Common exotic decays of VLQs

Nicolas Bizot (IPNL-Lyon)

[1803.00021, N. Bizot, T. Flacke, G. Cacciapaglia]

Top LHC France 2018 - 25 May 2018

Current VLQs searches

Currents searches focus on VLQs decays into SM particles and assume:

- ightharpoonup $Br(T o Zt, ht, W^+b) = 1$, ightharpoonup $Br(B o Zb, hb, W^-t) = 1$
- $\triangleright Br(X_{5/3} \to W^+ t) = 1$
- $\triangleright Br(Y_{-4/3} \to W^-b) = 1$

VLQs can be:

- ▶ pair produced (QCD) ⇒ model-independent
- \triangleright singly produced (EW) \Rightarrow depends on mixing with SM quarks

Vector-like: left and right-handed chiralities have same quantum number such that mass term is allowed in opposition to SM chiral fermions

Motivations

Composite Higgs models:

- ► Higgs emerges as pNGB (like QCD pions) ⇒ Naturally light
- ► Simplest realisation: four-dimensional gauge theory of fermions (like QCD)
- \Rightarrow Non-minimal models [beyond SO(5)/SO(4)]

New channels in composite Higgs models (CHMs)

 $\frac{\text{Generic prediction:}}{\text{VLQs decays}} \Rightarrow \text{4 promising decay modes}$

 $lackbox{ EW-singlet mode: } T
ightarrow \eta t \qquad \qquad [\eta = {\sf EW pNGB like Higgs}]$

U(1)-mode: T o at [$a = \mathsf{pNGB}$ associated to non-anomalous U(1)]

► Coloured mode: $X_{5/3} \rightarrow \pi_6 \overline{b}$ [π_6 = Coloured pNGB]

▶ Charged mode: $X_{5/3} \rightarrow \phi^+ t$ [$\phi^+ = \text{EW pNGB like Higgs}$]

Exotic decays are the norm and commonly appear with significant rates \Rightarrow Modifies search strategies and affects the VLQs bounds

Well-defined theoretical framework \Rightarrow couplings predicted not added by hand

Basics ideas of composite Higgs models

- \blacktriangleright New strong dynamics condensates at scale Λ and spontaneously breaks a global symmetry G into H
- ⇒ Higgs is naturally light as a pNGB leaving in the coset G/H (like QCD pions)
- ▶ Potential and mass for the Higgs generated by explicit breaking terms

Partial compositeness

- ► Linear couplings between top and top partners
- \Rightarrow induce EWSB and top mass
- ► Top quark heaviest SM particle ⇒ Largest interaction with strong sector
- ► Induces the new decay modes

<u>Strategy</u>: Choose a model (underlying theory, top partner irreps) look at benchmark scenarios (fix pre-Yukawa couplings, VL masses)

⇒ Focus on phenomenoloogy

Table of contents

- 2 $T \rightarrow at$
- $4 X_{5/3} o \phi^+ t$
- 5 Summary

- ▶ Lightest VLQ T: pure EW singlet, no mixing with SM quarks
- \Rightarrow No single production
- ▶ No standard decays as T couples only to ηt (Parity)
- \Rightarrow $Br(T \rightarrow \eta t) = 1$

EW singlet η decays into SM particles ($m_\eta \gtrsim$ 100 GeV as same origin as Higgs boson)

- ► Anomalous couplings to SM gauge bosons [Cacciapaglia, Deandrea et al. 1502.04718]
- $\Rightarrow WW, \gamma Z, ZZ \text{ decays}$
- \Rightarrow No $\gamma\gamma$ coupling
- ► No decays into SM fermions

Table of contents

- 1 $T \rightarrow \eta t$
- $2 T \rightarrow at$
- $4 X_{5/3} o \phi^+ t$
- 5 Summary

- ▶ Lightest VLQ T (mix singlet-doublet) mixes with SM top quark
- ⇒ Pair and single production relevant
- ▶ EW singlet a associated to non-anomalous U(1)-symmetry [Spontaneously broken contrary to $U(1)_V$ in QCD $\rightarrow a$ is a pNGB]
- \Rightarrow can be very light (10 GeV $\lesssim m_{\rm a} \lesssim$ 1 TeV) as different origin compare to Higgs boson mass

