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introduction
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we are interested in measuring the Tµν correlator

in a stationary state, gravitational waves are emitted with rate

de
GW

dt d3k
=

2CTT

∆ (k)

π2m2
Pl

,

where the transverse-traceless correlator reads (k ≡ k ez)

C
TT

∆ (k) ≡
∫

(t,x)

e
ik(t−z)

〈1

2

{

T
xy
(t, x) , T

xy
(0)

}

〉

.
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at low frequencies T µν is given by hydrodynamics

with p = pressure, w = enthalpy density, uµ = flow velocity,

the energy-momentum tensor reads

T
ij ≈ T

ij
ideal , T

ij
ideal ≡ pg

ij
+ wu

i
u
j
.

⇒ problem: if the equation of state possesses a phase transition,

the solution becomes singular within a finite period of time3

3
e.g. L.D. Landau and E.M. Lifshitz, Fluid Mechanics.
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as a regulator, viscous corrections can be included

⇒ T ij = T ij
ideal + ∆T ij where4

∆T
ij

= −η
(

u
i;j

+ u
j;i −

2gijuγ
;γ

3

)

− ζg
ij
u
γ
;γ + S

ij
,

here η, ζ are the shear and bulk viscosities, and Sij is noise with

〈

S
xy
(X )S

xy
(Y)

〉

= 2ηT δ(X − Y) .

⇒ fluctuation-dissipation theorem requires that noise be present;

as a consequence, even without flow,

lim
k→0

C
TT

∆ (k) = 2ηT .

4
E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, Part 2, §88-89.
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paradox: in a weakly coupled system η is “large”

if there were no interactions, particles would fly freely, and

long-range correlations would persist ⇒ large fluctuations

in kinetic theory, η ∼ 1/σ, where σ is a cross section related to

kinetic equilibration

at T ≫ 100 GeV,5 η ≃
16T 3

g4
1 ln(5T/m

D1
)
≃ 400T

3
.

5
S. Jeon, Hydrodynamic transport coefficients in relativistic scalar field theory, hep-

ph/9409250; P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high

temperature gauge theories. 1. Leading log results, hep-ph/0010177; Transport coefficients

in high temperature gauge theories. 2. Beyond leading log, hep-ph/0302165.
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nevertheless the noise contribution is invisible to LISA
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main stuff
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we now move on to a “2-component system”: T µν + φ

T µν is modified by a contribution from an “order parameter”:

T
µν
ideal ≡ wu

µ
u
ν
+ p g

µν
+ φ

,µ
φ
,ν −

gµνφ,αφ
,α

2
,

p ≡ p0(T ) − V (φ, T ) , w ≡ T∂Tp

⇒ V (φ, T ) may contain a first order transition
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equation of motion for φ involves friction6

the dissipative coefficient γ couples φ to the thermal background:

T
µν
;µ = 0 ,

φ
;µ
;µ − γ u

µ
φ,µ − ∂φV = 0 .

⇒ finite wall velocity, entropy production, and equilibration

6
J. Ignatius, K. Kajantie, H. Kurki-Suonio and ML, The growth of bubbles in cosmological

phase transitions, astro-ph/9309059; M. Hindmarsh, S.J. Huber, K. Rummukainen and

D.J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order

phase transition, 1704.05871.
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then equation of motion for φ should also include noise

close to equilibrium, e.o.m. should be completed into

φ
;µ
;µ − γ u

µ
φ,µ − ∂φV + ξ = 0 ,

where ξ is a noise term, whose magnitude is completely fixed:

〈

ξ(X )ξ(Y)
〉

= 2γT δ(X − Y) .
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contribution of γ to gravitational wave production

consider now δT xy = φ,xφ,y and average over fluctuations

⇒ δC
TT

∆ (k) =
2T 2

γ

∫

p

p2
xp

2
y

(p2 + m2)2

(

1 +
γ2

p2 + m2

)

.

on a fine space-time lattice ( 1
as

≫ m, γ ),

δC
TT

∆ (k) ≈
2T 2

γ

∫

p

p̃2
xp̃

2
y

p̃4
=

T 2

γ
×
Γ2

(

1
24

)

Γ2
(

11
24

)

(
√
3 − 1)

288π3a3
s

.

⇒ δCTT

∆ scales as T2

γ , has a flat shape, and can be tuned at will
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summary: why include fluctuations in hydrodynamics?

⇒ their tunable absolute magnitude (∼ T 2/γ) and known shape

may help to “calibrate” the measurement algorithm

⇒ “spherical bubbles don’t radiate”, but in reality bubbles aren’t

quite spherical; noise is necessary for probing their instability7

⇒ in many models, noise generates first order transitions8

⇒ in principle, noise automatically takes care of nucleations9

7
e.g. P.Y. Huet, K. Kajantie, R.G. Leigh, B.H. Liu and L.D. McLerran, Hydrodynamic

stability analysis of burning bubbles in electroweak theory and in QCD, hep-ph/9212224.
8

e.g. B.I. Halperin, T.C. Lubensky and S.-K. Ma, First-Order Phase Transitions in

Superconductors and Smectic-A Liquid Crystals, PRL 32 (1974) 292.
9
e.g. G.D. Moore, K. Rummukainen and A. Tranberg, Nonperturbative computation of

the bubble nucleation rate in the cubic anisotropy model, hep-lat/0103036.
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epilogue: sometimes one can get inspiration from QCD

the theory and practice of hydrodynamic fluctuations have recently

become a hot topic for heavy ion collision hydrodynamics10

10
e.g. P. Kovtun and L.G. Yaffe, Hydrodynamic fluctuations, long time tails, and

supersymmetry, hep-th/0303010; P. Kovtun, G.D. Moore and P. Romatschke, The stickiness

of sound: An absolute lower limit on viscosity and the breakdown of second order relativistic

hydrodynamics, 1104.1586; J.I. Kapusta, B. Müller and M. Stephanov, Relativistic Theory

of Hydrodynamic Fluctuations with Applications to Heavy Ion Collisions, 1112.6405;

Y. Akamatsu, A. Mazeliauskas and D. Teaney, Bulk viscosity from hydrodynamic fluctuations

with relativistic hydro-kinetic theory, 1708.05657.
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