HL/HE-LHC physics prospectives in top quark physics

HL/HE-LHC CERN Yellow Report activities

Frédéric Déliot CEA-Saclay

Introduction

High-Luminosity LHC and High-Energy LHC

- CERN is preparing a Yellow Report for the end of 2018 as input to the European Strategy for Particle Physics
- Assessment of the physics reach of the upgraded detectors with 3 ab⁻¹
- Assessment the physics reach of the energy doubler

HL/HE-LHC reference parameters

- HL-LHC: $\sqrt{s} = 14 \text{ TeV}$, 3 ab⁻¹

- HE-LHC: $\sqrt{s} = 27 \text{ TeV}$, 15 ab⁻¹

YR organisation and timeline

- 5 WG (chapters): SM&TOP, Higgs, BSM, Flavour, Heavy Ion
- timeline:
 - 18-20 June 2018 Plenary meeting @CERN (table of contents)
 - September 2018: Full Draft Chapters (one per WG 150 Pages each)
 - December 2018: Submission

	13 TeV - 30 fb ⁻¹	13/14 TeV - 3000 fb ⁻¹
tī	30 Mevts	3 Gevts
tt̄ (fiducial)	1.55 Mevts	155 Mevts
tt with M _{tt} > 1 TeV (fiducial)	30 kevts	3 Mevts
tt with M _{tt} > 2 TeV (fiducial)	480 evts	48 kevts
t-channel	6 Mevts	600 Mevts
Wt-channel	2 Mevts	200 Mevts
s-channel	300 kevts	30 Mevts
ttV	30 kevts	3 Mevts
tZ	3 kevts	300 kevts
tH	300 evts	30 kevts

Organisation

Steering

Overall Coordination

[Michelangelo Mangano]

