

Investigating effective use of Deep Learning at KEKCC and future perspective

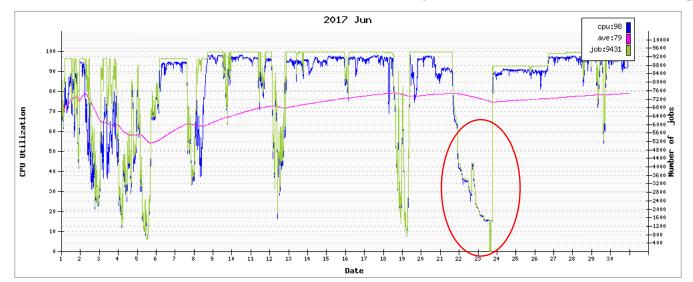
Wataru Takase Computing Research Center, KEK 14th February, 2018

Why are we investigating Deep Learning?

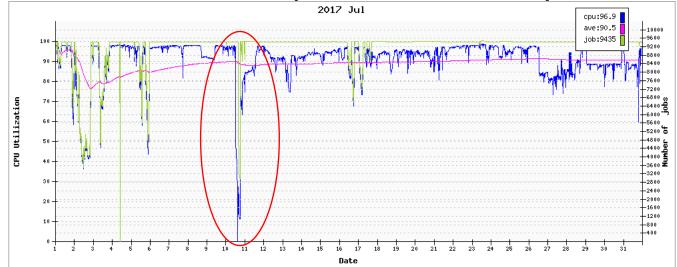
- So popular and seems to be interesting.
- Want to apply it to anomaly detection/prediction for KEKCC.
- Explore the way of applying to the other things.

Examples of Anomaly in KEKCC (1/2)

• 2017/06/23: LSF daemon repeated restarting.

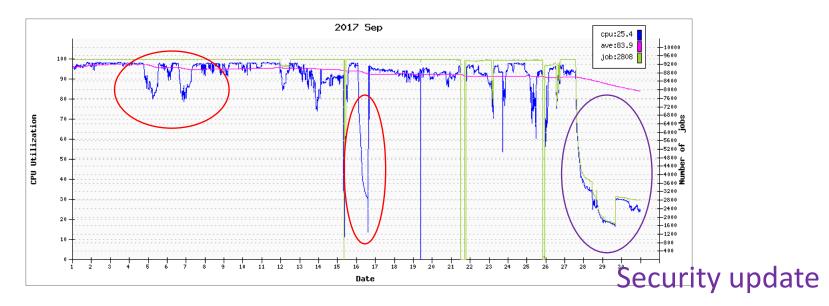


• 2017/07/10: GPFS response were delayed.



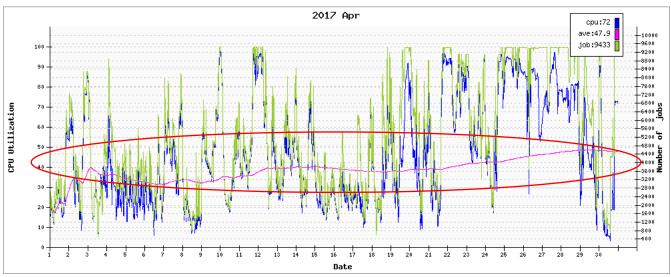
Examples of Anomaly in KEKCC (2/2)

- 2017/09/05,06: Some jobs waited to stage much data from tapes.
- 2017/09/16: GPFS hanged.



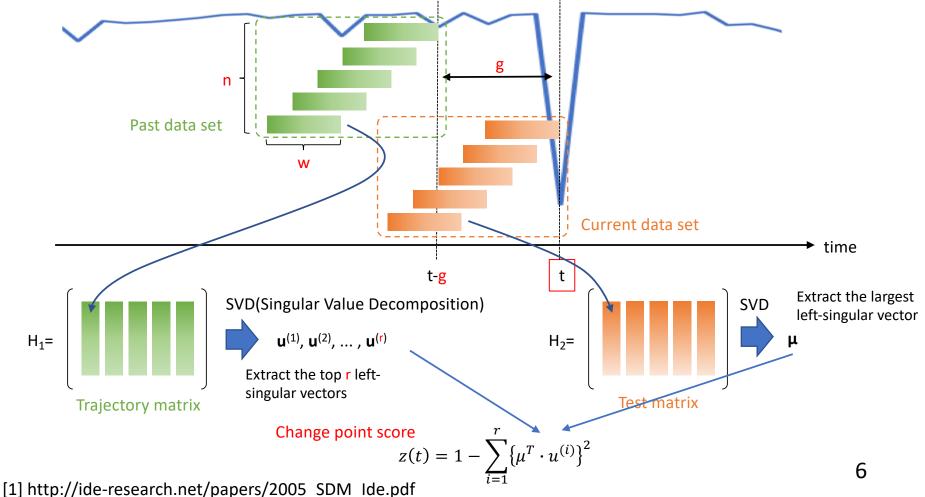
How to detect anomaly: Threshold

- Example: If averaged CPU utilization becomes less than 50%, we suppose anomaly occurred.
- Although averaged CPU utilization was less than 50% all the time in last April, there were no specific anomalies.
 - We guess it was because April is the season that many people arrive/leave.