- ► Anomalous decays into SM gauge bosons
- \Rightarrow gg, WW, ZZ, Z γ , $\gamma\gamma$
- ► Decays into <u>all</u> SM fermions
- \Rightarrow Couplings proportional to fermion masses (like Higgs)
- \Rightarrow Branching strongly depend on m_a

- ▶ Lightest VLQ T (mix singlet-doublet) mixes with SM top quark
- ⇒ Pair and single production relevant
- ▶ EW singlet a associated to non-anomalous U(1)-symmetry [Spontaneously broken contrary to $U(1)_V$ in QCD $\rightarrow a$ is a pNGB]
- \Rightarrow can be very light (10 GeV $\lesssim m_{\rm a} \lesssim$ 1 TeV) as different origin compare to Higgs boson mass

Low mass region:

- ► a decays mainly into $b\overline{b}$, $\tau\tau$ and hadrons Hight mass region:
- ▶ Below $t\bar{t}$ threshold decay mainly into hadrons (also $b\bar{b}$ and $\tau\tau$)
- Above threshold a decays almost exclusively into $t\bar{t}$

$T \rightarrow at$

- ▶ Standard channels + at-channel ⇒ 4 dimensional parameter space ⇒ Relevant to explore $Br(T \to ht, Wb, Zt) + Br(T \to at) = 1$ (should extend 'triangle' plots)
- ightharpoonup Below threshold T o at dominates in general

$$\begin{array}{ll} {\rm Bm1:} & \textit{M}_{\textit{T}} = 1 \ {\rm TeV} \ , & \kappa_{\rm Z,R}^{\rm T} = -0.03 \ , & \kappa_{\rm h,R}^{\rm T} = 0.06 \ , \\ & \kappa_{\rm a,R}^{\rm T} = -0.24 \ , & \kappa_{\rm a,L}^{\rm T} = -0.07 \end{array}$$

$T \rightarrow at$

- ▶ Bottom partner can also decay into a
- ▶ Larger branching ratio is possible depending on the underlying theory

Bm2:
$$M_B = 1.38 \text{ TeV}$$
, $\kappa_{\mathrm{W,L}}^{\mathrm{B}} = 0.02$, $\kappa_{\mathrm{W,R}}^{\mathrm{B}} = -0.08$, $\kappa_{\mathrm{a,L}}^{\mathrm{B}} = -0.25$,

Table of contents

- 1 $T \rightarrow \eta t$
- 2 $T \rightarrow at$
- $3 X_{5/3} \to \pi_6 \overline{b}$
- $4 X_{5/3} o \phi^+ t$
- 5 Summary

$X_{5/3} \rightarrow \pi_6 \overline{b}$

- ▶ Lightest VLQ is $X_{5/3}$ is part of EW-doublet
- $(X_{5/3}T) \sim (3,2,7/6)$

- ⇒ Pair-produced from QCD
- $lackbox{Non-negligible $X_{5/3} o \pi_6 \overline{b}$ branching ratio w.r.t standard $X_{5/3} o W^+ t$$
- ⇒ Two dimensional parameter space

π_{6} decays

- ▶ pNGB sextet π_6 associated to spontaneously broken global symmetry of the coloured sector (required to form composite VLQs)
- \Rightarrow Direct searches lead to $m_{\pi_6} \gtrsim 800$ GeV [Cacciapaglia, Deandrea, Flacke et al, 1507.02283]
- ightharpoonup Decay only into tops $\pi_6 o tt$

$$\pi_6 \sim (6, 1, 4/3)$$

- ⇒ No decays into SM gauge bosons (hypercharge)
- ⇒ No decays into light fermions (partial compositeness vs bilinear coupling)

Relevant to explore $Br(W^+t) + Br(\pi_6\overline{b}) = 1$

$$\begin{array}{ll} \text{Bm3}: & \textit{M}_{\textit{X}_{\mathbf{5/3}}} = 1.3 \text{ TeV} \; , \quad \kappa^{\text{X}}_{\text{W,L}} = 0.03 \; , \;\; \kappa^{\text{X}}_{\text{W,R}} = -0.11 \; , \\ & \kappa^{\text{X}}_{\pi_{\text{6,L}}} = 1.95 \; , \;\; \kappa^{\pi_{\text{6}}}_{\text{tt.R}} = -0.56 \; , \end{array}$$

