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Basics

* Sample measurements

* Error propagation

* Probabilities, Bayes Theorem
* Probability density function

Introductory books (non exhaustive)

Parameter estimation

* Maximum likelihood method
* Linear regression

* Least square fit

Model testings

* p-value and test statistics
* Chi2 and KS tests

* Hypothesis testing

SOS 2018

Excellent book of reference

* G. Cowan, Statistical Data Analysis
(Oxford Science Publication)

Introduction to Bayesian analysis

* D. Sivia, Data Analysis: A Bayesian
Tutorial (Oxford Science Publication)

Nice approach

* Louis Lyons, Statistics for Nuclear and
Particle Physicists (Cambridge
University Press)

En Francais

* B. Clement, Analyse de données en
sciences expérimentales (Dunod)



Samples: basic basics

Population

* Let’s consider a sample of values (e.g. experimental measurements)
N measurement of a variable X: {x} = {X,, X, ..., Xy}

* There are several quantities that can be determined to characterize this
population without any knowledge of the underlying model/theory

Measure of position

1
Arithmetic mean:| x = N

-

x; | Median: value that separates sample in half

=1

Quartiles (Q,,Q.,Q,): values that separates sample in four equal-size sample

Xl X8 X15
1NN L1 11 L1 L |
T A > X
Q, Q, X Q
median
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Samples: basic basics

Measure of dispersion

N
1
Variance: if truth sample mean p is known | v = NZ(XI' — )*
i=1

But p is in general not know and sample mean is used instead

N
1 __
* Sample variance (biased): V= NZ(’“ — X)% = x2 — x*
i=1
N
* Estimated variance (unbiased):| v = ;Z(x- — %)% = N (x2 — x2)
' N — 14 4 ¥ N—-1
1=

— Blas is below a if N = 1/a — 1 (ex for 1% bias, N=101)

Standard deviation (is of same unit as x): | 0 =v
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Standard deviation and error

In many situations repeating an experiment a large amount of time produces a
spread of results whose distribution is approximately Gaussian.

This is a consequence of the Central Limit Theorem.

z 0_5_ ‘

0.15

Gaussian distribution 045
04F [l1ec - 68.3%
3 - 95.5%
1 _1(x—,u)2 anf— M2 o 0

f(JC) - \/_ e 2\ o 0.25E-

2TTO st

Interval pxo contains 68.3% of distribution o

0.05

05

4 3 2 1 0 1 2 3

A measurement = outcome of the sum of a large number of effects.

In general the distribution of this variable will be gaussian. The std
deviation of the sample is associated to the std deviation of the Gauss
distribution.

The standard deviation is then interpreted as the interval that could contain
the true value with a 68.3% confidence level.
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CLT at work

Simple illustration of CLT

* let’'s consider x: a random variable uniformly distributed in [0,1]
N

* and the distribution of N sums of x: z = Z X;

i=1

2/ ndf  1.259e+004 / 196
Prob 0

; 6000; ,
e : e
- 5000 N=3 Sigma  0.4743 +0.0004
2000 N=1 YT
C 4000 .
1500 i Uniform (N=1)
C 3000
1000:— 2000; |
5001 1000F- v
L A B PR TR AR e N - R Irwin-Hall
z Z
¥/ ndf 6277151 | 25000 ﬁ:bndf 79'381’622 (See m)
: Frob 0 - Constant  2.44e+004 + 4.21e+001
1 DOOO _ Constant 1.095e+004 + 1.852e+001 : Mean 25+ 0.0
— Mean 5001+ 0.001
: N—]_() Siama 09095 < 0,000 200005 N:50 Sigma 2.044  0.002 |
8000 'V - v
- 15000
6000 -
C 10000~ Gauss
4000 C
C - > )
2000 5000 (N 40
O:uuu\u T | 0: | I IR | NI AN ol by g by
0o 1 2 3 4 5 68 7 8 9 10 0 5 10 15 20 25 30 35 40 45 50

Z
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https://en.wikipedia.org/wiki/Irwin%E2%80%93Hall_distribution

