DIRAC Services for Grid and Cloud Infrastructures

A.Tsaregorodtsev, CPPM-IN2P3-CNRS, Marseille, 29 January 2018, CC/IN2P3, Lyon

- DIRAC in a nutshell
- DIRAC communities
- Services for multi-community installations
- Conclusions

DIRAC provides all the necessary components to build ad-hoc grid infrastructures interconnecting computing resources of different types, allowing interoperability and simplifying interfaces. This allows to speak about the DIRAC interware.

LHCb Computing System

- The project was started in 2003 for the LHCb experiment at CERN
 - First focusing on the workload management for the LHCb data production system
- Now DIRAC is the basis for almost all the aspects of the LHCb distributed computing
 - Workload Management
 - Data Management
 - High level production services
 - Monitoring of resources, activities and services
 - Accounting
 - Interfaces
- Accessing all the resources available to LHCb
 - HTC/WLCG
 - Cloud
 - BOINC
 - Standalone, e.g.
 - LHCb Online HLT farm
 - Yandex (container based) cloud
 - Non-CE clusters

- The experience collected with a production grid system of a large HEP experiment proved to be very valuable
 - Several new experiments expressed interest in using this software relying on its proven in practice utility
- In 2009 the core DIRAC development team decided to generalize the software to make it suitable for any user community.
 - Split the generic functionality from the LHCb specific features
 - Consortium to develop, maintain and promote the DIRAC software was created in 2014
 - Current members: CERN, CNRS, University of Barcelona, IHEP, KEK, University of Monpellier, PNNL
- The results of this work allow to offer DIRAC as a general purpose distributed computing framework

Community installations

Belle II Collaboration, KEK

- First use of clouds (Amazon) for data production
- ILC/CLIC detector Collaboration, Calice VO
 - Dedicated installation at CERN, 10 servers, DB-OD MySQL server
 - MC simulations
 - DIRAC File Catalog was developed to meet the ILC/CLIC requirements
- BES III, IHEP, China
 - Using DIRAC DMS: File Replica and Metadata Catalog, Transfer services
 - Dataset management developed for the needs of BES III
 - CTA
 - CTA started as France-Grilles DIRAC service customer
 - Now is using a dedicated installation at PIC, Barcelona
 - Using complex workflows

Geant4

- Dedicated installation at CERN
- Validation of MC simulation software releases
- DIRAC evaluations by other experiments
 - LSST, Auger, TREND, Daya Bay, Juno, ELI, NICA, ...
 - Evaluations can be done with general purpose DIRAC services

- Maintaining DIRAC services for small communities is not affordable
 - Need for multi-VO installations
 - DIRAC framework was updated to support this kind of installations
- Several services provided by grid infrastructure projects
 - FG-DIRAC, France
 - GridPP, UK
 - DIRAC4EGI
- Some dedicated installations evolved into multi-community services
 - CERN: ILC, CALICE
 - IHEP: BES III, Juno, CEPC
- Recently added services
 - PNNL: Belle II, Project8, MiniCLEAN, SuperCDMS, nEXO
 - DIRAC@JINR: NICA, Dubna University

DIRAC4EGI service

In "best effort" production since 2014

Partners

- Operated by EGI
- Hosted by CYFRONET
- DIRAC Project providing software, consultancy
- IO Virtual Organizations
 - enmr.eu, vlemed, eiscat.se
 - fedcloud.egi.eu
 - training.egi.eu

Usage

- Workload Management solution
 - > 6 million jobs processed in the last year
- Data Management solution
 - E.g. Eiscat 3D

Starting from 2018 DIRAC becomes a Core Service of EGI

- WMS replacement
- Serving both Grid and FedCloud resources

DIRAC4EGI activity snapshot

DIRAC Services

- Automatic synchronization of resources description with external information services (BDII or ...)
 - Resource access information
 - VO access rights

Resource Monitoring Service

- A framework to define and run various probes and update the resource status appropriately
 - E.g. downtimes announced in the GocDB, testing access to storage and computing resources, VOMS servers, etc

Resource Status Service

Serve resource status information to interested clients

Work in progress

Per VO probes and resource status information

Workload Management

- Pilot based workload management
- Targeting various computing resources
 - HTC sites (CREAM,ARC,HTCondor)
 - EGI FedCloud sites
 - HPC
 - Volunteers, etc
- Possibility to define community specific ad hoc resources
 - E.g. local cluster accessible through (GSI)SSH/VPN tunnel

- Work in progress (still a lot)
 - More flexible Pilot framework as a separate DIRAC independent set of modules
 - To run in various ad hoc environments: clouds, containers, BOINC, ...
 - Accessing HPC resources
 - Managing multi/single core jobs
 - Managing HPC special features for efficient job matching
 - Managing limited outbound connectivity of HPC nodes

• ...

- VM scheduling for cloud resources
 - Intelligent scheduler for fair sharing of common resources, optimization of the resource usage cost, etc.

- Storage element abstraction with a client implementation for each access protocol
 - DIPS, SRM, XROOTD, RFIO, etc
 - gfal2 based plugin gives access to all protocols supported by the library
 - ▶ HTTP, DCAP, WebDAV, S3, ...
- Central File Catalog
 - DIRAC replica and metadata catalog
 - Dataset management
 - Storage usage reports
 - Possibility to use LFC
 - Tools for migration from LFC to DFC
 - Per VO File Catalog service
 - Possibility to plugin VO-specific modules, e.g. ACLs, metadata or dataset engine

Data Management

- Using bulk data operations
 - Replication, removal, etc
 - Using DIRAC agents for asynchronous operations with retries and validation
 - Using external data transfer services, e.g. FTS3

Work in progress

- File Catalog Web interface
 - E.g. coupling data selection with the job submission application
- Enhanced dataset management
- Data popularity estimators

High level services

Data driven workflows as chains of data transformations

- Transformation: input data filter + recipe to create tasks
- Tasks are created as soon as data with required properties is registered into the system
- Tasks: jobs, data operations, etc
- Automatizing community production pipelines
 - Plugins for custom operations, transformation validation

Work in progress:

 Production System as a set of tools to help defining complex workflows by chaining multiple transformations

- Command line for all the operations
 - "gLite-style"
 - dirac-wms-job-submit job.jdl
 - COMDIRAC style
 - dsub echo Hello World !
- Web Portal for the most common user and administrator operations
- Python API
- REST service interface for third party developments using DIRAC services
- Work in progress
 - More functionality to be exposed through COMDIRAC and REST interfaces
 - Focus on usability of the Web Portal as the main user interface
 - Support for community custom applications built in the DIRAC Web Portal framework

Master-project DIRAC

- Participants
 - A.Tsaregorodtsev, CPPM
 - Coordination
 - Resources, data management
 - L.Arrabito, J.Bregeon, LUPM
 - Complex workflow management
 - F.Hernandez, V.Hamar, CC/IN2P3
 - Support for DIRAC services (FG-DIRAC)
 - Support for HPC resources
 - P.Gay
 - User interfaces
 - S.Pop
 - Cloud resources, containers
- Events
 - DIRAC User Workshop, 22-25 May, CC/IN2P3, Lyon