ATLAS Contact - CMS Contact - LHCb Contact - ALICE Contact - Theory Contact

Andreas Meyer Mika Vesterinen Aleandro Nisati Andrea Dainese Gavin Salam

WG1: Standard Model

Alessandro Tricoli – ATLAS - CMS Patrizia Azzi

Stephen Farry LHCb

Paolo Nason Theory

Dieter Zeppenfeld – Theory

WG2: Higgs

Marumi Kado - ATLAS - CMS Maria Cepeda

Phil Ilten LHCb

Theory Stefania Gori

Francesco Riva Theory

WG3: BSM

Monica D'onofrio - ATLAS

- CMS Keith Ulmer

LHCb Xabier Cid Vidal

Patrick J Fox Theory

Riccardo Torre Theory

WG4: Flavour Physics

Alex Cerri - ATLAS - CMS Sandra Malvezzi

- LHCb Vladimir Gligorov

Jorge Camalich Theory

Theory Jure Zupan

WG5: Heavy Ions

Zvi Citron

- ATLAS

- CMS Yen-Jie Lee

Michael Winn LHCb

Jan Fiete

Grosse-Oetringhaus-ALICE

Urs Wiedemann Theory

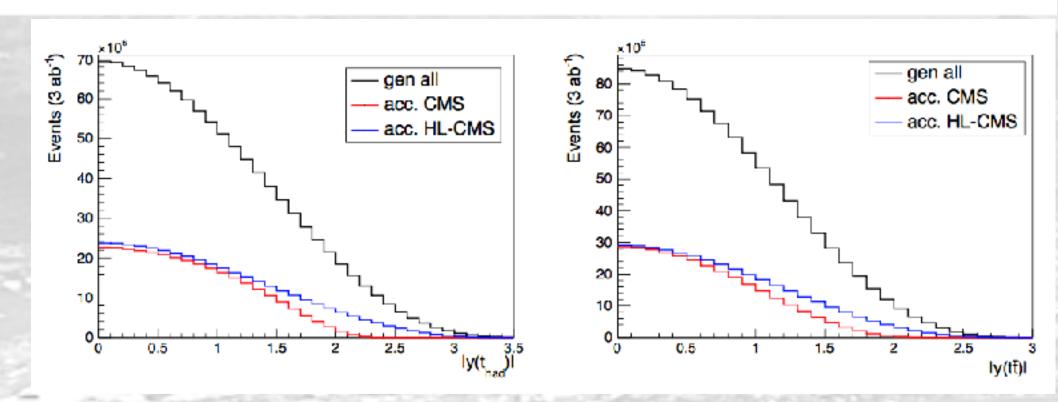
- LHC John Jowett

WG1 Chapter draft

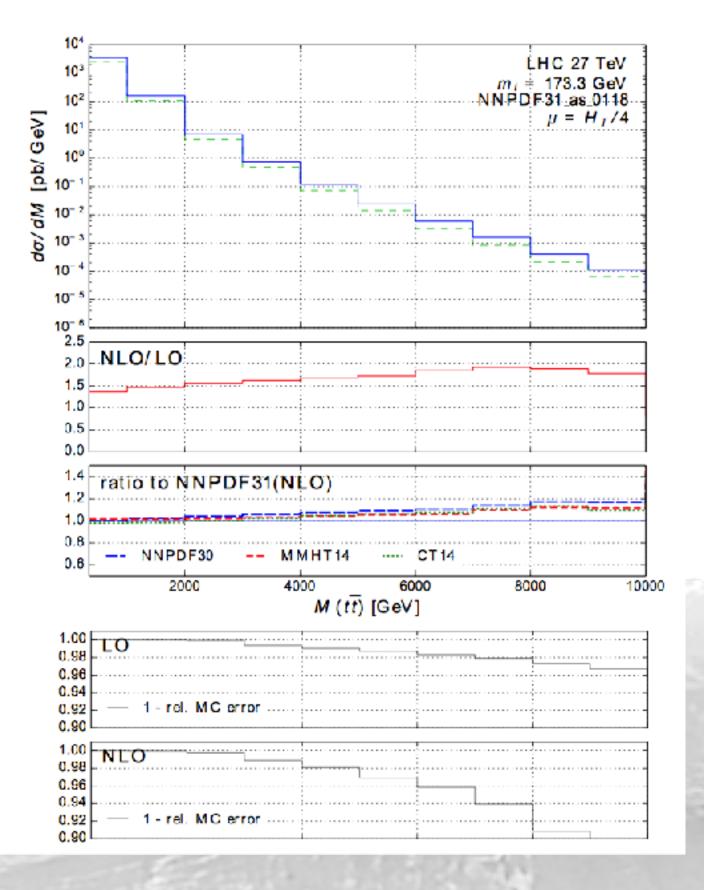
- studies are currently on-going
 - joint theory and experimental efforts
 - no public results yet
 - see plans at the May 2nd WG1 meeting
 - Target for whole chapter: ~150 pages.
 - Page allocation per section is approximate
 - Introduction 10 pages
 - Theoretical Tools 25 pages
 - MC Generators (5 pages), High Order QCD calculations (5 pages), EW corrections (5 pages),
 PDF tools (5 pages), EFT tools (5 pages)
 - Electroweak processes 35 pages
 - Vector boson fusion processes (5 pages), Vector Boson scattering (10 pages), Triboson production (5 pages), Precision EW measurements (10 pages), Forward EW physics (5 pages)
 - Strong Interactions 26 pages
 - Jets and photons (8 pages), Ultimate Parton Densities (10 pages), Forward and Soft QCD physics (8 pages)
 - Top Physics 36 pages
 - Top cross section (5 pages), Top properties (10 pages), Top couplings (5 pages), Top mass (8 pages), FCNC (8 pages)
 - Effective coupling interpretations 10 pages

tt cross section

theory studies


- provide numbers/distributions at 14 TeV
- 27 TeV tt cross section 4x larger than at 14 TeV
- ✓ At a 27 TeV HE-LHC the top-pair production cross-section is very large:

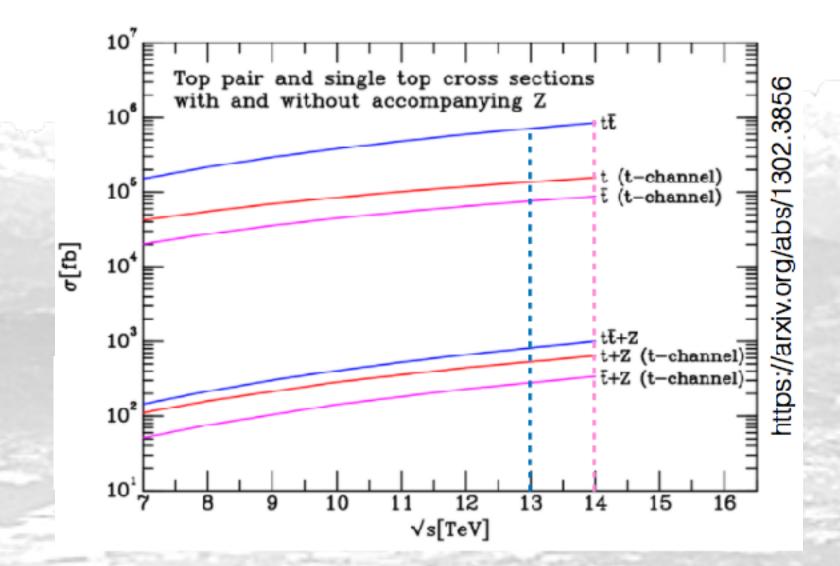
$$\begin{split} \sigma_{tot} &= 3727^{+119(3.2\%)}_{-180(4.8\%)} (\text{scales})^{+31(0.8\%)}_{-31(0.8\%)} (\text{pdf}) \text{ [pb]} & \text{(in NNLO QCD)} \\ \sigma_{tot} &= 3794^{+88} \ ^{(2.3\%)}_{-142(3.7\%)} (\text{scales}) \text{ [pb]} & \text{(in NNLO+NNLL QCD)} \end{split}$$

