

Top and dark matter

Top LHC France meeting 24/05/2018

Andreas Goudelis LPTHE - Jussieu

Outline

- \cdot The top quark and dark matter physics
- \cdot Simplified descriptions
- \cdot Phenomenology

Reminder: the DM abundance

Evolution of dark matter abundance with time

L. J. Hall *et al*, arXiv:0911.1120

Freeze-in:

(feeble DM-SM interactions)

) Negligible initial density, DM produced from decays/annihilations of other particles.

DM production disfavoured \rightarrow Freeze-in

What about the top quark?

There is no obvious connection between top and dark matter physics. However:

If dark matter couples non-gravitationally to the Standard Model, odds are it does so to top quarks. This coupling could be the dominant one.

What could the DM-SM interactions look like? Consider an interaction as:

$$\chi(Z_2$$
-odd) - $X_1(Z_2$ -odd) - $t(Z_2$ -even) - $X_2(Z_2$ -even)
 \checkmark Optional

• If $X_2 = t$, then X_1 is needed. Only realizable at an "effective" level. In the sense of "indirect" couplings

· If $X_2 \neq t$, then X_1 is needed. Only realizable at an "effective" level.

· If X_2 is absent, then X_1 must carry SM charges.

"Direct" couplings

s-channel portals

Coupling indirectly to top quark pairs: scalar Higgs-like portals

$$\mathcal{L}_{\rm DS} = \frac{1}{2} (\partial^{\mu} A) (\partial_{\mu} A) - \frac{m_A^2}{2} A^2 + \frac{1}{2} \bar{\chi} \left(i\partial - m_{\chi} \right) \chi - i \frac{y_{\chi}}{2} A \bar{\chi} \gamma_5 \chi$$

$$\mathcal{L}_{f} = -i\sum_{f_{u}} c_{u} \frac{m_{f_{u}}}{v} A \bar{f}_{u} \gamma_{5} f_{u} - i\sum_{f_{d}} c_{d} \frac{m_{f_{d}}}{v} A \bar{f}_{d} \gamma_{5} f_{d}$$

Considering pseudoscalar interactions to avoid direct detection constraints.

· MFV – type couplings \rightarrow DM dominantly interacting with top quarks.

· In a type-2 2HDM model, we'd have $c_u = \cot\beta$ and $c_d = \tan\beta$.

b-dominated scenario also possible

 \cdot The Lagrangian also induces interactions with gluons/photons at 1-loop

$$\mathcal{L}_{Agg/A\gamma\gamma} = \frac{\alpha}{4\Lambda_{\gamma}} A\tilde{F}_{\mu\nu} F^{\mu\nu} + \frac{\alpha_s}{4\Lambda_g} A\tilde{G}_{\mu\nu} G^{\mu\nu}$$

LHC DM production driven by top quark

 \cdot Vector portals tend to couple more "democratically" to the SM fermions.

Constraints on *s*-channel portals

Let's fix the couplings and vary the masses

Top-philic models - 1

Dirac fermion singlet coupled to RH top quarks through coloured/charged SU(2)-singlet scalar

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{\chi} \, \partial \chi - M_{\chi}\bar{\chi}\chi + \left(D_{\mu}\phi\right)^* \left(D^{\mu}\phi\right) - M_{\phi}^2\phi^*\phi + \left(g_{DM}\phi^*\bar{\chi}t_R + h.c.\right)$$

M. A. Gomez *et al*, arXiv:1404.1918 Flavour structure *e.g.* in M. Blanke, S. Kast, arXiv:1702.08457 Majorana variant *e.g.* in M. Garny *et al*, arXiv:1802.00814

M. Garny *et al*, arXiv:1802.00814

• Interesting cosmology, viable within freezeout/conversion-driven freeze-out/freeze-in frameworks.

· Constraints from:

- direct detection
- stop searches
- monojets
- inv. Higgs decays
- R-hadron searches
- LEP stop searches

 Mostly relevant for conversion-driven FO

Top-philic models - 2

Dirac fermion triplet coupled to LH quarks through coloured/charged SU(2)-doublet scalar

$$\mathcal{L}_{\rm int} = -\lambda_{ij}' \bar{q}_{Li}' \chi_j \Phi + h.c.$$

M. Blanke *et al*, arXiv:1711.10493

 \cdot In this scenario DM couples to all six quark flavours.

· Constraints from:

- jets + MET
- bb/tt + MET
- D/K/B meson mixing
- Direct detection
- Future: tb + MET

M. Blanke *et al*, arXiv:1711.10493

Top-philic models - 3

Scalar singlet coupled to RH top through vector-like SU(2)-singlet fermion top partner

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{T} DT - m_T\bar{T}T + \frac{1}{2}\partial_\mu S\partial^\mu S - \frac{1}{2}m_S S^2 + \left[\tilde{y}_t S \bar{T}P_R t + \text{h.c.}\right] - \frac{1}{2}\lambda S^2 \Phi^{\dagger}\Phi$$

S. Colucci *et al*, arXiv:1804.05068

- · Constraints from:
 - (mono)jets + MET
 - tt + MET
 - Indirect detection (CR's, γ 's)
 - Direct detection
 - LEP t-partner searches
 - LHC t-partner searches

 Note that in the conversiondriven/freeze-in regimes (charged)
 LLP searches become highly relevant!

Summary

The top quark can play an important role in dark matter phenomenology.
 It can enter the dominant dark matter annihilation/production channels.

... and it is perfectly possible to write down models where such effects take place.

· Top-related LHC measurements are crucial to probe *s*-channel models: tt total crosssection, searches for resonances, ttA(A \rightarrow inv).

 \cdot Top partner searches (typically involving MET) probe top-philic DM models, whereas searches like tb + MET can shed light on potentially non-trivial flavour properties of the dark sector.

 \cdot Searches for LLPs such as R-hadrons can probe the opposite, more weakly coupled regime (conversion-driven/freeze-in scenarios).