# CMS detector upgrades and performances





**Top-LHC France 2018, LPNHE Paris** 

D. Bloch, 25 May 2018 1





#### pileup ~20



140 - 200

# why the HL-LHC ?

- strong case to go on exploring the TeV scale:
  - Standard Model works very well but does not explain everything
    - low mass of Higgs boson and naturalness hypothesis advocate for the existence of new particles at the TeV scale
    - SM does not provide Dark Matter particle candidate
  - currently no evidence for new physics
- HL-LHC will deliver 3-4 ab<sup>-1</sup>, allowing
  - detailed studies of the Higgs boson : standard model or BSM ?
  - precise measurements of standard model, rare processes: indirect evidence for new physics ?
  - search for new particles and processes at the TeV scale (dark matter candidate)
  - investigate properties of any particle found at Run 2 or 3

### **Phase 2 detector requirements**

- challenges:
  - high instant. luminosity (5 7.5 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>)
     → high pileup (140 200)
  - high integrated luminosity (3 4 ab<sup>-1</sup>)
     → high irradiation
- requirement of the CMS Phase 2 upgrade:
  - maintain the current physics performance during the entire HL-LHC
  - detectors must resist to the high radiation
     levels and many have to be replaced in LS3 !
- CMS will be a high resolution 4D space+time (+ energy) detector





# **CMS Phase 1 upgrades**



# **CMS Phase 2 upgrades**



30 ps TOF resolution

# Tracker

- Outer Tracker: design driven to provide tracks (p<sub>T</sub> > 2-3 GeV) at 40 MHz to the L1 trigger
   => each module consists of 2 closely spaced sensors (~mm)
  - pixel-strip (PS) modules: macro-pixel (1.5 mm x 100 μm), strip (2.4 cm x 100 μm) tilted in Barrel (hermetic coverage with less modules and material)



- extended coverage up to  $|\eta| < 4.0$
- **6x better granulariry** than current Phase 1 pixel
- improved material budget and radiation tolerance
- > 1 billion pixels and strips

# track resolution vs η



 improved resolution and extended η range with Phase 2 pixel (here same interactive tracking as current, adapted to Phase Tracker geometry)

# track and fake efficiency vs p<sub>T</sub>



- track reconstruction efficiency > 90% for  $p_T > 1 \text{ GeV}$
- fake rate < 2% (4%) at 140 (200) PU for  $p_T$  within 1-100 GeV

# track efficiency in jet core



- improved tracking in jet core thanks to better tracker granularity
- important for high  $p_T$  jets and boosted objects measurements !

# **Primary Vertex efficiency**



- good PV reco. efficiency: linear dependence as a function of pileup
- in the absence of timing info: PV merging rate significant for  $|\Delta z| < 300 \ \mu m$

# **Muon system**

- DT and RPC: new readout with improved z and time precision
- CSC forward: new readout at high bandwidth
- forward extension: new stations GEM, RPC at  $|\eta| \le 2.4$ and new GEM ME0 (for trigger) within  $2.4 \le |\eta| \le 2.9$



# physics benefit

#### track-trigger allows improved L1 muon turn-on and much reduced rate



# **MIP Timing Detector**

30 ps time of flight resolution for charged particles within  $|\eta|$  < 3.0

- Barrel Timing Layer within Tracker Support Tube
  - thin crystals (Lyso) 11x11 mm<sup>2</sup> + SiPM 4x4 mm<sup>2</sup>, ~250k channels, 40 m<sup>2</sup>
- Endcap Timing Layer in front of High Granularity Calorimeter
  - Si sensors with gain (LGAD) 1x3 mm<sup>2</sup> pads, ~250k channels, 12 m<sup>2</sup>



# precision timing at HL-LHC



- pileup vertices spread along beam direction and time: precision timing for charged and neutral particles will be a key to reduce pileup contamination
  - track timing (σ<sub>t</sub>~30 ps) will allow
     4D (space+time) vertex reconstruction
  - x 4-5 reduction of vertex merging rate and number of pileup tracks associated to the signal PV



# object performance: b-tagging



with timing information, b-tagging performance improves and is moderately sensitive to the high pileup conditions

# object performance: MET



15% improvement in MET resolution,

> 30% reduction in tail (will reduce background for BSM searches)

# **Barrel calorimeter**

- maintain PbWO<sub>4</sub> crystal granularity readout (Avalanche PhotoDiodes) at 40 MHz in high pileup conditions
- replace fron-end electronics:
  - 160 MHz sampling against spikes (hadron interactions within APD volume),
  - 30 ps resolution for 30 GeV e/γ
  - all cells available at L1
- new ATCA back-end boards
- operate from 18° to 9°C to mitigate APD aging



# **High Granularity endcap Calorimeter**

#### 4D shower topology with timing resolution ~30 ps

- electromagnetic calo: 28 layers Silicon/W-Pb (26  $X_0$  1.7  $\lambda$ )
- hadronic calo: 8 layers Si + 16 mixed Si-Scintillators tiles • within stainless still absorber (9  $\lambda$ )





- 6 million Silicon channels
  - 600 m<sup>2</sup>  $\approx$  3x CMS Tracker
  - hexagonal silicon sensors
  - 100/200/300µm thick
- mixed layers in hadronic part 500 m<sup>2</sup> plastic scintillator

  - SiPM-on-tile readout
- operation at -30° C
  - with CO<sub>2</sub> cooling to mitigate increase of Si leakage current after irradiation \_

### HGCAL has the potential to visualize the full em showers



(from Dave Barney, CERN seminar, April 2018)

# precision timing and H $\rightarrow \gamma\gamma$



precision timing from HGCAL also important to constrain the PV from  $\gamma$  direction: can provide high H $\rightarrow\gamma\gamma$  mass resolution even at PU=200

benefit for HH $\rightarrow$ bb $\gamma\gamma$ 



(from Paolo Rumerio, Nov. 2017)

# performance benefit with timing

| Signal                        | Projected Physics Impact                              |
|-------------------------------|-------------------------------------------------------|
| $H  ightarrow \gamma \gamma$  | 25% improvement in statistical precision on xsecs     |
|                               | ightarrow couplings                                   |
| VBF $H \rightarrow \tau \tau$ | 20% improvement in statistical precision on xsecs     |
|                               | ightarrow couplings                                   |
| НН                            | 20% increase in signal yield/decrease in running time |
|                               | ightarrow consolidate searches                        |
| EWK SUSY                      | 40% reducible background reduction                    |
|                               | ightarrow +150 GeV mass reach                         |
| Long-Lived Particles          | Peaking Mass Reconstruction                           |
|                               | ightarrow Unique sensitivity and discovery potential  |

(from Josh Bendavid, CERN seminar, May 2018)

# Conclusion

#### Intense activity in the collaboration:

- several Technical Proposals and Technical Design Reports already accepted by LHCC
  - 2015: Phase 2 CMS TP and scope documents
  - 2017: TDRs for Tracker, Muon, Barrel Calorimeters
    - + interim TDRs for L1 triggers and DAQ
  - 2018: TDRs for Endcap calorimeters
  - end 2018: TDR for MIP Timing Detectors
- physics preparation on-going:
  - CERN yellow report by end of the year
- large construction in front of us, but tight schedule:
  - R&D and pre-production up to ~2020-2021
  - production, construction ~2021-2024
  - installation ~2024-2025
  - commissioning and HL-LHC begins 2026