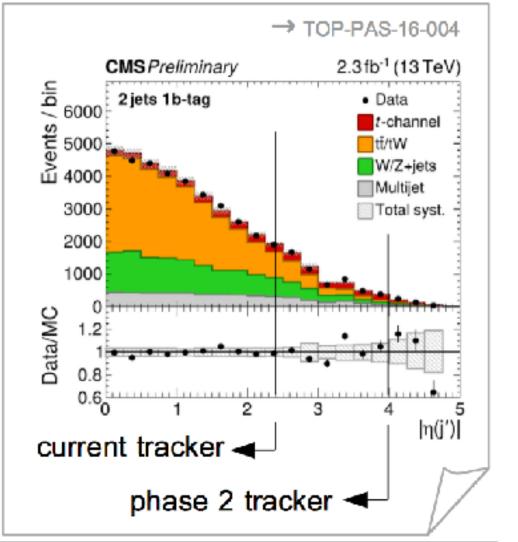

- working on soft gluon resummation and EW corrections

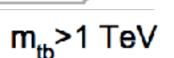
experimental plans

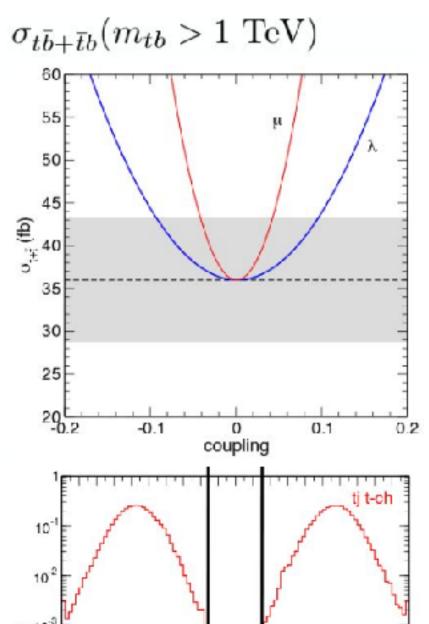
- 1D-2D distributions with higher acceptance
- understand pile-up
- how to scale systematic uncertainties?
 - **Jet energy scale**: today highest uncertainty is 2–3% (for $|\eta| < 2.4$) \rightarrow preliminary recommendations for upgrade 1% for all jets $|\eta| < 3.8$.
 - Final and initial scale shower: preliminary recommendations suggests reduction by factor 1/2, same for all theoretical uncertainties including PDFs.
 - Luminosity reduction from 2.7% to about 1%.

- At LHC at 27 TeV very large M_{tt} can be reached
- Estimates at LO and NLO:
 - ✓ 10% effect in the tails from NNPDF3.1 w/r to older sets
 - ✓ MC error can be handled up to M_{tt}~10TeV
 - The dynamic scales behave OK (at least) up to 10 TeV
 - Very modest growth of scale error

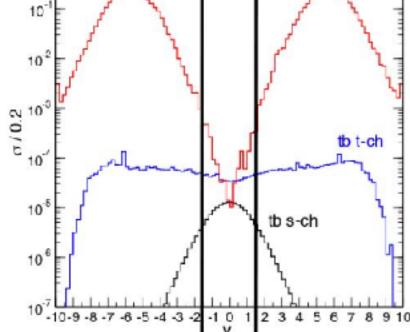

Single top


theory studies


- Cross-sections and differential distributions for HE
- Tails of distribution at HL/HE, EW corrections?
- Channel separation (t,s,Wt), potential issues with HL precision
- Modeling, 4FNS/5FNS, NNLOPS

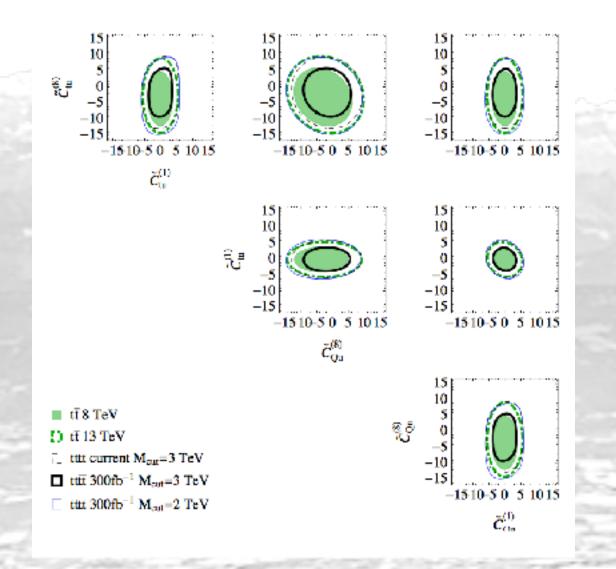

experimental plans

- t-channel differential measurement (larger acceptance, HL-LHC result sensitivity to EFT and PDF)
- s-channel measurement (HL-LHC as a benchmark, HE-LHC: High-q2 analysis, limits on Wtb couplings)
- tZq measurement (inclusive and differential HL-LHC results)



