

DUNE Planning, Strategy and Organization

Ed Blucher (on behalf of Mark Thomson) Journée DUNE Paris, 22nd January 2018

DUNE Organization/Planning

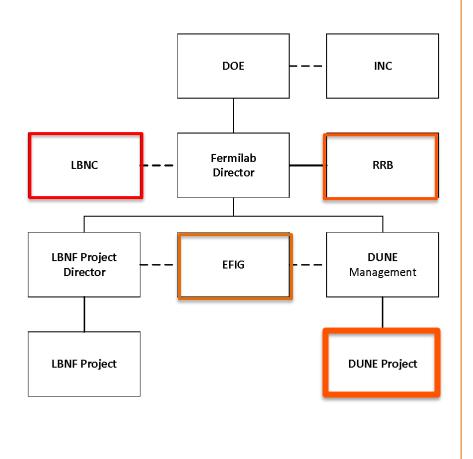
• This presentation:

- 1. DUNE as an international collaboration
- 2. Far Detector Strategy
 - Planning
 - Consortia
- 3. Technical Design Reports
 - Timeline
- 4. DUNE Organization
- 5. Near Detector Status
- 6. Summary

1. DUNE as an International Collaboration

International from day one

- US-hosted but truly international
 - a first for the US
- Model for international partnerships:
 - LBNF/DUNE developed as an international partnership
 - Governance modelled on that of the LHC:
 - Facility: LHC ↔ LBNF
 - Experiment: ATLAS/CMS ↔ DUNE
- International Funding Model:
 - LBNF and PIP-II: US-hosted projects with international contributions


(for LBNF aim: ~75% US, ~25% non US)

 DUNE: an international science collaboration (aim: ~25% US, ~75% non-US)

International Governance

 Model for international governance broadly follows that of the LHC experiments

- LBNC (c.f. LHCC)

- International project oversight
 - Technical
 - Management
- Will review/approve TDR
- RRB
 - Funding agencies
 - Agree money-matrix
- EFIG
 - Interaction with LBNF
 - Joint decisions

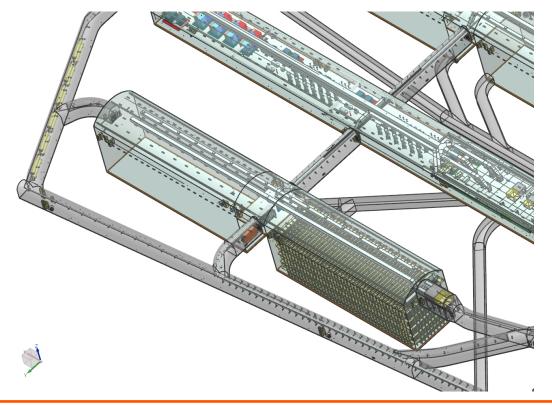
Organizational Challenges

- Large and diverse international collaboration
 - Aim to fully engage the broad spectrum of collaborators in the DUNE scientific and detector activities
- The collaboration is likely to grow significantly
 - Management structures need to be scale effectively to a collaboration of ~1500 (?) scientists, c.f. ~3000 in ATLAS or CMS

CERN prototypes (2018) & TDR (2019) are major goals

- Need to effectively utilize the collaboration resources, both financial and human resources
- Construction project in 2020s
 - Much larger scale to previous neutrino experiments

DUNE organizational structures guided by experience from LHC experiments and elsewhere



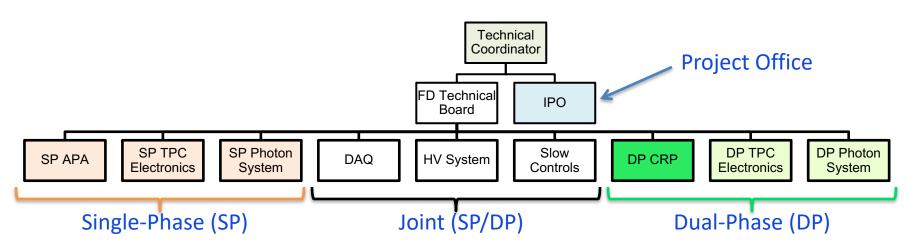
2. Far Detector Strategy

Far Detector Strategy

- Four chambers hosting four independent 10-kt FD modules
 - Flexibility for staging & evolution of LAr-TPC technology design
 - Assume four identical cryostats: 15.1 (W) x 14.0 (H) x 62 (L) m³
 - Assume the four 10-kt modules will be similar but not identical

Far Detector Strategy

- Four chambers hosting four independent 10-kt FD modules
 - Flexibility for staging & evolution of LAr-TPC technology design
 - Assume four identical cryostats: 15.1 (W) x 14.0 (H) x 62 (L) m³
 - Assume the four 10-kt modules will be similar but not identical
- DUNE is pursuing two LAr-TPC technologies
 - Single-Phase
 - Technology is mature, e.g. ICARUS, MicroBooNE
 - Dual-Phase
 - Lower TRL
 - But a number of potential advantages
 - DUNE intends to deploy both technologies
- Decisions/Staging will depend on:
 - Results from ProtoDUNEs and Money/Interests