Table of contents

- 1 $T \rightarrow \eta t$
- 2 $T \rightarrow at$

- 5 Summary

$X_{5/3} \rightarrow \phi^+ t$

▶ Lightest VLQ is $X_{5/3}$ is part of EW-doublet

 $(X_{5/3}T)\sim(3,2,7/6)$

- ⇒ Pair-produced from QCD
- ▶ Non-negligible $X_{5/3} o \phi^+ t$ branching ratio w.r.t standard $X_{5/3} o W^+ t$
- ⇒ Two dimensional parameter space (coloured pNGB can easily be heavier than VLQs)

ϕ^+ decays

ightharpoonup pNGB ϕ^+ is an EW triplet (same origin as the Higgs boson)

$$\Phi_{+} = \begin{pmatrix} \phi^{++} & \phi^{+} & \phi^{0} \end{pmatrix}^{T} \sim (1,3,1) , \quad \Phi_{0} = \begin{pmatrix} \phi^{+} & \phi^{0} & \phi^{-} \end{pmatrix}^{T} \sim (1,3,0) ,$$

- ▶ Anomalous couplings: $\phi^+ \to W^+ \gamma$ and $\phi^+ \to W^+ Z$ from $\Phi_0 W^{\mu\nu} \tilde{B}_{\mu\nu}$
- $\Rightarrow W^+ \gamma$ channel dominates
- ▶ Decays into SM fermions: $\phi^+ \to t\bar{b}$ from $\Phi_+^a(\bar{q}_L\tilde{H})^ab_R$ or $\Phi_0^a(\bar{q}_LH)^ab_R$ (also decays into light quarks and leptons) \Rightarrow Supressed by v/f
- $ightharpoonup \Gamma_{\phi^+W^+V}\sim m_{\phi^+}^3$ while $\Gamma_{W^+tb}\sim m_{\phi^+}\Rightarrow$ decays into spin 1 is dominant

Relevant to explore $Br(W^+t) + Br(\phi^+t) + Br(\phi^{++}b) = 1$

$$\begin{array}{lll} {\rm Bm4:} & {\it M_{X_{5/3}}} = 1.3~{\rm TeV} \;, & \kappa_{\rm W,L}^{\rm X} = 0.03 \;, & \kappa_{\rm W,R}^{\rm X} = 0.13 \;, \\ \kappa_{\phi^+,\rm L}^{\rm X} = 0.49 \;, & \kappa_{\phi^+,\rm R}^{\rm X} = 0.12 \;, & \kappa_{\phi^{++},\rm L}^{\rm X} = -0.69 \;, & \kappa_{\rm tb,L}^{\phi} = 0.53 \;, \end{array}$$

Summary

- ► Simplest realisation of composite Higgs model is a 4D gauge theory of fermions that condenses at low energy
- ⇒ Higgs naturally light as pNGB
- \Rightarrow Additional EW pNGB η,ϕ^+,\cdots (depending on the underlying model)
- ▶ EWSB requires partial compositeness for top quark
- \Rightarrow Coloured pNGBs $\pi_6, \cdots \Rightarrow$ Additional U(1)-singlet a

Final states

- ► EW-singlet mode: $T \rightarrow \eta t$, $\eta \rightarrow WW$, γZ , ZZ pair-production only , $m_{\eta} \gtrsim 100 \text{ GeV}$
- ▶ U(1)-mode: $T \to at$, $a \to t\bar{t}$ (hight mass), hadrons, $b\bar{b}$, $\tau\tau$ (low mass) pair+single production, m_a could be very light ~ 10 GeV
- ▶ Coloured mode: $X_{5/3} \to \pi_6 \overline{b}$, $\pi_6 \to tt$
- ▶ Charged mode: $X_{5/3} \rightarrow \phi^+ t$, $\phi^+ \rightarrow W^+ \gamma$, $W^+ Z$

Model-dependant scenarios

- ⇒ Typical behaviour only (benchmarks scenarios from theory side)
- \Rightarrow Variations are possible (depending on the model, underlying gauge theory)