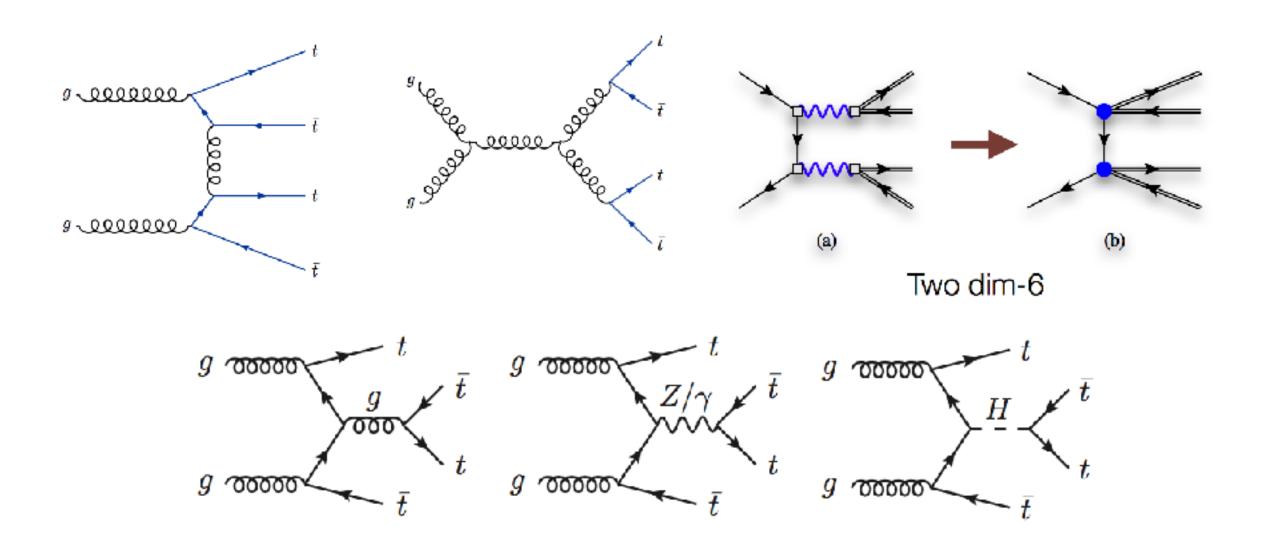
m_{tb}>10 TeV

Frédéric Déliot, top LHC-France, 25-MAY-18


4 top cross section

theory studies

- provide complete NLO predictions
- four tops as a probe to new physics:
 - Constraining qqtt operators in the EFT
 - Constraining top quark flavor violation and dipole moments through three and four-top quark productions at the LHC
 - Higgs width and top quark Yukawa coupling


experimental plans

- inclusive and differential results in the multilepton channel
 - fast simulation analysis or extrapolation

Use 3 and 4 tops to constrain FCNC top decays

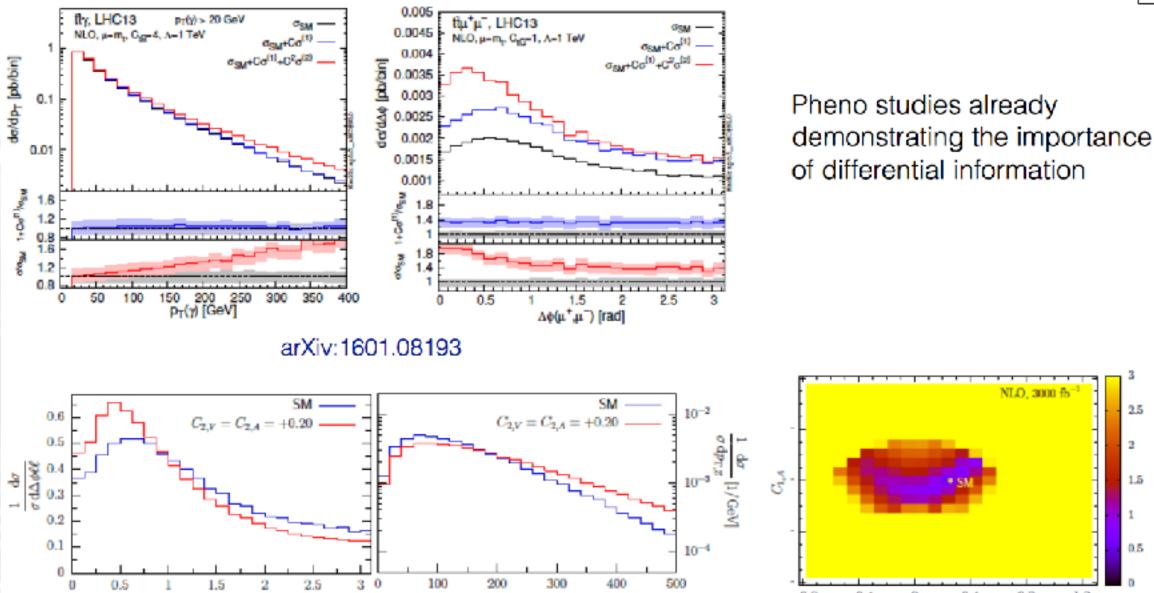
Branching fraction	three-top, 300 fb^{-1}	three-top, 3 ${ m ab^{-1}}$	other-channels, HL-LHC, 3 ab		
$\mathcal{B}(t o uH)$	1.03×10^{-8}	3.09×10^{-4}	2.4×10^{-4} [105]		
$\mathcal{B}(t o cH)$	8.52×10^{-8}	2.54×10^{-8}	2.0×10^{-4} [105]		
$\mathcal{B}(t\to ug)$	4.00×10^{-4}	1.19×10^{-4}			
$\mathcal{B}(t\to cg)$	4.51×10^{-3}	1.35×10^{-3}	-		
$\mathcal{B}(t o uZ) - \sigma_{\mu\nu}$	2.73×10^{-3}	8.18×10^{-4}	4.3×10^{-5} [105]		
$\mathcal{B}(t o cZ) - \sigma_{\mu\nu}$	2.67×10^{-2}	7.98×10^{-3}	5.8×10^{-5} [105]		
$\mathcal{B}(t\to uZ) - \gamma_\mu$	5.73×10^{-8}	1.71×10^{-8}	4.3×10^{-6} [105]		
$\mathcal{B}(t\to cZ)-\gamma_{\mu}$	4.52×10^{-2}	1.35×10^{-2}	5.6×10^{-6} [105]		
$\mathcal{B}(t o u\gamma)$	2.18×10^{-2}	6.53×10^{-3}	2.7×10^{-5} [106]		
$\mathcal{B}(t o e\gamma)$	2.14×10^{-1}	6.40×10^{-2}	2.0×10^{-4} [106]		
4 tops xsect constrains on dipole moments Coupling Current four-top with 35.6 fb ⁻¹ Future four-top with 300 fb ⁻¹					
			<u> </u>		
		vith 35.6 fb ⁻¹ Futu	<u> </u>		
Couplin	g Current four-top v	vith 35.6 fb ⁻¹ Futu [-0.0	are four-top with 300 fb ⁻¹		
$\frac{\text{Couplin}}{d_V^2}$	Current four-top v	rith 35.6 fb ⁻¹ Futu [-0.0	re four-top with 300 fb ⁻¹		

