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Samples and parameter estimation
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A random variable X can be described by its p.d.f f(x) 

f depends of (generally unknown) parameters 
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Basic estimators
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A simple estimator is the arithmetic mean of values    :
 

 
→ Unbiased estimator of μ

 This implies that the uncertainty 
on the sample mean    is: 

Estimator of the variance:
 

 
Expected value of the estimator: 

→ Biased estimator of σ2 !
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Basic estimators
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A simple estimator is the arithmetic mean of values    :
 

 
→ Unbiased estimator of μ

 This implies that the uncertainty 
on the sample mean    is: 

Estimator of the variance:

Expected value of the estimator: 

→ Unbiased estimator of σ2 !
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Maximum Likelihood estimator (ML)
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Simple examples

6

Exponential distribution
 

 

 

 

  (unbiased estimator)

Likelihood:

Log-likelihood:

Estimator:
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Simple examples
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Gaussian distribution
  

 

 

 

 

Estimators:

 (unbiased)

 (biased)
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Interlude : (Linear) regression
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Simple example: polynomial curve fitting

Training dataset
● N observations of x = (x

1
, …, x

N
)T: uniformly spaced in [0,1]

● Target values t = (t
1
, …, t

N
)T: sin(2πx) + Gaussian noise

[bishop]
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Polynomial curve fitting
Fit function
● Polynomial function of degree M, with coefficients w = (w

1
, …, w

M
)T

[bishop]

● Non-linear function of x, but linear function of w → linear model
● Values of coefficient obtained by minimizing an error function
● Common choice: sum of the square of the errors E(w)

Minimization

Fitted weights w*
E(w*)
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Linear basis function models

Basis functions

w
0
: offset

φ
j
(x): basis function

with φ
0
(x)=1

By using nonlinear basis functions, we allow the function y(x, w) to be a 
non-linear function of the input vector x.  These functions are called 
linear models, however, because they are linear in w.

For high number of dimensions linear models suffer from limitations, 
and other approaches (as NN) are more suited. 
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Likelihood and regression

Likelihood

Consider N measurements of x distributed along a given probability law p(x).

x = (x
1
, …, x

N
)T

where values x
i
 are independent and identically distributed (i.i.d).

Ex: Normal (a.k.a Gaussian) law with 2 parameters: mean μ and variance σ²

[bishop]
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Likelihood and regression

Likelihood and parameter estimation

Since the variables x are i.i.d we can write the joint probability distribution,

therefore the likelihood of the dataset, given μ and σ is: 

To estimate μ and σ given x one maximizes p w.r.t these parameters.

In practice often maximize ln(p) or minimize -ln(p).

 

Expected values
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Likelihood and regression

Curve fitting with noise
Assume target variable in training dataset is subject to Gaussian noise

where β=1/σ² is a precision parameter.

[bishop]
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Likelihood and regression

Predictive probabilistic model
By maximizing the likelihood on the training dataset we obtain a probabilistic 
predictive model for t (instead of a single point estimate):

where w
ML

 is obtained by minimizing the sum of square error E(w)

and β
ML

 is given by

[bishop]
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Chi-square method
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Likelihood:

 



SOS 2018

Simple example

17

 

(r: correlation factor 
between x and y)
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Simple example

18
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Uncertainty of ML estimator
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Uncertainty of ML estimator
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Variance of estimator,        can be tricky to estimate. Several methods exist:

1) Analytical method

    For example for the previous exponential distribution

  
and

2) Monte-Carlo method

    Very useful for complex cases (multiparameters, systematic uncertainties)

    Ex: generate samples distributed exponentially 

 

 

 

  

  

  



SOS 2018

Uncertainty of ML estimator
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3) Cramér-Rao bound

    Gives a lower bound on any estimator variance (not only ML)

 
Equality: estimator is efficient

ML are asymptotically efficient

  

For large samples: an estimate of the 
inverse covariant matrix V-1 is:

 

1 parameter: 
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Uncertainty of ML estimator
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4) Graphical method

    Taylor expansion of log L on estimate :
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Error ellipse
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+

 

 

 

 

 

 

  

 

Case for 2 parameters θ
1
 and θ

2
:



SOS 2018

Error ellipse
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+

 

 

 

 

 

Case for 2 parameters θ
1
 and θ

2
:
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Chi-square: generalization
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Test hypothesis
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Test hypothesis
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Testing compatibility of observed data against a model
• model = background predictions (for simplicity)

     → nb events: follows Poisson distribution of mean νb

     → nobs observed events

p-value: probability that the expected number of event (background) 
is at least as high as the number of observed data

 

 

