesis

Testing compatibility of observed data against a model

- model = background predictions (for simplicity)
$\rightarrow n_{b}$ events: follows Poisson distribution of mean v_{b}
$\rightarrow \mathrm{n}_{\text {obs }}$ observed events
To quantify degree of compatibility of $\mathrm{n}_{\text {obs }}$ with the background-only hypothesis we calculate how likely it is to find $\mathrm{n}_{\text {obs }}$ or more events of background
p-value: probability that the expected number of event (background) is at least as high as the number of observed data

$$
\mathrm{p}-\text { value }=P\left(n \geq n_{o b s}\right)=1-P\left(n<n_{o b s}\right)
$$

$$
=\sum_{n=n_{o b s}}^{+\infty} \frac{e^{-v_{b}} v_{b}^{n}}{n!}=1-\sum_{n=0}^{n_{o b s}^{-1}} \frac{e^{-v_{b}} v_{b}^{n}}{n!}
$$

$$
\left[\text { for } v_{b}<n_{o b s}\right]
$$

Test hypothesis

For the case where $\mathbf{v}_{\mathbf{b}}>\mathbf{n}_{\text {obs }}$ one can define:

$$
\mathrm{p} \text {-value }=\sum_{n=0}^{n_{\text {obs }}} \frac{e^{-v_{b}} v_{b}^{n}}{n!}
$$

The previous sums can be simplified using incomplete Gamma functions:

$$
\sum_{n=n_{o b s}}^{+\infty} \frac{e^{-v_{b}} v_{b}^{n}}{n!}=\frac{1}{\Gamma\left(n_{o b s}\right)} \int_{0}^{v_{b}} t^{n_{o b s}-1} e^{-t} d t=\Gamma\left(v_{b}, n_{o b s}\right)
$$

$$
\text { with } \left.\Gamma\left(n_{o b s}\right)=\int_{0}^{\infty} t^{n_{o b s}-1} e^{-t} d t=\left(n_{o b s}-1\right)!\text { (if } n_{o b s} \text { integer }\right)
$$

Significance

It is customary to transform the p-value into a Z-value using the integral of the Gaussian distribution:

$$
\int_{-\infty}^{Z} \operatorname{Gaus}(x, \mu=0, \sigma=1) d x=\int_{-\infty}^{Z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x=1-\text { pvalue }
$$

Z-value = number of standard deviation, used as a measure of the significance of an excess (or a deficit) w.r.t the (background) hypothesis.

Significance

In practice one uses the inverse cumulative distribution function of the Gaussian distribution to compute the significance:

$$
Z=\sqrt{2} \operatorname{Erf}^{-1}(1-2 \times \mathrm{p} \text {-value })
$$

p-value	Z
0.159	1σ
2.28×10^{-2}	2σ
1.35×10^{-3}	3σ
3.15×10^{-5}	4σ
2.85×10^{-7}	5σ

Example: BumpHunter algorithm

Software used to search for excess or deficit in a spectrum.

- No assumptions are made on the signal shape or yield
- Just test data against background-only hypothesis
\rightarrow Compute the p -value for all possible intervals.
\rightarrow Select the interval with smallest p-value.

This gives the local p-value: $p_{\text {min }}^{\text {local }}$

Example: BumpHunter algorithm

Since many intervals are considered there is a increasing probability that an excess is found due to statistical fluctuations

- This is the (in)famous (and misnamed) Look Elsewhere Effect: LEE
- To cope for this effect a global p-value is calculated
\rightarrow The global p-value is extracted by comparing $-\log \left(p_{\min }^{\text {local }}\right)$ to a set of $-\log \left(\mathrm{p}_{\min }^{\text {local }}\right)$ generated using background-only pseudo-experiments

$\mathrm{p}^{\text {global }}$: fraction of PE that gives a result higher than the one observed
${ }_{\mathrm{P}} \mathrm{global}=$ fraction of $\left(\mathrm{P}_{\mathrm{min}}^{\mathrm{PE}}>\mathrm{P}_{\mathrm{min}}^{\mathrm{obs}}\right)$