	_
	- <

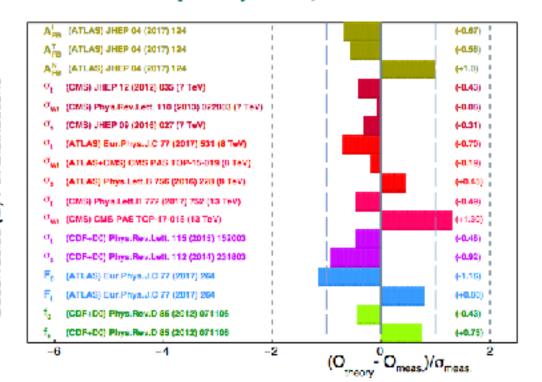
$\sigma[{ m fb}]$	$\mathrm{LO}_{\mathrm{QCD}}$	$\rm LO_{QCD} + NLO_{QCD}$	LO	LO + NLO	$\frac{\mathrm{LO}(+\mathrm{NLO})}{\mathrm{LO}_{\mathrm{QCD}}(+\mathrm{NLO}_{\mathrm{QCD}})}$
$\mu = H_T/4$	$6.83^{+70\%}_{-38\%}$	$11.12^{+19\%}_{-23\%}$	$7.59^{+64\%}_{-36\%}$	$11.97^{+18\%}_{-21\%}$	1.11 (1.08)
$\sigma[{ m fb}]$	$\mathrm{LO}_{\mathrm{QCD}}$	$LO_{QCD} + NLO_{QCD}$	LO	LO + NLO	$\frac{\rm LO(+NLO)}{\rm LO_{QCD}(+NLO_{QCD})}$
$\mu=H_T/4$	$45.34^{+59\%}_{-35\%}$	$71.31^{+16\%}_{-20\%}$	$48.57^{+54\%}_{-33\%}$	$73.94^{+15\%}_{-18\%}$	1.07(1.04)
$\sigma[\mathrm{pb}]$	$\mathrm{LO}_{\mathrm{QCD}}$	$LO_{QCD} + NLO_{QCD}$	LO	LO + NLO	$\frac{\rm LO(+NLO)}{\rm LO_{QCD}(+NLO_{QCD})}$
$\mu=H_T/4$	$2.37^{+49\%}_{-31\%}$	$3.98^{+18\%}_{-19\%}$	$2.63^{+44\%}_{-28\%}$	$4.18^{+17\%}_{-17\%}$	1.11 (1.05)