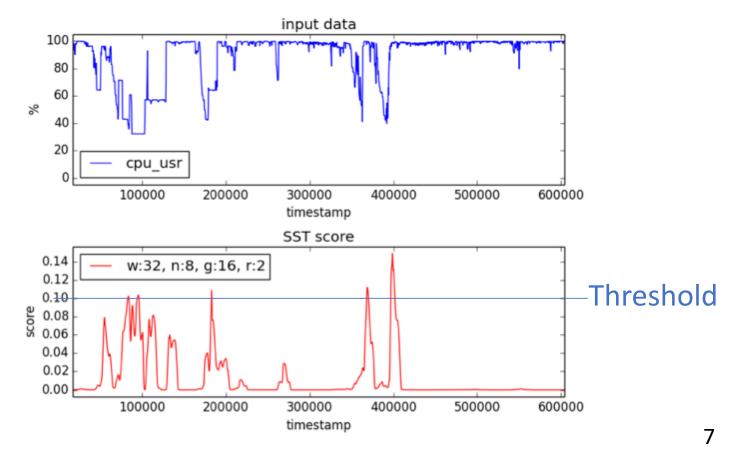
How to detect anomaly: Change Point Detection

- Example: SST (Singular Spectrum Transformation)[1]
 - Compare current and past dataset and calculate change point score.



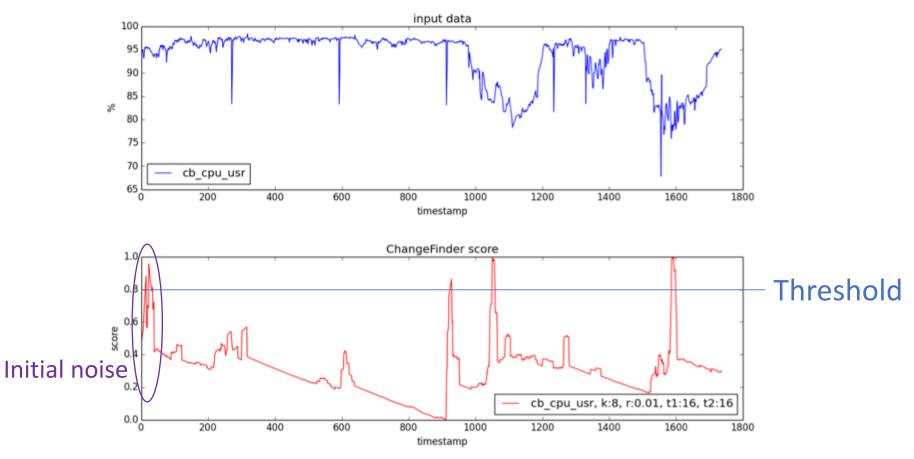
How detect anomaly: Change Point Detection

- We applied SST to CPU utilization of KEKCC for testing.
- If change point scores higher than 0.10, for example, we suppose anomaly occurred.



How detect anomaly: Change Point Detection

• Another algorithm: ChangeFinder[2]



8

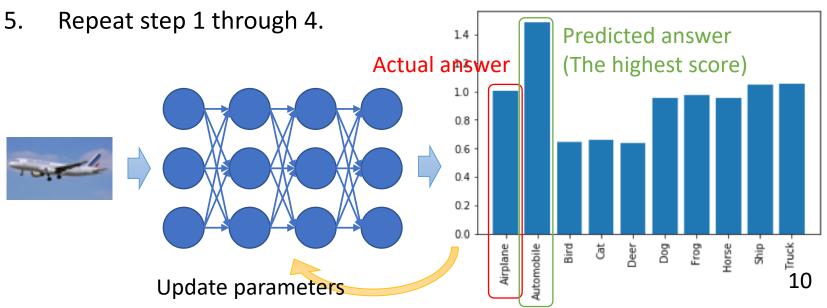
[2] J. Takeuchi and K. Yamanishi, "A unifying framework for detecting outliers and change points from time series"

Ways of detecting anomaly

- Threshold detects low service usage as an anomaly.
 - This method sometimes makes misdetection.
- Change Point Detection detects a drastic change in service usage as an anomaly.
- Deep Learning detects an anomaly as an anomaly.
 - Deep Learning becomes to know what state is the anomaly and what is the cause based on large amount of data.
 - It can also be applied to predict anomalies.

