Anisotropies at ultra-high energies An indication and a discovery

Jonathan Biteau | IPHC | 2018-01-26 | Page 1/36

Ultra-high energy cosmic rays

11.

Who Is Shooting Superfast Particles at the Earth?

In Which You Learn That Space Is Full of Tiny Bullets

Jonathan Biteau | IPHC | 2018-01-26 | Page 2/36

A >75yrs old mission!

LA PÉRIODE HÉROÏQUE

49

D'ailleurs, quel que soit leur mode de production, pouvons-nous assigner un lieu d'origine aux particules cosmiques ? Si certains corps célestes, certaines

régions du firmament étaient les sources de l'émission des rayons cosmigues, il serait possible de le mettre en évidence par l'étude des variations de l'intensité du ravonnement en fonction de l'heure, solaire ou sidérale. Cela montrerait une dépendance vis-à-vis des constellations et des corps célestes présents au-dessus de l'horizon et surtout près du zénith. Cette étude faite et refaite maintes fois, n'a jusqu'ici montré aucune variation marquée, à part peut-être quelques très faibles modifications diurnes et saisonnières qui peuvent être des effets secondaires dus à des changements atmosphériques. En particulier, la position du soleil, celle de la voie lactée, ne paraissent jouer aucun rôle. Nous pouvons conclure de là que ni le soleil ni des groupes d'étoiles comme la voie lactée ne sont l'origine des rayons cosmiques. Que supposer alors ? viennent-ils des nébuleuses ? des étoiles nouvelles ? des étoiles doubles ? Autant de questions auxquelles nous serons peut-être mieux en état de répondre après avoir poussé plus loin l'investigation sur la nature des rayons cosmiques et sur leurs effets dans la matière. Laissons donc de côté, pour l'instant, cette question nº 1, tout en nous promettant bien d'y revenir plus tard.

Location

West Argentina: 1,400m above sea level **3,000 km²** (Luxembourg!)

Components

Atmosphere: calorimeter for the shower of daughter particles

Telescopes: 'image' showers during dark time (~10% duty cycle)

Particle detectors: 'collect' μ /e reaching ground (~100% duty cycle)

Fluorescence Telescopes

27 fixed cameras (PMTs) in 5 buildings 4 main sites: 6 eyes/site – 30°×30° FoV

Particle Detectors

1600 water-Cherenkov tanks 3 PMTs per tank, spaced by 1,500m (+infill: 50 spaced by 750m)

Surface array - collecting daughter particles

Surface array - collecting daughter particles

Detection of an UHECR event

Trigger of a 'hot' station and its neighboring tanks \rightarrow 25ns-sampled signal from the array Array status monitored every minute \rightarrow number of active detection 'cells' \rightarrow exposure

Reconstruction of an UHECR event

Jonathan Biteau | IPHC | 2018-01-26 | Page 7/36

Event rate vs energy → **spectrum**

Energy resolution / event: <12% above 10 EeV vs <20% >0.1 TeV for γ-rays (H.E.S.S.) vs <10% >0.1 PeV for contained ν (IceCube)

Systematic on the energy scale (fluo): $\sim 14\%$

Surface array **fully efficient > 4 EeV**

Combining infill (low E), hybrid events (mid E), surface array (high E) \rightarrow **overall spectrum**

Event rate vs direction → anisotropies

Angular resolution / event: <**0.9°** >10 EeV vs <0.1° >0.1 TeV for γ-rays (HESS) vs ~15° > 0.1 PeV for cascade-like ν (IceCube)

Combining vertical (zenith angle <60°) and inclined events (60-80°) \rightarrow 85% coverage

Compo. barely addressed in this talk

Mostly probed through Xmax (fluorescence) + surface: time profiles! Pierre Auger Coll. 17

Event Map - Equatorial coordinates (R.A. / Dec)

Large-scale Anisotropy A discovery

The Pierre Auger Collaboration, Science 357 (2017) **RESEARCH ARTICLE COSMIC RAYS Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 10¹⁸ eV**

The Pierre Auger Collaboration*+

Rayleigh Analysis in Right Ascension

Equatorial coordinate system

Spherical coordinates with z along Earth's rotation axis

→ Right Ascension. ($\alpha \equiv \Phi$), Declination ($\delta \equiv \pi/2-\theta$)

Directional exposure constant in R.A.