Far Detector Consortia

- Goal:
 - Develop **funding matrix** for Far Detector TDRs by mid-2019
 - Scope for 2019:
 - (at least) **two** of the **four** 17-kton far detector modules
 - Ultimately want funding matrix for full experiment
 - Near Detector funding matrix on timescale of ND TDR (mid-2020)
 - Remaining Far Detector modules [total four]
- Strategy:
 - Build **consortia** of institutions responsible for a particular system
 - Analogous to detector-system collaborations within LHC experiments
 - Start by identifying interests within collaboration
 - Institutions identify WBS elements where they wish to take responsibility

Far Detector Consortia

Consortia operate within the DUNE collaboration

- Each consortium works within collaboration rules:
 - Elected Consortium Leader (faculty scientist or equivalent)
 - Technical Lead acts as project manager
 - Consortium Board with a representative from each institution
 - Internal Project Management Board (PMB) with representatives from each contributing national project

Details are defined in the DUNE management plan

ent Plan - v1.0

vii 17, 201

Consortium Leadership (Aug. 2017)

Single-Phase

- APA: Stefan Söldner-Rembold (Manchester)
- Photon Detection System: Ettore Segreto (Campinas)
- TPC Electronics: Dave Christian (FNAL)

Dual-Phase

- CRP: TBD (due to health issues)
- Photon Detection System: Ines Gil Botella (CIEMAT)
- TPC Electronics: Dario Autiero (IPNL)

Joint

- HV System: Francesco Pietropaolo (CERN)
- DAQ: Dave Newbold (Bristol)
- Slow Controls/Instrumentation: Sowjanya Gollapinni (Tennessee)

Interests in consortia

- Consortia are a key part of constructing money-matrix for funding of DUNE
 - Driven by scientific/technical interests within the collaboration
 - Needs to be matched to potential funding opportunities

We need 4 FD modules: working with "2 + 1 + 1 model"

- Reflects current expectations of what might be reasonable from funding perspective at time of TDR in 2019
 - 2 Single-Phase FD modules
 - 1 Dual-Phase FD module
 - 1 [As yet] Completely uncovered FD module TBD at later date
- For TDR in 2019
 - Seeking approval of (at least) two FD modules

Consortia Status

- FD Consortia are up and running since Aug. 2017
 - working very effectively
 - But not closed to new collaborators
- DUNE now has a first iteration of the Far Detector WBS
 - driven by consortia
- Institutions have expressed interest in WBS elements:
 - gives a first picture of coverage for FD construction & gaps...
 - Still plenty of opportunities for new groups
- Based on initial interests, can see a plausible route to funding on TDR timescales for
 - 2 Single-Phase FD modules
 - 1 Dual-Phase FD module

Planning for funding of DUNE

• Assumed timeline for DUNE (and LBNF) reviews

- May-2018: Technical Proposal for DUNE (+costs, responsibilities)
- Jan/Feb 2019: RRB for to provide funding status
- April 2019: LBNF and DUNE internal/external TDR reviews
- July 2019: LBNC review of TDRs
 Review of international DUNE construction project
- Sept 2019: **RRB** to confirm **funding** status for construction validation of **international** funding model
- October 2019: DOE CD-2 Review of LBNF/DUNE & "CD-3" review for far site and two far detector modules
- August 2020: DOE "CD-3" for near facilities and near detector
- In less than two years
 - Need technical designs and understanding of funding model

3. DUNE TDRs

TDR Plans

Structure

- The TDR will consist of multiple volumes. Each volume is expected to be between 150 – 200 pages, may be some exceptions
- Detector volumes (single-phase and dual-phase) divided into:
 - Overview volume
 - Sub-system volumes

Volumes

- Volume 1: Executive Summary
- Volume 2: Physics
- Volume 3: Single-Phase Far Detector: Overview
 - + sub-system volumes
- Volume 4: Dual-Phase Far Detector: Overview
 - + sub-system volumes
- CDRs: Computing and Near Detector

TDR Status and Technical Prop.