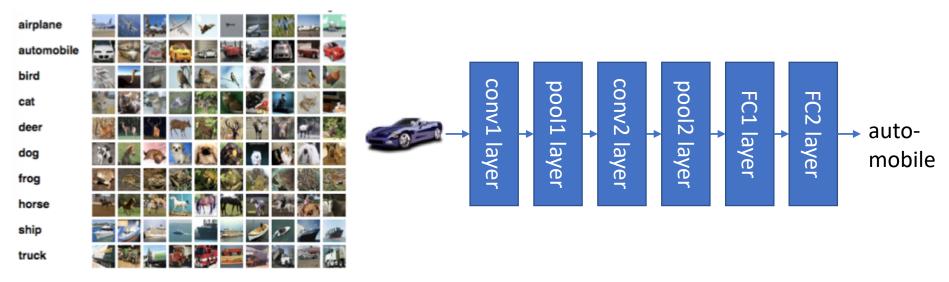
What is Deep Learning?

- Subset of Machine Learning.
- Multi-layer Neural Network.
- Use Backpropagation for training algorithm.
- Workflow:
- 1. Feed samples for training.
- 2. Calculate neural network output, which means predicting the answer.
- 3. Calculate loss (the difference between the predicted and the actual answers).
- 4. Adjust the network parameters to minimize the loss.



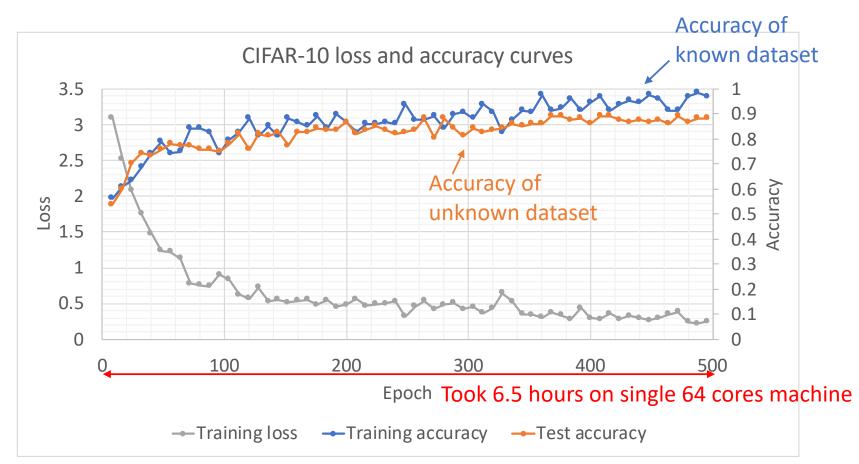
Example: CIFAR-10 Image[3] Classification

- Classify input image into 10 categories.
 - Although image classification is not our goal, this is good for learning about Deep Learning.
- We have built Convolutional Neural Network, then trained for the recognition using TensorFlow[4].



[3] https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10 Loss and Accuracy curves



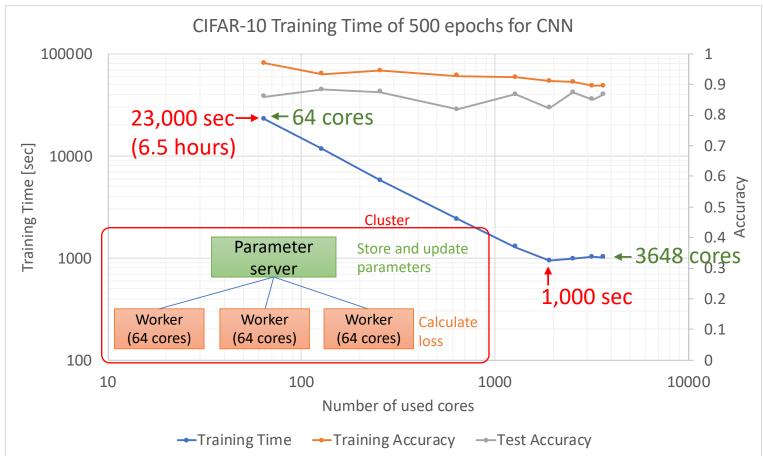
- Repeated training for minimizing the loss (the difference between the network output and the actual answer) against training data set.
- Measured accuracies of training data and test data respectively.
 - Check overfitting happend

Speeding up Deep Learning: GPU

• Many frameworks support CUDA.

