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Chern-Simons gravity

L =
√

g

[
1
2

M2
PlR −

1
2

gµν∂µχ∂µχ− V (χ)

]
+ f (χ) εµνρσRµνκλRρσκλ .

Peculiarities of the Chern-Simons term:

εµνρσRµνκλRρσκλ is a surface term, we need the coupling f (χ).

P broken, T broken, CPT preserved.

−→ Standard GR restored if at a certain time χ decades.
−→ Search remnant signatures of Chern-Simons gravity from inflation.
(χ can be both the inflaton field φ or a spectator field in multi-field models)

Key observable: chirality of primordial GW −→ Θ =
PR
γ−PL

γ

PR
γ +PL

γ
.

γR =
1√
2

(γ+ − i γ×) , γL =
1√
2

(γ+ + i γ×) .
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Linear analysis
- τ ≡ conformal time

Quadratic action of GW

S|γγ =
∑

s=L,R

∫
dτ

d3k
(2π)3 A2

γ,s

[
|γ′s(τ, k)|2 − k2|γs(τ, k)|2

]
,

A2
γ,s =

M2
Pl

2 a2
(

1− λs
kphys
MCS

)
, MCS = M2

Pl/8ḟ (χ) .

MCS: Chern-Simons mass, characteristic energy scale.

λR = +1, λL = −1 =⇒When kphys > MCS, γR shows instabilities.

H-1

MCS
-1

λphys

We consider physical scales that
at the beginning of inflation were
inside Hubble radius, but outside
the Chern-Simons scale.

−→ H/MCS � 1.
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Equations of motion for GW

- Field redefinition: µs = Aγ,sγs .

µ′′R/L + k2
(

1− 2
k2τ2±V

)
µR/L = 0 .

V =
1

kτ
H

MCS
A ,

A =
1

(1∓ kp/MCS)2

{[
1− ξ +

1
2
ω − 1

2H
1
τ
ξ

](
1∓

kp

MCS

)
+

∓
kp

2MCS

[
1
2

+ ξ +
1
2
ξ2
]}

.

kp = k/a , ξ = ṀCS
MCSH , ω = M̈CS

MCSH2 .

H/MCS � 1 (previous slide) −→ V vanishes vs standard gravity.
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Example: MCS = constant case

E.o.m.’s become

µ′′R/L + k2
(

1− 2
k2τ2 ±

1
kτ

H
MCS

)
µR/L = 0 .

It is Whittaker equation, we can find analytic solutions.

Super-horizon power-spectra (M. Satoh, 2010)

PL
γ =

Pγ

2 e−
π
4 H/MCS ,

PR
γ =

Pγ

2 e+π
4 H/MCS .

Θ =
PR
γ − PL

γ

PR
γ + PL

γ

=
π

2
H

MCS
.

H/MCS � 1 −→ Θ� 1.

Pγ = 4
k3

H2

M2
Pl
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Forecasts from CMB data
TB and EB correlators are sensitive to GW chirality.

M. Gerbino et. al. (2016)

Impossible to observe small chirality given the current experimental
constraint on r = PT/PS, r < 0.07 (95%CL) −→ σΘ ≥ 0.3 .
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Higher order statistics

At linear level we get no measurable imprints.

Need for a non-linear analysis.

In JCAP07(2017)034 “Parity breaking signatures from a Chern-Simons
coupling during inflation: the case of non-Gaussian gravitational waves”
N. Bartolo, G. Orlando, we treated the bispectrum statistics of the model.

In-In formalism

〈δa(~k1)δb(~k2)δc(~k3)〉(t) = −i
∫ t

t0
dt ′〈0|

[
δI

a(~k1, t)δI
b(~k2, t)δI

c(~k3, t) , H I
int (t

′)
]
|0〉 .

This formalism is based on quantum interaction picture. It allows to
compute/estimate non-Gaussian cosmological correlators starting from
free fields (i.e. using linear solutions).
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Main results

Amplitudes of 〈γγγ〉 and 〈γδχδχ〉 are suppressed by H/MCS.

Amplitude of 〈γγδχ〉 bispectrum shows a different behaviour:

〈γR(~k1)γR(~k2)δχ(~k3)〉 = (2π)3δ3(~k1 + ~k2 + ~k3)
π

64

∑
i 6=j

∆T (ki )∆T (kj )

×
× χ̇

H

(
H2 ∂

2f (χ)

∂2χ

)
(k1 + k2)k1k2∑

i k3
i

cos θ(1− cos θ)2 ,

〈γL(~k1)γL(~k2)δχ(~k3)〉 = −〈γR(~k1)γR(~k2)δχ(~k3)〉 , 〈γL(~k1)γR(~k2)δχ(~k3)〉 = 0 .