Editorial team in place and working

- Central team
- Physics
- Detectors at least one editor from each consortium

Technical proposal

- Currently working on "Technical Proposal"
- Follows structure of TDR intended as a step in developing the TDR

Technical proposal structure

- Volume 1: Executive Summary
- Volume 2: Single-Phase Far Detector: Overview
- Volume 3: Dual-Phase Far Detector: Overview
- Volume 4: Computing

Role of protoDUNEs

- Large-scale prototyping/calibration
 - Production (delivery of the detector components to CERN):
 - stress testing of the production and quality assurance processes of detector components
 - mitigate the associated risks for the far detector.
 - Installation:
 - test of the interfaces between the detector elements
 - mitigate the associated risks for the far detector.
 - Operation (cosmic-ray data):
 - **validation** of the detector designs and performance
 - Test beam (data analysis):
 - essential measurements of physics response of detector
 - not necessary for the finalization of the FD design

Role of protoDUNEs

- Large-scale prototyping/calibration
 - Production (delivery of the detector components to CERN):
 - stress testing of the production and quality assurance processes of detector components
 - mitigate the associated risks for the far detector.
 - Installation:
 - test of the interfaces between the detector elements
 - mitigate the associated risks for the far detector.
 - Operation (cosmic-ray data):
 - **validation** of the detector designs and performance
 - Test beam (data analysis):
 - essential measurements of physics response of detector
 - not necessary for the finalization of the FD design

Risk mitigation and understanding of costs for TDR

Detector validation for TDR

Physics calibration for oscillation analyses

4. DUNE Management

Organizational Challenges

- Large and diverse international collaboration
 - Aim to fully engage the broad spectrum of collaborators in the DUNE scientific and detector activities
- The collaboration is likely to grow significantly
 - Management structures need to be scale effectively to a collaboration of ~1500 (?) scientists, c.f. ~3000 in ATLAS or CMS

CERN prototypes (2018) & TDR (2019) are major goals

- Need to effectively utilize the collaboration resources, both financial and human resources
- Construction project in 2020s
 - Much larger scale to previous neutrino experiments

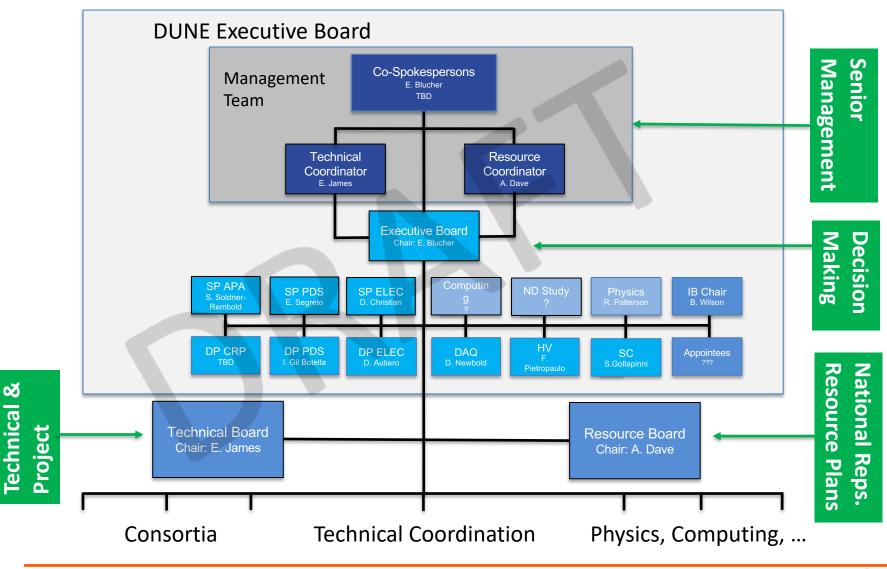
DUNE organizational structures guided by experience from LHC experiments and elsewhere

Management of DUNE

- Many moving parts...
 - ProtoDUNEs
 - Detector Consortia
 - Physics
 - National level and plans for funding
 - Technical Design Reports

Well-defined Management Structures

- Collaboration governance
- DUNE management plan
- Currently updating structures to manage TDR decisions and construction phase
 - Evolution from current arrangements
 - Aiming for greater collaboration representation in decision making



Future Management Structure

Future Management Structure

5. Status of Near Detector

5. Near Detector Status

Currently working on agreed collaboration concept

- Process to converge in May 2018
 - Conceptual design report in 2019
- Once concept is agreed will initiate process to form ND consortia
- Initial interests from: Germany, Italy, Russia, Switzerland, UK, US
- Concept study reached agreement on a number of issues, e.g.
 - Baseline aim is LAr-TPC + a magnetized Multi-Purpose Tracker
 - LAr-TPC should not be magnetized
- Identified four main outstanding questions, e.g.
 - Dipole or solenoid magnet
 - HP-TPC or straw-tube tracker
- Have agreed a process and milestones to address these questions
- STILL PLENTY OF OPPORTUNITIES FOR NEW PEOPLE

Di

6. Summary

DUNE is an International Collaboration

- Management & governance broadly follow model of LHC experiments

Clear Strategy for Far Detector

- 2 + 1 + 1 model
- Opportunities for new collaborators
- Plans for TDR are in place
 - The real work has started
- Good progress on ND Concept
 - Opportunities for new collaborators
- France is already making important contributions
 - France is in the position to be one of the leading nations in DUNE

Questions?