Hypothesis test: CLs method

Test of two hypothesis \mathbf{H}_{0} and \mathbf{H}_{1} using data

- Likelihood of data given an hypothesis: $\mathrm{L}\left(\right.$ data| H_{0}) or $\mathrm{L}\left(\right.$ data $\left.\mid \mathrm{H}_{1}\right)$ $\begin{aligned} & \text { Neyman-Pearson lemma: optimal test statistics for } \\ & \text { hypothesis testing is given by }(\log) \text { likelihood ratio }\end{aligned} \quad L L R=-2 \log \frac{L\left(\text { data } \mid H_{0}\right)}{L\left(\text { data } \mid H_{1}\right)}$

$$
\begin{aligned}
& \int_{L L R_{o b s}}^{\infty} f\left(t \mid H_{0}\right) d t=\mathrm{CL}_{s+b} \\
& \int_{-\infty}^{L L R_{o b s}} f\left(t \mid H_{1}\right) d t=1-\mathrm{CL}_{b}
\end{aligned}
$$

$$
\mathrm{H}_{0} \text { rejected at }(1-\alpha) \quad \mathrm{CL}_{s+b}<\alpha
$$

$$
\text { More robust test } \mathrm{CL}_{s}=\frac{\mathrm{CL}_{s+b}}{\mathrm{CL}_{b}}<\alpha
$$

Hypothesis test: CLs method

Testing signal strenght (μ):

- Express number of event of signal as $s=\mu \times S_{\text {nominal }}$
- CLs test can be performed for increasing values of μ
- Exclusion limit on μ when CLs $<\alpha$

Combining measurements

BLUE method

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110

- Find linear (unbiased) combination of results: $x=\Sigma w_{i} x_{i}$
with weights w_{i} that give minimum possible variance $\sigma_{x}{ }^{2}$
- Account properly of correlations between measurements
- For Gaussian errors: method equivalent to χ^{2} minimization
- Two measurements: $\mathrm{x}_{1} \pm \sigma_{1}, \mathrm{x}_{2} \pm \sigma_{2}$ with correlation ρ
- The weights that minimize the χ^{2} : Cov. matrix

$$
\left.\chi^{2}=\left(\begin{array}{ll}
x_{1}-x & x_{2}-x
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)\right]^{-1}\binom{x_{1}-x}{x_{2}-x}
$$

are:

$$
w_{1}=\frac{\sigma_{2}^{2}-\rho \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}} \quad w_{2}=\frac{\sigma_{1}^{2}-\rho \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}} \quad\left(\mathrm{w}_{1}+\mathrm{w}_{2}=1\right)
$$

BLUE method

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110

- Find linear (unbiased) combination of results: $x=\Sigma w_{i} x_{i}$ with weights w_{i} that give minimum possible variance $\sigma_{x}{ }^{2}$
- Account properly of correlations between measurements
- For Gaussian errors: method equivalent to X^{2} minimization
- Two measurements: $\mathrm{x}_{1} \pm \sigma_{1}, \mathrm{x}_{2} \pm \sigma_{2}$ with correlation ρ
- The combined result is:

$$
x=w_{1} x_{1}+w_{1} x_{2}
$$

- And the uncertainty on the combined measurement is:

$$
\sigma_{x}=\sqrt{\frac{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}{\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}}}
$$

BLUE method

Iterative method

- Biases could appear when uncertainties depend on central value of each measurement (L. Lyons et al., Phys. Rev. D41 (1990) 982985)
- Reduced if covariance matrix determined as if the central value is the one obtained from combination
- Rescale uncertainties to combined value
ex: for measurement 1 , and category i : $\sigma_{\mathrm{i}, 1}{ }^{\text {rescaled }}=\sigma_{\mathrm{i}, 1} \cdot \mathrm{x}_{1} / \mathrm{x}_{\text {blue }}$
- Iterate until central value converges to stable value

Single-top t-channel 8 TeV results

ATLAS [ATLAS-CONF-2012-132, $\left.5.8 \mathrm{fb}^{-1}\right]$:
$\sigma_{\mathrm{t}}(\mathrm{t}-\mathrm{ch})=.95 \pm 2$ (stat.) ± 18 (syst.) pb $=95 \pm 18 \mathrm{pb}$

- Multivariate analysis with limited assumptions on simulations
- Fit of NN distribution in the data in e/ $\mu+2 / 3$ jet events, with 1-btag

CMS [CMS PAS TOP-12-011, $5.0 \mathrm{fb}^{-1}$]:
$\sigma_{\mathrm{t}}(\mathrm{t}-\mathrm{ch})=.80.1 \pm 5.7$ (stat.) ± 11.0 (syst.) ± 4.0 (lumi.) pb $=80.1 \pm 12.8 \mathrm{pb}$

- Cut-based analysis, data-driven background estimates (shapes, rates)
- Fit $|\boldsymbol{\eta}|$ distribution of forward jet in $\boldsymbol{\mu}+2$ jet events, with 1-btag

CMS Preliminary, $5.0 \mathrm{fb}^{-1}, \sqrt{\mathrm{~s}}=8 \mathrm{TeV}$

Uncertainties categories and correlations

6 categories of uncertainties. Correlation factor between ATLAS/CMS estimated for each.