. Sidereal day (vernal to vernal eq.): 23h 56m 4s

- . Diurnal/nocturnal variations: 24h
- \rightarrow solar / sidereal frequency: control of accuracy

α_i: R.A. of the event, w_i=array non-uniformity / tilt (N=Σw_i)→ r, φ: amplitude, phase of the 1st harmonic in R.A.

Deviation from isotropy Linsley 1975 $P(r_{\alpha}) = \exp(-Nr_{\alpha}^2/4) \rightarrow \mathbf{p}$ -value for a single tested dataset

Energy corrections

- . Air density \rightarrow lateral distribution of the electromagnetic component of the shower
- . Pressure \rightarrow longitudinal depth of observation
- \rightarrow modulations in ±1.7% in solar frequency: corrected for: only stat. fluke remain

Rayleigh analysis in Right Ascension

Jonathan Biteau | IPHC | 2018-01-26 | Page 12/36

Main assumption

Development over spherical harmonics up to 1^{st} order

- \rightarrow monopole (isotropic component) + dipole
- \rightarrow R.A. analysis provides dipole component \perp Earth's axis

Reconstruction in azimuth

Geomagnetic field break shower circular symmetry \rightarrow azimuth modulation ~0.7% corrected for in energy

Azimuthal component \rightarrow projection along Earth's axis

Provided latitude of the observatory, and the average declination (δ) and zenith (θ) of the events:

Dipole direction

$$lpha_{
m d}=arphi_{lpha}$$
 $an \delta_{
m d}=rac{d_{z}}{d_{ot}}$

Combining Right Ascension and Azimuthal

Amplitude of the dipole > 8 EeV

 $d = 6.5\% \pm 1.0\% \rightarrow max at +7\%$, min at -7% / 1 half of the sky +7% brighter than the other

Direction of the dipole > 8 EeV

Right ascension $\alpha = 100 \pm 10^{\circ}$, Declination $\delta = -24 \pm 13^{\circ}$

Jonathan Biteau | IPHC | 2018-01-26 | Page 14/36

Amplitude of the dipole

 $d = 6.5\% \pm 1.0\% \rightarrow 10 \times$ larger than from proper motion wrt large scale structures!

→ astrophysical sources with anisotropic flux distribution?

Direction of the dipole

125° ± 12° from the Galactic center \rightarrow hard to reconcile with Galactic origin, unless quite peculiar structure of the Galactic magnetic field (center = sink \rightarrow anti-center? Eichler+16)

Jonathan Biteau | IPHC | 2018-01-26 | Page 15/36

Where are other galaxies pointing to?

Dipoles in the sky

Investigated in EMAG bands: search for deviations from homogeneity (cosmological principle)

High-z: should point to CMB dipole

2MASS redshift survey

45k galaxies observed in IR

Densest sampled all-sky survey with spectroscopic redshifts

Galaxies on average at 100 Mpc, up to \sim 300 Mpc

2MRS dipole

Exclude Local Group (Andromeda, Triangulum, satellites)

Dipole in flux/number (12±1%) about 20°away from CMB Erdogdu+ 06, Gibelyou + 12

UHECR & 2MRS dipoles

Effect of Galactic magnetic field (GMF)

Deflections in GMF: a few 10° Z (E / 10 EeV)⁻¹, with $\langle Z \rangle \sim 2-5$ at ~ 10 EeV (fluorescence) Test realizations: use the GMF model of Jansson & Farrar 12 \rightarrow **good direction!**

Conclusion

First detection $>5\sigma$ of a large-scale anisotropy > 8 EeV

Direction & amplitude consistent with an extragalactic origin \rightarrow All / which galaxies???