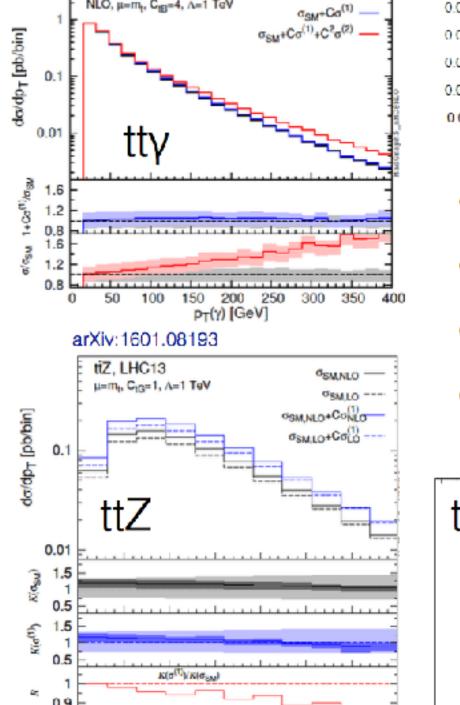
100

top couplings

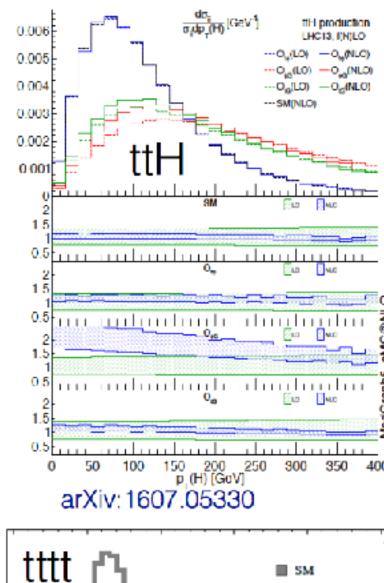

theory studies

- Provide benchmark EFT cross-sections for HE-LHC
- Investigate EFT effects in distributions for rare processes
- Combine LHC13 predictions with HL-LHC projections to extract potential sensitivities


experimental plans


- ttV and tty
 - unfolded to particle level (ttZ pt(Z), ttW asymmetry, differential ttγ)
 - obtain projections of EFT sensitivity for HL-LHC scenario
- Wtb: global fit using tt and single top distributions

arXiv:1501.05939



PRD 97 (2018) no.1, 013007

NLO, μ=m_t, C₁₆₃=4, Λ=1 TeV

2000

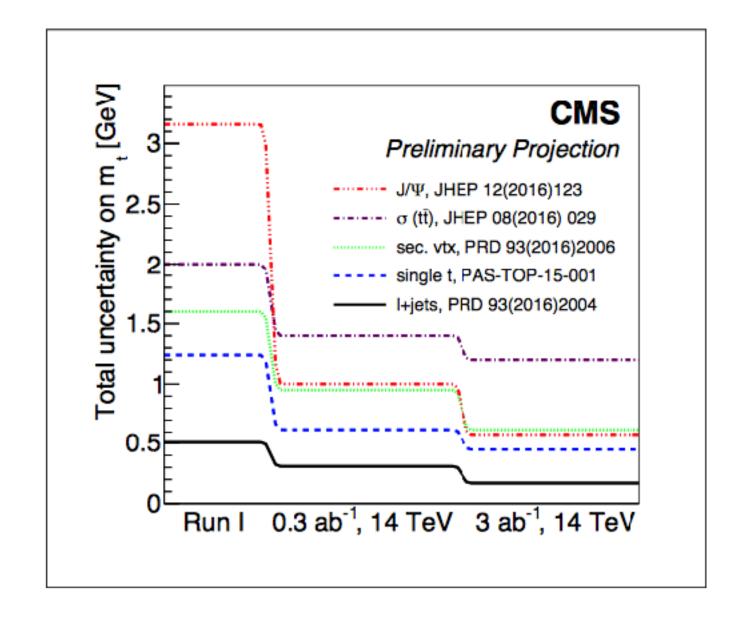
 \sqrt{s} [GeV]

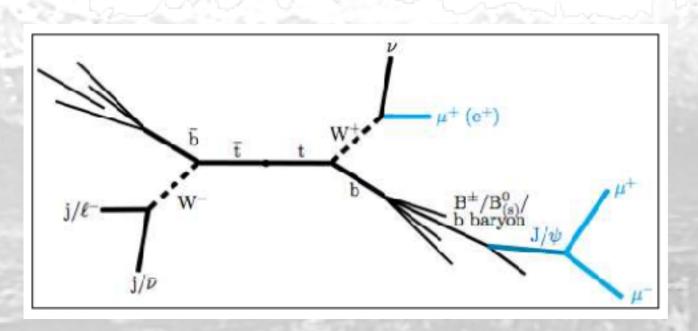
 $\tilde{C}_{lm}^{(8)} = -5.4$

Zhang arXiv:

1708.05928

	OtW	OtG	OtB
$sinlepton (36 fb^{-1})$	0 +/- 1.2	0 + / - 0.54	0 +/- 0.7
$sinlepton (3 ab^{-1})$	0 +/- 0.14	0 +/- 0.06	0 +/- 0.077
dilepton (36 fb $^{-1}$)	0 +/- 1.9	0 +/- 0.74	0 +/- 1.1
dilepton (3 ab^{-1})	0 +/- 0.24	0 +/- 0.083	0 +/- 0.13