Category	ATLAS		CMS		ρ
Statistics	Stat. data Stat. sim.	$\begin{aligned} & 2.4 \% \\ & 2.9 \% \end{aligned}$	Stat. data Stat. sim.	$\begin{aligned} & \hline 7.1 \% \\ & 2.2 \% \end{aligned}$	0
Total		3.8\%		7.5\%	0
Luminosity	Calibration Long-term stability	$\begin{aligned} & \hline \hline 3.0 \% \\ & 2.0 \% \end{aligned}$	Calibration Long-term stability	$\begin{aligned} & \hline \hline 4.1 \% \\ & 1.6 \% \end{aligned}$	1
Total		3.6\%		4.4\%	0.78
Simulation and modelling	$\begin{array}{\|l\|} \hline \text { ISR/FSR } \\ \text { PDF } \\ \text { t-ch. generator } \\ \mathrm{tt} \text { generator } \\ \text { Parton shower/had. } \\ \hline \end{array}$	$\begin{aligned} & \hline \hline 9.1 \% \\ & 2.8 \% \\ & 7.1 \% \\ & 3.3 \% \\ & 0.8 \% \end{aligned}$	$\begin{aligned} & \hline \hline Q^{2} \text { scale } \\ & \text { PDF } \\ & \text { t-ch. generator } \end{aligned}$	$\begin{aligned} & \hline \hline 3.1 \% \\ & 4.6 \% \\ & 5.5 \% \end{aligned}$	1 1 1 0 0
Total	12.3\%		7.8\%		0.83
Jets	JES Jet res. \& reco.	$\begin{aligned} & \hline 7.7 \% \\ & 3.0 \% \end{aligned}$	JES Jet res.	$\begin{aligned} & \hline \hline 6.8 \% \\ & 0.7 \% \end{aligned}$	0
Total	8.3\%		6.8\%		0
Backgrounds	Norm. to theory Multijet (data-driven)	$\begin{aligned} & \hline \hline 1.6 \% \\ & 3.1 \% \end{aligned}$	Norm. to theory Multijet (data-driven) W+jets, tt (data-driven)	$\begin{aligned} & \hline \hline 2.1 \% \\ & 0.9 \% \\ & 4.5 \% \end{aligned}$	1 0 0
Total	3.5\%		, 5.0\%		0.19
Detector modelling	b-tagging $E_{\mathrm{T}}^{\text {miss }}$ Jet Vertex fraction lepton eff. lepton res. lepton scale	$\begin{aligned} & \hline \hline 8.5 \% \\ & 2.3 \% \\ & 1.6 \% \\ & 4.1 \% \\ & 2.2 \% \\ & 2.1 \% \end{aligned}$	b-tagging Unclustered $E_{\mathrm{T}}^{\text {miss }}$ pile up μ trigger + reco.	$\begin{aligned} & 4.6 \% \\ & 1.0 \% \\ & \\ & 0.5 \% \\ & \\ & 5.1 \% \end{aligned}$	$\begin{array}{r}0.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}$
Total	10.3\%		6.9\%		0.27
Total uncert.	19.2\%		16.0\%		0.38

Combined t-channel single-top cross section

Sum covariance matrices in each category to obtain total covariance matrix.

$$
\begin{gathered}
\mathbf{C}=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right) \\
\\
\Sigma
\end{gathered}
$$

Source	Uncertainty (pb)
Statistics	4.1
Luminosity	3.4
Simulation and modelling	7.7
Jets	4.5
Backgrounds	3.2
Detector modelling	5.5
Total systematics (excl. lumi)	11.0
Total systematics (incl. lumi)	11.5
Total uncertainty	12.2

$$
\mathbf{C}=\left(\begin{array}{cc}
269 & 84 \\
84 & 182
\end{array}\right) \mathrm{pb}^{2}
$$

Breakdown of uncertainties

$$
\sigma_{i}^{2}=w_{1}^{2} \sigma_{i, 1}^{2}+2 w_{1} w_{2} \rho_{i} \sigma_{i, 1} \sigma_{i, 2}+w_{2}^{2} \sigma_{i, 2}^{2}
$$

$$
\sigma_{\text {t-ch. }}=85.3 \pm 4.1 \text { (stat.) } \pm 11.0 \text { (syst.) } \pm 3.4 \text { (lumi.) } \mathrm{pb}=85.3 \pm 12.2 \mathrm{pb}
$$

With $\mathrm{w}_{\text {AtLAS }}=0.35$ and $\mathrm{w}_{\text {СмS }}=0.65, \mathrm{X}^{2}=0.79 / 1$
Overall correlation of measurements is $\rho_{\text {tot }}=0.38$.

ATLAS+CMS Preliminary, $\sqrt{s}=8 \mathrm{TeV}$

