

Measurements of $t\bar{t}$ production with additional heavy-flavour jets

Tom Neep, CEA-Saclay Top LHC France, Paris 23/5/2018 Motivation

Predictions

Analysis techniques

Results

Summary & future prospects

Motivation

- We want to measure the properties of the Higgs boson- are they consistent with the SM prediction?
- How does the Higgs couple to top quarks?

- As we will hear the $H \rightarrow b\bar{b}$ decay channel is one of the channels we want to explore.
- This channel has an irreducible background $t\bar{t}b\bar{b}$.

Signal

Background

- The modelling of the tt
 t b background is the leading
 source of uncertainty in
 searches for tt
 t H (table from
 ATLAS result).
- Understanding this background is <u>crucial</u> for the *tt* search.

Uncertainty source	$\Delta \mu$	
$t\bar{t} + \ge 1b$ modelling	+0.53	-0.53
Jet flavour tagging	+0.26	-0.26
$t\bar{t}H$ modelling	+0.32	-0.20
Background model statistics	+0.25	-0.25
$t\bar{t} + \ge 1c$ modelling	+0.24	-0.23
Jet energy scale and resolution	+0.19	-0.19
$t\bar{t}$ +light modelling	+0.19	-0.18
Other background modelling	+0.18	-0.18
Jet-vertex association, pileup modelling	+0.12	-0.12
Luminosity	+0.12	-0.12
$t\bar{t}Z$ modelling	+0.06	-0.06
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05
Total systematic uncertainty	+0.90	-0.75
$t\bar{t}+ \ge 1b$ normalisation	+0.34	-0.34
$t\bar{t}+ \ge 1c$ normalisation	+0.14	-0.14
Statistical uncertainty	+0.49	-0.49
Total uncertainty	+1.02	-0.89

PRD 97, 072016

- Aside from *ttH*, many other searches would benefit from a better understanding of *ttbb*.
- *R*-parity violating SUSY models can produce a similar signal.
- Four top production is another example of a process with a sizable *ttbb* background.

Predictions

- Predicting *ttbb* is very challenging (Massive *b*-quarks, matching and merging, ...).
- Uncertainties of these predictions are not small and could benefit from data.
- Some developments in *ttbb* predictions in the last year.

SHERPA (+OPENLOOPS) $t\bar{t}b\bar{b}$

- The "oldest" of the predictions I will discuss, paper published in 2014.
- NLO *ttbb* production with massive *b*-quarks using the 4 flavour scheme.

- Cross-section uncertainties vary from 20-40% (depending on fiducial cuts)
- The effect of $g \rightarrow b\bar{b}$ splitting in the parton shower is important (MC@NLO vs. MC@NLO_{2b}).

SHERPA (+OPENLOOPS) $t\bar{t}b\bar{b}$

- The contribution of the right diagram to $t\bar{t} + 2b$ -jets is surprisingly large.
- Parton shower effects still important at NLO.

POWHEL+PYTHIA

- Last September another paper appeared with NLOPS predictions for *ttbb*.
- POWHEL provide predictions in both the 4FS and the 5FS (massless *b*-quarks).
- Results compared to 8 TeV CMS data.

POWHEG-BOX-RES

- In February this year *ttbb* was implemented in the POWHEG-BOX framework.
- The results of this implementation confirm the findings of the SHERPA paper.
- Having the processes implemented in POWHEG-BOX allows the parton shower to be switched between PYTHIA and HERWIG.

Name	Matching	Shower	Availability	Paper
Sherpa	S-MC@NLO	Sherpa	Public	 Phys. Lett. B734 (2014) 210 arXiv:1709.06915 arXiv:1802.00426
Powhel	Powheg	Pythia (in paper)	On demand	
Powheg	Powheg	Pythia/Herwig	"Soon"	
MG5_AMC@NLO	MC@NLO	Pythia8	Public	

- Several different predictions are now "available".
- So now the job of ATLAS & CMS to provide precise measurements.

Analysis techniques

General analysis outline

Measurements of $t\bar{t}b\bar{b}$ (and more generally $X + b\bar{b}$) all tend to follow a similar strategy:

Pre-selection

- Selecting a pure sample of $t\bar{t}$ events is the first step.
- This can be achieved using *b*-tagging.

Phys. Lett. B761 (2016) 136

arXiv:1701.06228 [hep-ex]

Categorisation

• After selecting *tt* events, they are further categorised based on the flavours of the selected jets.

• Eur. Phys. J. C 76 (2016) 379

• Eur. Phys. J. C76 (2016) 11

Template fit

• One can then construct templates based on these categories of some variable that distinguishes between them e.g. a *b*-tagging discriminant.

• Eur. Phys. J. C76 (2016) 11

Template fit

- A fit is then performed to data, correcting the components in MC.
- The fit results give us the number of signal events.

[•] Eur. Phys. J. C76 (2016) 11

• Phys. Lett. B 776 (2018) 355

Results

Cross-section

• Cross-sections of $t\bar{t}b\bar{b}$ are typically measured in the visible (fiducial) phase-space by correcting for detector efficiencies.

Phys. Lett. B 776 (2018) 355

Cross-section

- CMS has also included the results in the full phase-space.
- Not really any differences with respect to the visible phase-space.

Cross-section

 ATLAS doesn't have a 13 TeV measurement yet but at 8 TeV results are also consistent with the theory predictions.

• Eur. Phys. J. C76 (2016) 11

• ATLAS 8 TeV results consistent with theory.

Differential cross-sections

- Measuring differential cross-sections should allow for better discriminating power between different models of $t\bar{t}$ + HF.
- CMS has already produced some unfolded measurements at 8 TeV.
- The additional *b*-jets are identified using a BDT.

• Eur. Phys. J. C 76 (2016) 379

- $t\bar{t}$ modelling systematics are important for both ATLAS & CMS and need to be better understood (10-20%).
- *b*-tagging (> 10%) and JES (\approx 10%) are the leading detector uncertainties.
- *b*-tagging and modelling uncertainties remain large even in the ratio measurements.
- The total uncertainty on the $t\bar{t}bb$ cross-section is around 35% in both experiments.
- Starting to become competitive with the theory uncertainties of 20-40%.

Summary & future prospects

Summary & future prospects

- We need to understand $t\bar{t}$ + HF production better to help the ongoing searches for $t\bar{t}H$ and BSM physics.
- Only one Run 2 results so far from the LHC on $t\bar{t}bb$ production using only 2.3 fb⁻¹ of data.
- Many new MC predictions to be tested.
- Systematic uncertainties will be challenging (*b*-tagging, JES, modelling)...
- ... but even with the latest calculations theory uncertainties on the predictions are still reasonably large and so we can hopefully supply useful data.
- Measuring *ttcc* is another challenging and related measurement to think about going forwards!

Backup

Selecting *b*-jets (not) from top quarks with a BDT

- CMS uses a BDT to identify jets (not) from top quarks.
- Twelve variables used as input for a BDT trained on ttH events (to avoid overtraining).
- Difference in *b*-jet charges, angles between *b*-jets and leptons, properties of the *bl* combinations (mass, *p*_T), differences in mass between *bbll* system and *bb* system etc...
- Correctly selects the additional *b*-jets \approx 40% of the time in $t\bar{t}bb$ events.