Multidimensional samples

Case where N measurements are performed of M different variables
- The sample then consists of N vectors of M measurements

foe

(xi} = (%1, X5, .., Xy} with | X152 0®,00 00
) )
ﬁ): xN(l),xN(z),... xN(M)

Mean and variance can be calculated for each variable x.® but to quantify
how of one variable behaves w.r.t another one uses the covariance:

N
1
For two variables x and y:| cov(x,y) = NE(”@ —X)(y; —y)=xy — Xy
i=1

cov(x,y)
o, oy

Correlation factor is defined as:| Pxy with —1 <p,, <1

P, = 1(-1) —» xandy are fully (anti)correlated

P, =0 — xandy are uncorrelated (# independent !)
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Covariance matrix

Covariance matrix (aka error matrix) of sample {x;},i = 1..N
* Real, symmetric, NxN matrix of the form:

cov(xy,x;) cov(xy,Xy) 0,2

P1NO10N
C = : cov(x;, x;)

Pij0i0j
cov(xy, X1) cov(xy, Xy) PN1ONO1 ON

2

1 P1iN
Correlation matrix;: p=( ¢ 1
PN1 1

Example of usage of covariance matrix:
Transformation of input variables

Error propagation

Combination of correlated measurements
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Decorrelation

Decorrelation: choose a basis {v; } where C becomes diagonal.
— transformation matrix A such that new covariance matrix U is diagonal

N N N
Vi = Z AUx] UU — COV(yi,yj) = COoVv (Z Aikxkz Aﬂxl)
j=1 k=1 =1

N N
Y = AX = Z AjrAjicov(xxy) = Z AirCraAy'
k=1 k,l=1
U=ACAT (A is orthogonal A=A")

Diagonalization of C: find orthonormal eigenvectors e, such that| Ce; = 4;¢

el(l) 61(2) cos el(N) Al 0 -« 0
A= 5 5 and U= 0, %2 0
eN(l) eN(Z) eN(N) 0 0 - Ay

A = eigenvalues of C = 0’2 = variance of y,
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Decorrelation

2D example: variables x, and x, with correlation factor p
1

di =5 (022 + 02 £(0r? + 0,72 — 4(1 = pP)oy %07
X2 cosf@ sinf
y ~ A=
‘ 1 Vi (—sinQ cosQ)
B ad

. 1 20040
9=—tan_1( f 1 22)

g 2 01 — 0y

> Xy

Decorrelation: use cases
* Data pre-processing (for ML): remove correlation from input variables
* Reduce dimensionality of a problem: Principal Component Analysis (PCA)

Consider only the M<N dominant eigenvalues (=variance) terms in U
— Reduced covariance matrix C: MxM

Note: the decorrelation method is able to eliminate only linear correlations
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Error propagation

Function f of several variables x={x,,...,X}
« Each variable x. of mean p. and variance ¢;?
* Perform 1st order Taylor expansion of f around mean value

0
F@) ~ £ + Z% e, — )

N
R R N9 - of of
F@ = f@+ 20 ) 3@ =)+ ) FoTe @ — k) k)
i=1 i,j=1
Variance of f(x):
af f Since (x; —u;) =0
2 Y2 __ =N ~
% =1 ) Lj=1 ax; 0x; 5y, W) X oVl xy) (x; — p)* = of
(x; — 1) (x5 — 1)
Validity: up to 2" order, linear case, small errors = cov(x;, X;)
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Error propagation

Example:

x and y with correlation factor p

f(ny)=x+y -

f(x,y) =xy

For a set of m function f1(Z), ...

2
Of

of

()

dy

2
o)

+ 2——cov(x,y)

of Of

dx dy

0% = 0% + 0%+ 2po,0,

2 _
- 0fF = yo2 + xaf, + 2xypo,o,

 fm (Z)

« C is the covariance of variables x={x}

« We can build the covariance matrix of {f(x)}: U

Uy = cov(fy, f1) =

[,j=1

rxan
ax; 0x;

— (i) X cov(x;, x

i)

This can be expressed as
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U

= ACAT

where

Aij —_

dfi

ax]'

(i)

(matrix of
derivatives)
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You are given a coin, you toss it and obtain “tail”.
What is the probability that both sides are “tail” ?