top mass


theory studies

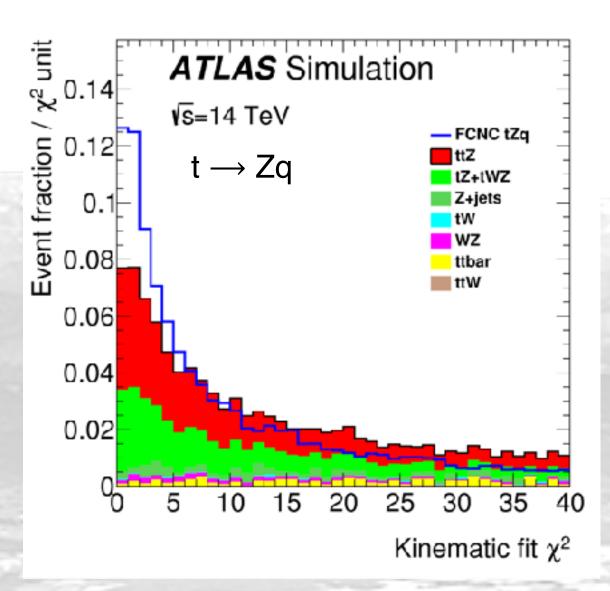
- interpretation of direct measurements
 - When using a LO Monte Carlo, do we extract a LO mass (i.e. do we expect corrections of order asmt at NLO level?)
 - Is there a way to relate the Monte Carlo parameter to a well defined field theoretical mass definition? (Pole mass, MS mass, MSr mass, etc.)
 - How do we quantify the related uncertainties?
- alternative measurements
 - Currently have large errors. Are there error sources that can be reduced with High Luminosity?
 - Are there theoretical hard limits on precision?

experimental plans

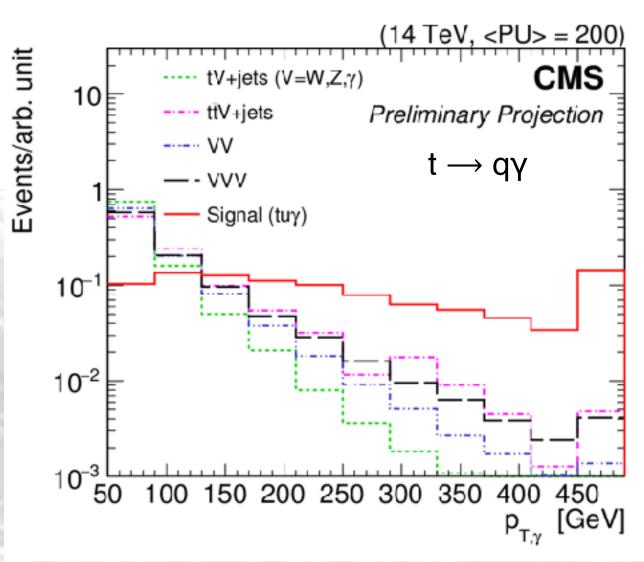
- CMS already have extrapolation studies
- ATLAS is working on the sensitivity to the mass from J/ ψ (statistical error should go to ~150 MeV)
- main question: how to scale the systematic uncertainties

top FCNC

u, c

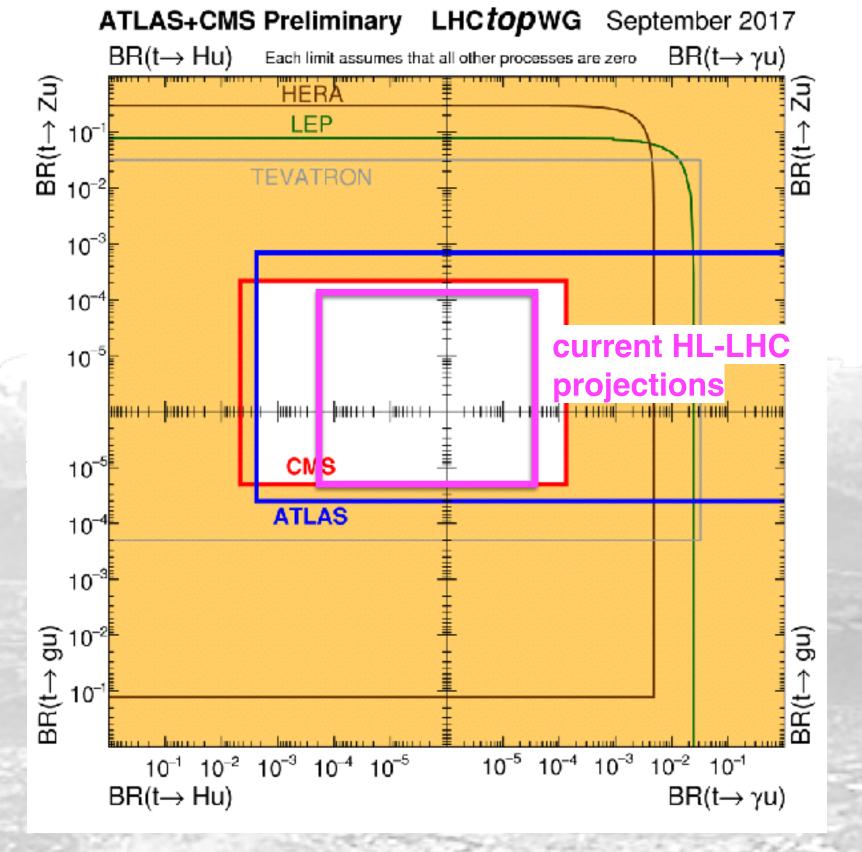

theory studies

- description of the theoretical framework and the EFT interpretation
- description of the simulation