	Creator	Interface	Writte n in	CUDA support	GitHub stars	Note
Theano	University of Montreal, CA	Python	Python	Yes	7,347	• Flexible
Deeplearni ng4j	Skymind engineering team, US	Java, Scala, Clojure	C, C++	Yes	7,759	 Cooperate with Spark Support multi-node execution
Caffe	Berkeley Vision and Learning Center, US	Python, C++, MATLAB	C++	Yes	21,474	 Good for image processing Easy to use
Torch	Ronan Collobert, Koray Kavukcuoglu, Clement Farabet	C, C++, Lua, LuaJIT	C, Lua	Yes	7,482	Many expansions
TensorFlow	Google Brain team	Python, C	C++, Python	Yes	79,754	 Flexible Sufficient documents Support multi-node execution
Chainer	Preferred Networks, JP	Python	Python	Yes	3,181	Support multi-node execution
СNТК	Microsoft Research	Python, C++	C++	Yes	13,200	 Support multi-node execution Faster than TensorFlow
MXNet	University of Washington, Carnegie Mellon University, et al.	Python, C++, R, Java, Scala, MATLAB, JavaScript	C++	Yes	12,206	 Support multi-node execution 13

Speeding up Deep Learning: Multi-node

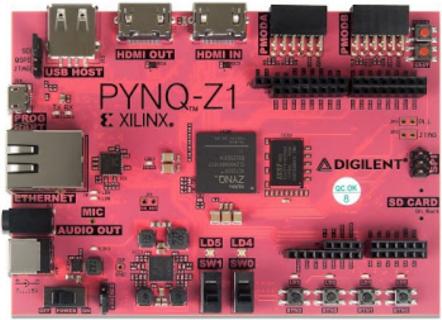


• We have measured scalability of TensorFlow Deep Learning by using m4.16xlarge (64 CPU cores) instances on AWS*.

* Cloud resources used in this work was provided in the Demonstration Experiment of Cloud Use conducted by National Institute of Informatics (NII) Japan (FY2017). ¹⁴

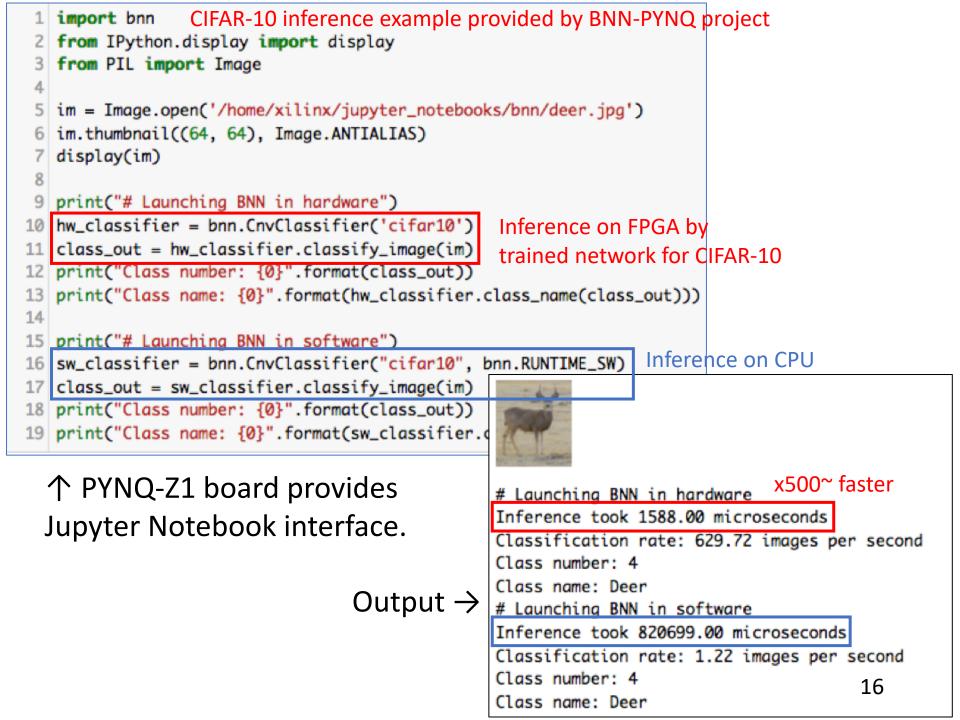
Speeding up Deep Learning: FPGA

- Example: PYNQ-Z1 board[5] (I have one.)
 - Software runs on the ARM CPU.
 - FPGA logics can be invoked by bundled Python library easily.
- You can create own Neural Network model on FPGA and invoke it from Python.
- Example: BNN-PYNQ[6]: Pre-build Binalized Neural Network running on FPGA for PYNQ.



[5] https://www.xilinx.com/products/boards-and-kits/1-hydd4z.html

[6] https://github.com/Xilinx/BNN-PYNQ



Summary

- Anomaly detection/prediction is necessary for providing stable IT service.
- Deep Learning may help it and could be applied to the other fields.
- We have been investigating about Deep Learning and the ways of speeding up.
 - The next step is to consider how to apply it to anomaly detection.
- If you are interested in, we welcome your collaboration!!