It depends on the prior that the coin is unfair
(and on the person that gave you the coin)
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Probabilities

Sample space: Q
* Set of all possible results of an experiment
* Populated by events

Probability
* Frequentist: related to frequency of occurrence

number of time event A occurs
P(A) =

number of time experience is repeated

* Subjectivist (Bayesian): degree of belief that A is true
Introduces concepts of prior and posterior probability
P(A|data) < P(datalA) x P(A)

<
Knowledge on A increases using data
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Axioms and rules

Mathematical formalization (Kolmogorov) o

P(Q)=1

0<PA)<1 @
P(AnB)=P(A)+P(B)—P(AUB) > P(ANB)

Incompatible events: P(ANnB) = ¢ = P(AU B) = P(A) + P(B)

P(ANnB)

Conditional probability: P(A|B) = P(B)

Independent events: P(An B) = P(A|B)P(B) = P(A)P(B)
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Bayes theorem

An Essay towards solving a Problem in the Doctrine of Chances.
By the late Rev. Mr. Bayes, communicated by Mr. Price (1763)

“If there be two subsequent events, the probability of the

& second b/N and the probability of both together P/N, and it
e Deing first discovered that the second event has also
5 happened, from hence I guess that the first event has also

http://www.stat.ucla.edu/history/essay.pdf

Thomas Bayes (?)
c. 1701 -1761 P(A|B) = P(BIL?:;(A) B

A
If the sample space Q can be divided in disjoint subsets A. m
\ 2
P(B) = Z.P(B NA) = Z.P(BIA;-)P(A;-) W
l l

P(B|A)P(A) AinA;=0(i#))
ZiP(BlAi)P(Ai)

P(A|B) =

SOS 2018 17



Bayes Theorem in everyday life

Example: 10 coins, one of which is unfair (two-sided tail): You flip a random
coin and obtain tail. What is the probability that this is the unfair coin ?

A: event where the coin is unfair, B: event where the result is tail

P(B|A)P(A)
P(B)

You want P(A|B): P(A|B) =

where: P(B)=P(B NA)+P(BnA)=PB|AP(A) + P(BIA)P(A)

P(B|A) =1,P(A) = i

10
1x1i0 2
= P(A|B) = 1 1 9=11
1Xar+5X75h
10 2710

In Bayesian language: P(A) is the prior probability and P(A|B) the posterior
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Consequences of not knowing Bayes Th.

Simple tools for understanding risks: from innumeracy to insight (2003)
G. Gigerenzer, A. Edwards, BMJ 327, 2003 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC200816/

Conditional probabilities

The probability that a woman has breast cancer is
0.8%. If she has breast cancer, the probability that a
mammogram will show a positive result is 90%. If a
woman does not have breast cancer the probability of
a positive result is 7%. Take, for example, a woman
who has a positive result. What is the probability
that she actually has breast cancer?

0.9 X 0.008
"~ 0.9x0.008 + 0.07 X 0.992

P(+|OP(C)

P(CIH) =505

Natural frequencies

Eight out of every 1000 women have breast cancer. Of
these eight women with breast cancer seven will have
a positive result on mammography. Of the 992 women
who do not have breast cancer some 70 will still have a
positive mammogram. Take, for example, a sample of
women who have positive mammograms. How many
of these women actually have breast cancer?

0.9x 8
0.9%X8+0.07 X992

P(C|+) = = 9.4%

SOS 2018

Estimates of proba bifty (%)

=9.4%

100
a0 Qo0
a0 a0 o
[ ]
70 ooo o
B0 @
50 I
40
30
Comact
20 sshmats
10 q h—L
0 Q0 '

Doctors wid 'wara ghven
condifonal probabdities

DoCtors who wara ghen
naiural freguencles

“Bad presentation of medical statistics
such as the risks associated with a
particular intervention can lead to
patients making poor decisions on
treatment”
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC200816/

Bayes Theorem and statistical inference

Statistical inference

Estimate true parameters of a theory or a model using data
* Frequentist: perform measurement (or set limits)