Final states

▶ EW-singlet mode: $T \rightarrow \eta t$

Pair production: $pp \to T\overline{T} \to (\eta t)(\eta \overline{t})$, $\eta \to WW, \gamma Z, ZZ$

▶ U(1)-mode: $T \rightarrow at$

Pair production: $pp \to T\overline{T} \to (at)(a\overline{t}) \text{ or } (at)(Z\overline{t}, h\overline{t}, W^{-}\overline{b})$

Single production: $pp \rightarrow T \rightarrow at$

▶ Coloured mode: $X_{5/3} \rightarrow \pi_6 \overline{b}$

Pair production: $pp \to X_{5/3}\overline{X}_{5/3} \to (\pi_6\overline{b})(\pi_6^cb) \to (tt\overline{b})(\overline{tt}b)$

$$pp o X_{5/3} \overline{X}_{5/3} o (W^+ t) (\pi_6^c b) o (W^+ t) (\overline{tt} b)$$

▶ Charged mode: $X_{5/3} \rightarrow \phi^+ t$

Pair production: $pp \to X_{5/3} \overline{X}_{5/3} \to (\phi^+ t)(\phi^- \overline{t}) \to (W^+ \gamma t)(W^- \gamma \overline{t})$

$$pp o X_{5/3} \overline{X}_{5/3} o (W^+ t) (\phi^- \overline{t}) o (W^+ t) (W^- \gamma \overline{t})$$

Back-up

Table of contents

- 1 $T \rightarrow \eta t$
- 2 $T \rightarrow at$
- $4 X_{5/3} o \phi^+ t$
- 5 Summary

Structure of the underlying theory

Barring extra space-time dimensions:

Simplest, well-understood, explicit realization provided by 4D gauge theory of $\underline{\text{fermions}}$ that confines at the multi-TeV scale Λ

⇒ No fundamental scalar reintroducing hierarchy problem at higher scale

Fundamental fermions

pNGB Higgs + top partners (PC)

- ⇒ Two species of fundamental fermions (novel feature compare to QCD)
- **EW** sector (Higgs sector): fermions ψ
- \Rightarrow Spontaneous symetry breaking should deliver at least 4 pNGBs associated to Higgs doublet: $H\sim (\psi\psi)$
- ► Coloured sector: fermions X
- \Rightarrow Some trilinear bound states $(\psi\psi X)$ or (ψXX) should have same quantum numbers as SM top quark multiplets
- \Rightarrow Spontaneous breaking delivers additional coloured pNGBs (XX) $\sim \pi^c$

Minimal fermionic UV completion

First example provided by:

EW sector $SU(4)/Sp(4) \cong SO(6)/SO(5)$

- ► SU(4)/Sp(4) \Rightarrow only 15-10 = 5 NGBs: Higgs doublet + singlet η
- ▶ 4 Weyl fermions $\psi \Rightarrow SU(4)$ global symmetry
- $ightharpoonup Sp(4) \Rightarrow \psi$ belong to a pseudo-real hypercolour representation: the fundamental of Sp(2N) [Barnard et al, '13]

Coloured sector SU(6)/SO(6)

- ► SU(6)/SO(6) \Rightarrow 35-15 = 20 coloured NGBs: π_8 , π_6 and π_6^c
- ▶ 6 Weyl fermions $\chi \Rightarrow SU(6)$ global symmetry
- ► $SO(6) \Rightarrow \chi$ belong to a real hypercolour representation: 2-index antisymmetric of Sp(2N)