Jonathan Biteau | IPHC | 2018-01-26 | Page 17/36

Which galaxies? An indication

The Pierre Auger Collaboration, accepted in ApJL (2018)

A multimessenger approach

Lessons learned from gamma rays

Extragalactic y-ray background

Two types of sources dominating the GeV resolved and unresolved extragalactic sky:

- Active galaxies (AGN) Radio galaxies + Blazars (BL Lacs / FSRQs)
- Star-forming galaxies, starburst galaxies

Requirement on UHECR power

Rate of energy production for UHECR > 1 EeV: ~ 10^{45} erg Mpc⁻³ yr⁻¹ Unger +15

→ both starbursts & AGN match this limit if L(UHECR) ~ 10% L(γ)

Extragalactic TeV sources

Active galaxies (mostly blazars) + 2 starburst galaxies (NGC 253 & M82)

Jonathan Biteau | IPHC | 2018-01-26 | Page 20/36

Extragalactic γ-ray Background, Di Mauro+ 15

Classical test an UHECR candidate should pass

Keep the particle confined in a region of size R with a B-field until acceleration up to E_{max} Larmor radius (E'/ZeBc) in source frame (/ Γ) < R \rightarrow E_{max} = (Z Γ ec) \times B \times R > \sim 100 EeV

Jonathan Biteau | IPHC | 2018-01-26 | Page 21/36

AGNs and SBGs in our vicinity

AGNs from the 2FHL Catalog (*Fermi*-LAT, > 50 GeV) within 250 Mpc

Ackermann+ 16

e.g. M82, close to the TA hotspot

'Starbursts' from *Fermi*-LAT search list (HCN survey) within 250 Mpc with radio flux > 0.3 Jy

Gao & Salomon 05

Assumption: UHECR flux \propto **non-thermal photon flux**

Note: inspired from Pierre Auger Collaboration 2011 but differs from most past UHECR studies: doesn't assume that sources are 'standard' candles

Effect of attenuation / composition

Three data-driven composition scenarios tested

Pierre Auger Collab. 2017

Starburst galaxies: nearby (90% of flux < 10 Mpc) \rightarrow attenuation/none: **small impact Active galaxies**: more distant (90% of flux < 100 Mpc) \rightarrow attenuation/none: **impact**!

Jonathan Biteau | IPHC | 2018-01-26 | Page 23/36

Extracting the signal

Test arrival directions of UHECR vs **density maps** \rightarrow unbinned max likelihod (à la Fermi) Note: again differs from UHECR studies based on cross correlation – 1 source \neq 1 weight

Scan over threshold energy as in past Auger works \rightarrow MC-based penalization - factor \sim O(10)

10

15

Test Statistics

20

25

 10^{-5}

Result of the scan: the starburst indication!

Jonathan Biteau | IPHC | 2018-01-26 | Page 25/36

Observations vs Expectations

2MRS catalog

Infrared (K-band) flux corrected for Galactic extinction > 1 Mpc (Local group excluded as in Erdogdu +06 Tracer of large-scale distribution of matter Bell, de Jong 2001

Swift-BAT catalog

X-ray flux (14-195 keV): radio-loud & -quiet AGN, incl. starbursts (Sy)

Model Flux Map - Swift-BAT - E > 39 EeV

What is the best match for an UHECR > 39 EeV?

Likelihood ratio test: ISO + α Starburst + β Other vs ISO + β Other

Starbursts: strongest anisotropy indication so far + preferred to other galaxies - but caution: magnetic fields!

Jonathan Biteau | IPHC | 2018-01-26 | Page 28/36

Interpretation & Beyond

Starburst galaxies - best-fit parameters

Search radius

Simulations of 3 tested composition scenarios through the Galactic magnetic field of Jansson & Farrar 12

- . 2 CNO-dominated scenarios $\rightarrow \sim 25^{\circ}$
- . 1 p-dominated scenario $\rightarrow \sim 5^{\circ}$
- → reconstructed parameters from sims bracket $\theta \sim 13^{\circ}$

Composition > 40 EeV?