* Bayesian: Improve prior knowledge using data

Going Bayesian

Likelihood of observing
these data given a theory

Posterior knowledge A

on theory | Prior knowledge
v\ _—~7 ontheory
P(data|theory) P (theory)
P(th data) =
(theory|data) P(data)

v

Usually just a
normalisation factor
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Probability distribution

Random variable X
Discrete random variable: result (realizations) x; € §2 with probability P(x;)

N
— P is the probability distribution and Z P(x;)=1
i

For continuous variable: probability of observing x in infinitesimal interval
- Given by the probability density function (p.d.f) f(x)

Probability of x in [x, x + dx| = f(x)dx

b
Probability of x in [a,b] = f f(x)dx
a

with: f fx)dx =1 > X
0

X
— Cumulative distribution F(x):| F(x) = ff(x’)dx’

hence:  f(x) = % (x)
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f(x)

0 1
SOS 2018

Probability density function: f(x)
Cumulative distribution: F(X)=y
Inverse cumulative distribution: x=F>*(y)
Median: x such that F(x)=1/2 - x,,= F(1/2)

Quantile of order a: x,= F*(a)
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Expectation value

Expectation value of a random variable X:

For a function of x, a(x), the expectation value is: E[a(x)] = f a(x)f(x)dx

- mean of X: | E[x] = fooxf(x)dx =u

- nt" order moment: E[x"]| = f x"f(x)dx = p,

- Characteristic function ®(t):

¢(t) = E|e't™| = feitxf(x)dx = FT1(f) wherepu, = (—i)" d"¢

dt"

(0)

- Variance: | V[x] = E[(x — E[x])z] = foo (x — w?f(x)dx

= E [x%] — E[x]?

- Standard deviation: o = /V[x]
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Some common distributions

Binomial law: efficiency, trigger rates, ...
B(k;n,p) = Cip*(1 —p)" ¥, u=np,o = /np(1 — p)

Poisson distribution: counting experiments, hypothesis testing

Ae—4

n '’

Pn; A) = pu=210=+V2

Gauss distribution (aka Normal): many use-case (asymptotic convergence)

N/
e‘%c%f%

fl;u o) =

Cauchy distribution (aka Breit-Wigner): particle decay width, ....
1

-

f(x! xO;Y) =
X — Xg

|4

)z] « and ¢ not defined (divergent integral)

SOS 2018 24



Cumulative distribution and p-value

L
Xsel >
>X xsel X
X +00
Fo = [ fadx pvalue = | f(x)dx’
— 00 X

One can choose any X, to compute F(x) or p-value, that is x
preferred value: it follows the uniform distribution.
=>» The distributions of F(x.,) and p-value are also uniform

=> Important for MC sample generation and hypothesis testing

does not have a

sel
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(Silly) use case

Grading copies: Try Cauchy distrillaution

e 5]

GRADING: THE FIRST SECOND WouUR
HoUR.

_“L b
0! el (Sl

ny

1 X —X 1
F(x) =—arctan( 0)+—
= s 14 2
WWW. PHDCOMICS. COM Ly e, —
* 100 copies, grades: 0-20 F~1(y) = x = ytan (n( _ 1)) + x,
* Peaked distribution at 10 2
“‘ Cauchy x,=10 ' cumulative :Eé: Inverse Cumulative
F dist. f(x) "F" distribution ut distribution F* (x)
"R e

= e e i TN T AT T T Y e e e e AT RN N R N TR NS T bl by evs b b s by by byv o laians
{b 2 4 [ B 10 12 14 16 18 20 q:] 2 4 [ ] i 12 14 16 18 20 q.] 01 02 03 04 05 06 07 08 09 1
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(Silly) use case

Grading copies: Try Cauchy distrillaution

e 5]

1 X —X 1
F(x) = —arctan( 0) + =
T 14 2

GRADING: THE FIRST SECOND WouUR
HoUR.