To quantify degree of compatibility of nobs with the background-only hypothesis 
we calculate how likely it is to find nobs or more events of background

nobs
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Test hypothesis
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For the case where νb > nobs one can define:

 

The previous sums can be simplified using incomplete Gamma functions: 

 

 

nobs
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Significance
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It is customary to transform the p-value into a Z-value using the integral of the 
Gaussian distribution:

 

Z-value = number of standard deviation, used as a measure of the 
significance of an excess (or a deficit) w.r.t the (background) hypothesis.
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Significance

 

p-value Z

0.159 1σ

2.28×10-2 2σ

1.35×10-3 3σ

3.15×10-5 4σ

2.85×10-7 5σ

In practice one uses the inverse cumulative distribution function of the 
Gaussian distribution to compute the significance:

30



SOS 2018

Example: BumpHunter algorithm
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Software used to search for excess or deficit in a spectrum.
• No assumptions are made on the signal shape or yield
• Just test data against background-only hypothesis

G. Choudalakis

1101.0390

 Compute the p-value for 

     all possible intervals.

 Select the interval with 
smallest p-value.

This gives the local p-value: 

E
ve

nt
s
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Example: BumpHunter algorithm
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Since many intervals are considered there is a increasing probability that an 
excess is found due to statistical fluctuations
• This is the (in)famous (and misnamed) Look Elsewhere Effect: LEE
• To cope for this effect a global p-value is calculated

 The global p-value is extracted by comparing                      to a set of      

                     generated using background-only pseudo-experiments

 

pglobal : fraction of PE that gives a 
result higher than the one observed

observed
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Hypothesis test: CLs method
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Test of two hypothesis H0 and H1 using data

• Likelihood of data given an hypothesis: L(data|H
0
) or L(data|H

1
)

Neyman-Pearson lemma: optimal test statistics for 
hypothesis testing is given by (log) likelihood ratio

 

H0 rejected at (1-α) 
confidence level if 

 

More robust test
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Hypothesis test: CLs method
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Testing signal strenght (μ):
• Express number of event of signal as 

s = μ×snominal

• CLs test can be performed for 
increasing values of μ

• Exclusion limit on μ when CLs<α

μ

95% CL limit on μ

α=0.05
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Combining measurements
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BLUE method

• Two measurements: x1±σ1, x2±σ2 with correlation ρ

• The weights that minimize the χ2:

 are:

Cov. matrix

(w1+w2=1)

36

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110

• Find linear (unbiased) combination of results: x = Σ wixi

    with weights wi that give minimum possible variance σx
2

• Account properly of correlations between measurements
• For Gaussian errors: method equivalent to χ2 minimization
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BLUE method

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110

• Find linear (unbiased) combination of results: x = Σ wixi

    with weights wi that give minimum possible variance σx
2

• Account properly of correlations between measurements
• For Gaussian errors: method equivalent to χ2 minimization

• Two measurements: x1±σ1, x2±σ2 with correlation ρ

•  The combined result is:  
•  And the uncertainty on the combined measurement is:

37
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BLUE method

Iterative method
 Biases could appear when uncertainties depend on central value 

of each measurement (L. Lyons et al., Phys. Rev. D41 (1990) 982985)

 Reduced if covariance matrix determined as if the central value is 
the one obtained from combination
• Rescale uncertainties to combined value

         ex: for measurement 1, and category i: σi,1
rescaled = σi,1 . x1/xblue

• Iterate until central value converges to stable value

38
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Single-top t-channel 8 TeV results
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ATLAS [ATLAS-CONF-2012-132, 5.8 fb-1]:
σt(t-ch.) = 95 ± 2 (stat.) ± 18 (syst.) pb = 95 ± 18 pb

 Multivariate analysis with limited assumptions on simulations
 Fit of NN distribution in the data in e/μ+2/3 jet events, with 1-btag

CMS [CMS PAS TOP-12-011, 5.0 fb-1]:
σt(t-ch.) = 80.1 ± 5.7(stat.) ± 11.0(syst.) ± 4.0(lumi.) pb = 80.1 ± 12.8 pb

 Cut-based analysis, data-driven background estimates (shapes, rates)
 Fit |η| distribution of forward jet in μ+2 jet events, with 1-btag
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Uncertainties categories and correlations
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6 categories of uncertainties. Correlation factor between ATLAS/CMS estimated for each.
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Result

Combined t-channel single-top cross section

41

Breakdown of uncertainties

Sum covariance matrices in 
each category to obtain total 
covariance matrix.

With wATLAS = 0.35 and wCMS = 0.65, χ2 = 0.79/1

Overall correlation of measurements is ρtot = 0.38.

Σ
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Summary plot
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(19.0%)

(16.2%)

(14%)
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