The amplitude of this bispectrum is proportional to the second order
derivative of f (χ) −→ No suppression.
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Squeezed shape function

The shape function gives the dependence of the bispectrum on the three
momenta ki .

F (kγ1 , k
γ
2 , k

δχ
3 ) =

∑
i 6=j

1
k3

i k3
j

 (k1 + k2)k1k2∑
i k3

i
cos θ(1− cos θ)2,

cos θ =
k2

3−k2
2−k2

1
2k1k2

.

x2 = k2/k1 , x3 = k3/k1.

The shape function is maximum
in the squeezed limit when the
momentum of δχ is much smaller
than the momenta of the two γ’s
(k3 � k1 ' k2).
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Squeezed modulation (1)

The squeezed limit of a generic 3-points function gives the correlation of
2 short modes with 1 long mode. This induces a modulation on the short
modes.

Squeezed modulation of the tensor power spectra

PR/L
γ (q)|δχ = PR/L

γ (q)|(0) + δχ(Q)
〈γR/L(q1)γR/L(q2)δχ(Q)〉′

Pδχ(Q)
,

Q → 0 , q1 ' q2 = q .

Physical interpretation: after horizon crossing the scalar long mode
freezes at a certain amplitude, inducing a local modification of the spatial
curvature. The short modes evolve in this modified background space
and inherits a specific modulation in their power spectrum statistics.

R and L squeezed bispectra differ for a minus sign.
→ Contribution to the GW chirality
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Squeezed modulation (2)
Cumulative effect of soft modes

M(q, ~x)R/L =

∫
Qmin<|~Q|<QL

d3Q ei~Q·~x δχ(Q)
〈γR/L(q)γR/L(q)δχ(Q)〉′

Pδχ(Q)
.

Local amplification of chirality

PR/L
γ (q;~x) =

PT (q)

2
[
1±A(~x)

]
, Θ = A(~x) .

A(~x) follows a Gaussian distribution with mean 0 and variance

σ2 = 32π2εχ

(
H2f ′′(χ0)

MPl

)2 ∫ QL

Qmin

dQ Q2 Pδχ(Q) .

εχ = χ̇2
0/2H2M2

Pl .

χ has to be a spectator field. Squeezed bispectra are re-absorbed in
single clock-inflation, consequence of gauge freedom. (see, e.g.,
Creminelli et. al., 2013; Pajer et. al., 2013).
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Summary and Conclusion

Chern-Simons gravity coupled to a scalar field χ can be tested during
inflationary epoch.

At linear level the model can not be constrained through CMB
experiments. Chirality produced is low if we avoid instabilities.

Non-linearities produce a model dependent local squeezed amplification
of chirality. χ has to be different from the inflaton field.

In progression: toy model building, parameter space.

What about interferometers?

I Coplanar interferometers (like LISA) are not sensitive to chirality of
GW. We need a more complicated geometry (Smith and Caldwell,
2016).

I Inflationary GW are red-tilted. We need a small scale amplification
mechanism.

I Idea: study the effect of chiral GW production while χ is decaying
(Next step).
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Back-up slide, example of a toy model
Assume ρχ � ρφ, also take εH = − Ḣ

H2 ' εφ. (εχ � εφ), ηχ ' 0.

Both φ and χ have vacuum fluctuations on a quasi De-Sitter space.
Pχ,Pφ ' H2/2k3.

ζχ
ζφ

=
δρχ
δρφ
' V ′(χ)δχ

U ′(φ)δφ
=

√
εχ
εφ
� 1 −→ ζ ' ζφ .

Postulate f (χ) as:

f (χ) = λ

(
χ

MPl

)n

,

−→ σ2 = 32π2εχ
(
H2f ′′(χ0)

)2
(

H
MPl

)2

× ln

(
QL

Qmin

)
.

Take
(

H
MPl

)
= 10−5, εχ = 10−6 , ln

(
QL

Qmin

)
= 10 , H2f ′′(χ0) = 106:

−→ σ2 = 1.

H
MCS
� 1 −→

(
χ0
Mpl

)
� 10−4 , small field potential for χ.
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