experimental plans

- focus on tZq, tHq, tqg and tqγ
- some previous results already exist

ATL-PHYS-PUB-2016-019



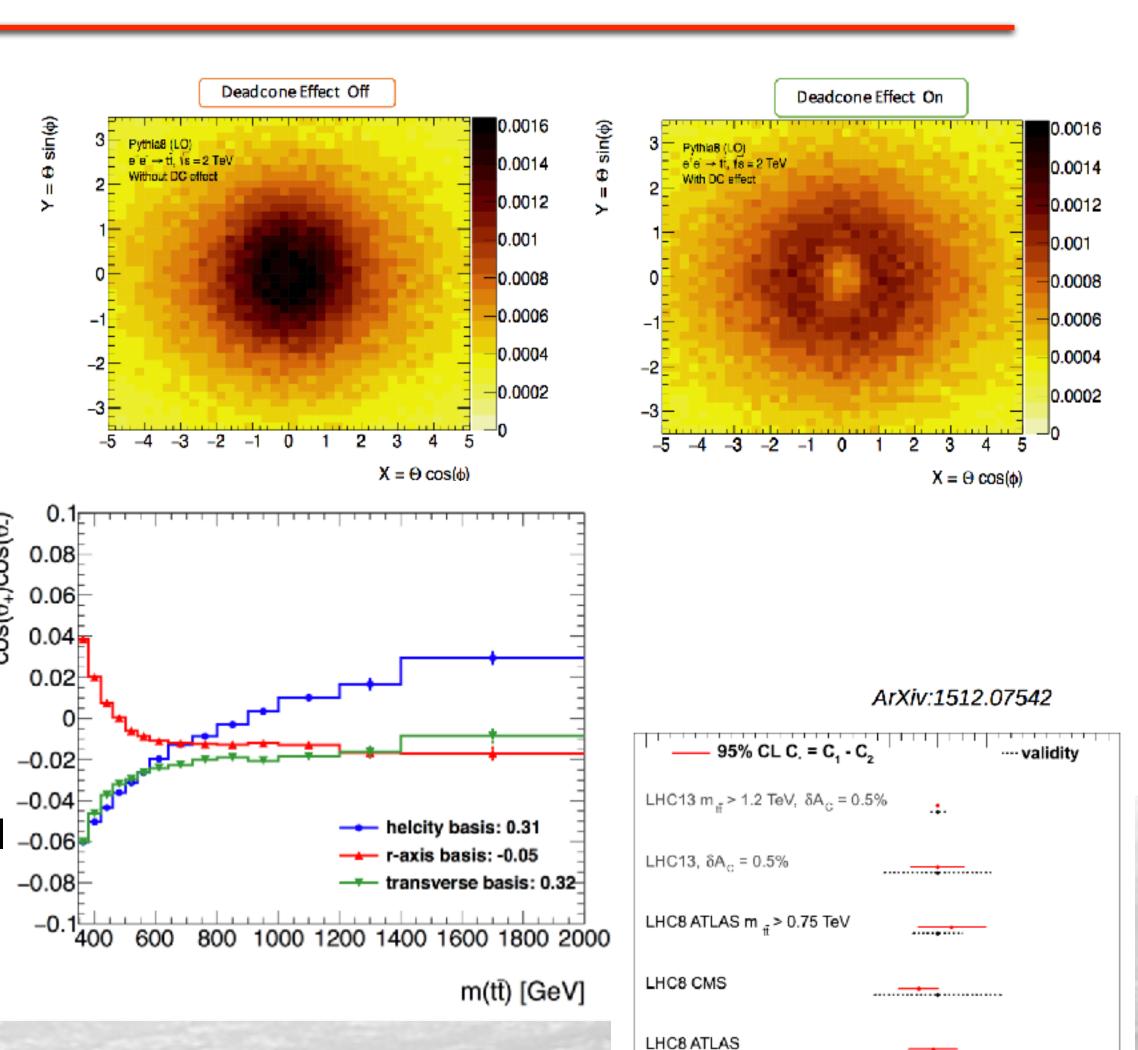
CMS PAS FTR-16-006

$oldsymbol{q},$ $oldsymbol{b},$ $oldsymbol{W}$

u, c

u, c

u, c


dead cone and angular variables

theory studies

- dead cone:
 - Fundamental predication of radiation in gauge invariant QFTs
 - introduction and motivation in arXiv:1606.03449
- spin correlation:
 - differential measurements would benefit from HL-LHC statistics
- charge asymmetry:
 - high m_{tt} bins would benefit from HL-LHC statistics

experimental plans

- dead cone:
 - never been measured yet
 - assess sensitivity using boosted and resolved cases in the lepton+jets channel
- spin correlation:
 - explore the reach in mtt and the possibility of going double differential -0.06
 - EFT interpretation
- charge asymmetry:
 - explore high boost and high rapidity regions

Tevatron CDI

Tevatron D0

Conclusion

- Large effort currently on-going to assess the HL-LHC and HE-LHC physics reach
 - top physics gives interesting opportunity within the overall physics reach
 - precision top pair and single top production
 - rare process: 4tops, ttV, high-q2 s-channel
 - top couplings
 - top angular properties
 - FCNC
- new ideas ?
 - the step from Run 2 to HL/HE-LHC for top physics could be as large as the one from Tevatron to LHC
- join the next HL/HE-LHC plenary workshop at CERN
 - 18-20 June 2018