List of "minimal" UV completions

G_{HC}	ψ	χ	Restrictions	$-q_\chi/q_\psi$	Y_{χ}	Non Conformal	Model Name
	Real	Real	SU(5)/SO(5)	× SU(6),	/SO(6)		
$SO(N_{ m HC})$	$5 \times S_2$	$6 \times \mathbf{F}$	$N_{\mathrm{HC}} \geq 55$	$\frac{5(N_{\rm HC}+2)}{6}$	1/3	/	
$SO(N_{ m HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$N_{\mathrm{HC}} \geq 15$	$\frac{5(N_{HC}-2)}{6}$	1/3	/	
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	6 × Spin	$N_{\mathrm{HC}} = 7,9$	$\frac{5}{6}$, $\frac{5}{12}$	1/3	$N_{\mathrm{HC}} = 7,9$	M1, M2
$SO(N_{ m HC})$	$5 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\mathrm{HC}} = 7,9$	$\frac{5}{6}$, $\frac{5}{3}$	2/3	$N_{\mathrm{HC}} = 7,9$	M3, M4
	Real	Pseudo-Real	SU(5)/SO(5) × SU(6)	/Sp(6)		
$Sp(2N_{HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$2N_{\mathrm{HC}} \ge 12$	$\frac{5(N_{\rm HC}+1)}{3}$	1/3	/	
$Sp(2N_{HC})$	$5 \times \mathbf{A}_2$	$6 \times \mathbf{F}$	$2N_{\mathrm{HC}} \ge 4$	$\tfrac{5(N_{\mathrm{HC}}-1)}{3}$	1/3	$2N_{HC} = 4$	M5
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	6 × Spin	$N_{\rm HC} = 11, 13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	/	
	Real	Complex	SU(5)/SO(5)	$\times SU(3)^2$	/SU(3)		
$SU(N_{ m HC})$	$5 \times \mathbf{A}_2$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{\mathrm{HC}} = 4$	<u>5</u> 3	1/3	$N_{\mathrm{HC}} = 4$	M6
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{\rm HC} = 10, 14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{\mathrm{HC}} = 10$	M7
	Pseudo-Real	Real	SU(4)/Sp(4)	× SU(6)	/SO(6)		
$Sp(2N_{HC})$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{\mathrm{HC}} \leq 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{ m HC})$	$4 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}$, $\frac{16}{3}$	2/3	$N_{\mathrm{HC}} = 11$	M9
	Complex	Real	$SU(4)^2/SU(4$) × SU(6)	/SO(6)		
$SO(N_{ m HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 \times \mathbf{F}$	$N_{\mathrm{HC}} = 10$	8 3	2/3	$N_{\mathrm{HC}} = 10$	M10
$SU(N_{ m HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$N_{\mathrm{HC}} = 4$	2/3	2/3	$N_{\mathrm{HC}} = 4$	M11
	Complex	Complex	SU(4)2/SU(4)	× SU(3)	² /SU(3)		
$SU(N_{ m HC})$	$4\times (\mathbf{F},\overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{\mathrm{HC}} \geq 5$	$\frac{4}{3(N_{HC}-2)}$	2/3	$N_{\rm HC} = 5$	M12
$SU(N_{ m HC})$	$4\times (\mathbf{F},\overline{\mathbf{F}})$	$3 \times (S_2, \overline{S}_2)$	$N_{\mathrm{HC}} \geq 5$	$\frac{4}{3(N_{HC}+2)}$	2/3	/	
$SU(N_{ m HC})$	$4 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{\mathrm{HC}} = 5$	4	2/3	/	

Several other possibilities exist:

- ► Different EW and coloured cosets
- ► Fundamental fermions in different irreps
- ► Change anomalous couplings: Branching ratios of pNGBs
- ► Change VLQs couplings to pNGBs (values of decay constants, ···)

SU(4)/Sp(4) scenario

⇒ Richer phenomenology as compare to effective model with only one VLQ

Additional pNGBs

In addition to the Higgs doublet, additional EW pNGBs are present

EW sector

Smallest cosets constructed from pseudoreal, real or complex representations:

$$SU(4)/Sp(4)$$
: $5_{Sp(4)} \equiv \mathbf{A}_2 = 2_{\pm 1/2} + 1_0$ (H, η)

$$\underline{SU(5)/SO(5)}$$
: $14_{SO(5)} \equiv \mathbf{S}_2 = 3_{\pm 1} + 3_0 + 2_{\pm 1/2} + 1_0$ $(\Phi_{\pm}, \Phi_0, H, \eta)$

$$\begin{array}{l} \blacktriangleright \; SU(4) \times SU(4)/SU(4) \!\!: \; 15_{SU(4)} \equiv \mathsf{Ad} = 3_0 + 2_{\pm 1/2} + 2_{\pm 1/2} + 1_{\pm 1} + 1_0 + 1_0 \\ [\mathsf{Ma, Cacciapaglia, 1508.0714}] & (\Phi_0, H_1, H_2, \mathsf{N}_\pm, \mathsf{N}_0, \eta) \end{array}$$