-‘,L s
S = n COvERED T Lige

ny

oo W !

il

({

1

\

)

WwWW. PHDCOMICS. COM g T
* 100 copies, grades: 0-20 F~1(y) = x = ytan (n( _ 1)) + x,
* Peaked distribution at 10 2

20
18
16
14

0.45
04
035
03
:: 025
02
0.15
01
0.05F
Al

=
II|III|III|III|III|III|III|III|III|III
VANIAY

-

pa by b B by b s by b e flian %_ :
01 02 03 04 05 06 0.7 08 09 1
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¥? distribution

Pearson’s y? test: estimate global compatibility between data and a model
* The data is regrouped in an histogram of N bins
* A goodness-of-fit test K2 is computed as follows

N L

) (n; — v;)? n;: number of observed events in bin i

K* = Z Vv v;. expected number of eventsin bin i
i=1

If the data n; are Poisson distributed with mean values v; and n; > ~5 then:
K2 is a random variable following a %? distribution with N degrees of freedom.

A variant of this test statistics is the Neyman'’s y?2

N (n: — v;)? Easier to code (in particular for fits)
l l
K* = E — Asymptotically equivalent to Pearson’s x?
o l
=1 Follows x? with N-1 degrees of freedom
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¥? distribution

Probability density function % 02p
k degrees of freedom, x>0 X 0.18F-
0.16LC NDF=5
k X - NDF=10
xi—le—i 014:— NDF=15
X (k) = ——~ k 0.12F NDF=30
22T (7) 0.1
0.08F
Cumulative distribution 0.064
K x 0.04}
)14 (—,—) 0.02ff
F(x;k)= zkz 0 R R e
F(i) 0 5 10 15 20 25 30 35 40 45 50
X
The p-value of a ¥? test is obtained by integrating
Mean: k Variance: 2k the y? distribution above the measured K? value.
With: y(s,x) = [ t5~te tdt oo
+{g p—value = j x?(x; k) dx
[(s)=[, tle tdt K2
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=

£ 220
Procedure S0k X |
- Generate events following a 123:
Gaussian distribution T
_ , 120F-
Calculate (Neyman’s) K2 100E
- Repeat 10k time and plot the gg
distribution of K2 sl
- Compare to ¥2 distribution 2”;

A
b
L
|
o
N
N
w
~
()]

Note:
K? is calculated only with non-empty bins
NDF is the number of non-empty bins - 1

IIII|III\|IIII|II\I‘IIII|I\I\TIIII|’|I\I|IIII

SOS 2018 30



Multi-dimensional p.d.f

An experiment can perform a set of measurement
— Vector of N measurements & = {x1,22,...,ZN}

Probability of observing ¥ in infinitesimal interval ¥ 4 dZ given by joint p.d.f
fOdx = f(xq,..., xy)dxq ...dxy

Ex: for a measurement of 2 values x and y

Probability of x in [x,x + dx] and y in [y,y + dy] is f(x,y)dxdy

f fﬂ f(x,y)dxdy = 1
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Marginal and conditional p.d.f

Marginal distribution: p.d.f of one variable regardless of the others

co

Fro() = [ f(xy) dy 0= fooy dx

— 0o

Conditional distribution: p.d.f of one variable given a constant other

Sy ()

KO =% = Traynay
sty LEV) S
7,00 TFG,ydx

Note: k and g are both functions of x and y
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Marginal and conditional p.d.f

Bayes theorem for continuous variables

fx,y) =gx|y)f, @) =k@x)f+(x) -

k(y1x)fx(x)
fy(y)

glxly) =

Marginal p.d.f can also be expressed with conditional probabilities:

co 0.0]

L= g@nf,mdy  f,0)- f k(Y120 (x) dx

Note: this is a generalization of the relation P(B) = Z_P(Blﬂi)P(Ai)
to continuous variables I

Independent variables: if x and y are independent f(x,y) = f,(¥)fx(x)

Ex: 2D Gaussian function with uncorrelated variables

_ _ 2 _ _ 2
Gaus(x, y) = 1 exp( (x — 1y) )exp( (y uy))

2 2
2mo,0, 20, 20,
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0] 502— | H e Data
40 1" — Model
ZUf— *#+ +
10;— + | ’,

D:nl | | ay | ..I||+||1' .+.|#||||
5 4 3 2 1 0 1 2 3 4 5

What's “wrong” ?
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