Anisotropic fraction

10% of UHECR events correlating with position and flux of starbursts

Other 90%? Heavier nuclei deflected further away? Unresolved sources?

Note: Starburst contribution to local starformation rate: 5-20% (Sargent+ 12)

 \rightarrow Are starbursts the tip of the iceberg?

Jonathan Biteau | IPHC | 2018-01-26 | Page 30/36

Fluorescence data

Point to few p and Fe > 8 EeV, with a possibly significant amount of He / N Note: systematics from interaction models rather large, run out of statistics > 40 EeV

A possible signature of very nearby sources

⁴He doesn't travel far \leftrightarrow NGC 4945, M 83, NGC 253, M82 located 3-4 Mpc away! Jonathan Biteau | IPHC | 2018-01-26 | Page 31/36

Auger upgrade

Highest energies: components

- . 3.8 m² scintillators on each water-cherenkov tank . upgraded electronics + extra PMT (dynamic range)
- \rightarrow improved characterization of electromagnetic & muonic components of the shower
- $\rightarrow N_{u}(E)$ correlated to $X_{max}(E) \rightarrow$ **better compo.**

e.g. Parra +16

Lower energies: components

. Burried muon counters in infill array (AMIGA)

. Increased fluorescence uptime

Complimentary approach: full sky coverage

Telescope Array hotspot

- . Array of 700 $\rm km^2$ in Utah (ongoing upgrade x 4) \rightarrow Northern hemisphere
- . Excess of 15 evts (3.4 σ) for E_{TA} > 57 EeV in a 20° region at Dec ~ 45° ± ??

Combining Auger and TA data?

. Match of the TA hotspot with M82 excess? Combination accounting for ≠ E-scale? first efforts >10EeV: Di Matteo +17 (UHECR16)

Jonathan Biteau | IPHC | 2018-01-26 | Page 33/36

Conclusion _____

Who Is Shooting Superfast **Particles at the Earth?**

First harmonic study > 8 EeV

- . Collection of > 30.000 events
- \rightarrow 5.4 σ anisotropy

order spherical expansion

- . 6.5% dipole compatible with galaxy distrib.
- \rightarrow 1st obs. evidence of <u>extragalactic origin</u>!

Observed Excess Map - E > 39 EeV

Max-likelihood analysis > 40 EeV

- . Collection of ~ 900 events
- \rightarrow 4.0 σ starburst-based anisotropy

We still don't know the sources!

- . Starbursts only preferred to other galaxies by $\sim 3\sigma$
- . **More to come**: models (magnetic fields) current data (Auger+TA), upgrades!

Nous savons certainement beaucoup plus de chones sur le rayonnement cosmique qu'à l'époque où nous nous étions placés pour faire le premier tour d'hori zon. Mais ces connaissances sont encore bien insuf fisantes pour offrir au sujet de l'origine de ce rayon nement autre chose que des indications négatives. Ne nous en plaignons pas ; si l'on savait toul, il n'y aurait plus autant de plaisir à s'occuper d'une science qui serait devenue alors comparable à une langue morte. Nous devons nous estimer heureux d'avoir toujours devant nous de nouveaux problèmes dont l'aspect original est un des principaux stimulants de la recherche.

Appliquons joyeusement à leur solution toute la puissance de notre logique et de notre imagination : la science ne sera pas ingrate. La réalité, que nous découvrons en écartant pli par pli le voile d'Isis, se montrera toujours supérieure en beautés imprévues aux systèmes échafaudés par l'esprit humain lorsqu'il est abandonné à ses seules ressources.

LA SCIENCE VIVANTE

DIJECTION DIRIGÉE PAR RENÉ AUDUBER