 \Rightarrow Always SM-like singlet η \Rightarrow Sometimes triplets or second Higgs doublet

Coloured sector

►
$$SU(6)/SO(6) \supset SU(3)_c$$
: $20'_{SO(6)} \equiv A_2 = 8_0 + 6_{4/3} + \overline{6}_{-4/3}$ (π_8, π_6, π_6^c)

►
$$SU(6)/Sp(6) \supset SU(3)_c$$
: $14_{Sp(6)} \equiv S_2 = 8_0 + 3_{-4/3} + \overline{3}_{4/3}$ (π_8, π_3, π_3^c)

►
$$SU(3) \times SU(3)/SU(3)_c$$
: $8_{SU(3)} \equiv Ad = 8_0$ (π_8)

 \Rightarrow Always a coloured octet π_8 \Rightarrow Sometimes coloured triplets or sextets [Cacciapaglia et al, 1507.02283, 1610.06591]

Anomalous couplings

pNGBs may couple to gauge bosons through anomalies $(\pi^0 o \gamma \gamma \text{ in QCD})$

$$\mathcal{L}^{WZW} = -\frac{g_{\mathcal{W}}^2}{64\pi^2} \frac{d_{HC}}{F_G} \epsilon_{\mu\nu\rho\sigma} \mathcal{W}^{\mu\nu} \mathcal{W}^{\rho\sigma} \sum_{\hat{A}} d^{WW\hat{A}} G^{\hat{A}} + \cdots$$
$$d^{WW\hat{A}} = 2 \operatorname{Tr}(\{T^W, T^W\} T^{\hat{A}})$$

- ⇒ Non-zero couplings depend on the coset (global symmetries)
- ⇒ Stength depends on the underlying theory (fundamental fermions irreps)

EW pNGBs

- ▶ No anomalous couplings for the Higgs boson
- ightharpoonup SU(4)/Sp(4) ηZZ , $\eta \gamma Z$, ηWW
- ightharpoonup SU(5)/SO(5) $\eta\gamma\gamma$ ηZZ , $\eta\gamma Z$, ηWW , triplet anomalous couplings, \cdots

Coloured pNGBs

 $\blacktriangleright \pi_8$ decays in gg, γg or Zg via anomaly (and top triangle loop)

In general PC implies decays of pNGBs into tops $(\eta o t \overline{t}, \, \pi_6 o t t, \, \cdots)$

Non-anomalous U(1) symmetry

- ▶ EW ψ fermions: anomalous $U(1)_{\psi}$ ▶ Coloured X fermions: anomalous $U(1)_{X}$
- ⇒ Always a non-anomalous combination w.r.t hypercolour

$$q_{\psi}N_{\psi}T(\psi)+q_{X}N_{X}T(X)=0$$

- ⇒ One additional light pNGB a
- \Rightarrow Other pseudoscalar η' receive mass from anomaly (instanton effects), could be light as no way to estimate anomaly coefficient

Anomalous couplings

- $\blacktriangleright \eta_{\psi}$ to $SU(2)_L \times U(1)_Y$ gauge bosons $(\eta_{\psi}WW,BB)$
 - [Cai et al, 1512.04508]
- $\blacktriangleright \eta_X$ to $SU(3)_c \times U(1)_Y$ gauge bosons $(\eta_X gg, BB)$

$$\eta_{\psi} - \eta_{X}$$
 mixing:

$$\begin{cases} a = \cos \phi \ \eta_{\psi} + \sin \phi \ \eta_{X} \\ \eta' = -\sin \phi \ \eta_{\psi} + \cos \phi \ \eta_{X} \end{cases}$$

$$\tan\phi = \frac{f_X q_X}{f_\psi q_\psi}$$

- ⇒ a produced by gluon fusion (contrary to EW pNGBs)
- \Rightarrow a decays to dibosons $(gg, WW, ZZ, Z\gamma, \gamma\gamma)$ and $t\overline{t}$ thanks to PC

[Belyaev et al, 1610.06591]