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The Good Old Days

Small data volumes

Small cameras and small teams

But small computers

Simple Computers with Simple Operating Systems

Simple Slow Computers . . . but getting a factor of two faster every 18
months.

Simple Algorithms

Experts sometimes used Maximum Likelihood Estimators

Limited Choice of Language
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Small data volumes
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But small computers

Simple Computers with Simple Operating Systems

Simple Slow Computers . . . but getting a factor of two faster every 18
months.

Simple Algorithms

Experts sometimes used Maximum Likelihood Estimators

Limited Choice of Language

Fortran IV
C K&R
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The Good Old Days

Small data volumes
Small cameras and small teams

But small computers

Simple Computers with Simple Operating Systems
Simple Slow Computers . . . but getting a factor of two faster every 18
months.

Simple Algorithms
Experts sometimes used Maximum Likelihood Estimators

Limited Choice of Language
Fortran 77
C 89

Swæ clæne [lar] wæs oðfeallenu on Angelcynne ðæt swiðe feawa
wæron behionan Humbre ðe hiora ðeninga cuðen understondan on
Englisc, oððe furðum an ærendgewrit of Lædene on Englisc
areccean; ond ic wene ðætte noht monige begiondan Humbre
næren.
Ælfred se Cyning, c. 895 CE
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The Good Old Days

Small data volumes
Small cameras and small teams

But small computers

Simple Computers with Simple Operating Systems
Simple Slow Computers . . . but getting a factor of two faster every 18
months.

Simple Algorithms
Experts sometimes used Maximum Likelihood Estimators

Limited Choice of Language
Fortran 77
C 89

So general was [learning’s] decay in England that there were very
few on this side of the Humber who could understand their rituals in
English, or translate a letter from Latin into English; and I believe
that there were not many beyond the Humber.

Alfred the Great, c. 895 CE
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The Problem

I mixed up a lot of issues on that slide!

Astronomy is becoming Big Science

Ever-larger instruments

Ever-more sophisticated algorithms

Ever-larger computing facilities

Ever-more complex codes to be written, debugged, and maintained

All of these lead to specialisation, and Astronomy needs to adapt.

Let’s take a look at some of these issues.
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Instruments are becoming larger

PFUEI had one 512×512 CCD (1 amplifier)

4-Shooter had four 800×800 CCDS (4 amplifiers), and a fifth identical
CCD for a slit spectrograph

SDSS had 30 2k×2k CCDs (c. 45 amplifiers), 24 512×2k CCDs (c. 35
amplifiers), and two fibre spectrographs, each with a dichroic and two
2k×2k CCDs (8 amplifiers)

HSC has 104 2k×4k CCDs and 4 2k×4k guider/wavefront chips (432
amplifiers)

LSST has 189 4k×4k CCDs and 12 4k×4k guider/wavefront chips (3216
amplifiers)

PFS has four fibre spectrographs, each with four 2k× 4k CCDs and one
4k×4k HgCdTe detector and two dichroics (192 or c. 67 million
amplifiers) and a 12k×12k CMOS metrology camera and six 2k×2k
CMOS guide cameras and 2×2396 micromotors and 125 km of optical
fibre
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Instruments

Why do you care that instruments are becoming larger?

Because someone has to understand them in detail, and it may be you.
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Real CCDs (a Tektronix CCD; Janesick)

Corner of active area, parallel gates, serial register, and output capacitor
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Real CCDs (a Tektronix CCD; Janesick)

Serial register, reset gate, and output capacitor
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Real CCDs (a Tektronix CCD; Janesick)
2

CCD
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DD
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Figure 1: A typical set of CCD analogue electronics

0.1 CCD Readout Electronics

DN = b+ gN

0.1.1 CCD Schematic

Figure 1 shows a typical set of analogue electronics, divided into four parts:

• The on-chip readout electronics and source-follower resistor

• The near-chip pre-amplifier

• The CDS

• The ADC

The circuitry is slightly simplified; e.g. there is no overload-protection,
grounds are not provided with capacitors, switches are drawn as switches
not FETs, and the opamp power connections are not shown.

XXX: Discuss parallel and serial transfers The basic steps involved
in reading out and digitising a single pixel (after the parallel transfer has
moved a row of data onto the serial register) are

• Reset the output, discarding the charge from the previous pixel

• Measure the reset level (you might ask why this isn’t known to be 0;
see below)

Video chain
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Why does my data look like this?

LSST Raft RTM5

What’s going on?
The LSST data shows capacitive feed-through from the serial register, and it
takes a while for the voltage levels to recover after a parallel transfer
(basically an RC time).
The HSC data shows spatial variation of the CCD’s quantum efficiency
(probably the thickness of the anti-reflection coatings) with distance from
the serial register. You are also seeing spatial variation in the properties of
the filter.

You might hope that all these problems live in the realm of the electrical and
optical engineers; unfortunately, while we have brilliant colleagues, many
CCD issues end up in our data waiting for us to find.
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What’s going on?
The LSST data shows capacitive feed-through from the serial register, and it
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Why does my data look like this?

Figure 1: g-band flats, the stretch is median ±3% in the top two panels,
±7% in the bottom ones. On the left is visit 903002, a sky flat. Note the
e↵ect of varying sensitivity that Kawanomoto-san noted, and also the overall
flatness of the image.

On the right is visit 903038, a dome flat.

HSC g-band

What’s going on?
The LSST data shows capacitive feed-through from the serial register, and it
takes a while for the voltage levels to recover after a parallel transfer
(basically an RC time).
The HSC data shows spatial variation of the CCD’s quantum efficiency
(probably the thickness of the anti-reflection coatings) with distance from
the serial register. You are also seeing spatial variation in the properties of
the filter.

You might hope that all these problems live in the realm of the electrical and
optical engineers; unfortunately, while we have brilliant colleagues, many
CCD issues end up in our data waiting for us to find.
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LSST Raft RTM5 post-ISR
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Large Instruments mean Large Data

The PFUEI data rate was c. 600 B/s (900s)

The 4-Shooter data rate was c. 6 kB/s (900s)

The SDSS data rate was c. 8 MB/s (54s)

The HSC data rate is c. 7 MB/s (240s)

The LSST data rate will be c. 400 MB/s (15s)

4-shooter’s data rate was c. 10 cm/s on a 1600bpi tape (2400’; 730m)
SDSS’s data rate was c. 6 3.5" HD floppy disks/s. But we actually used DLTs

We need large disks and large computer systems
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Large Computing

Because Moore’s Law applies to detectors as well as processors, we’ve
actually been doing Big Data for 40 years.

Reducing 4-Shooter data on a
VAX-750 was a challenge.
E.g. rather than dividing by a flatfield image, it was worth computing the
inverse flatfield and multiplying. Or computing int(8192.0/flatfield),
multiplying, and >>= 13.
If we’d bought the computers when construction started on the LSST project,
it would been one of the largest machines in the (public) world.
The final LSST processing machines will have 70 kCores, 1200 TFLOPS

around 30 on the June 2014 Top-500 list

about 115 on the November 2017 Top-500 list

unremarkable by the time we buy it

We need to write efficient codes, or buy very large computer systems. Or
wait a very long time.
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Large Computing

The "large" problem doesn’t worry me too much; the rest of the world uses
more compute than we do and our hardware is fixed.

Writing efficient code might seem to be mostly a financial question; you
need to hire good programmers, but they needn’t know anything about
astronomy.
I am not convinced that this is true, even if we could compete financially
with Google and Microsoft.
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Memory

Inefficient codes may also require lots of memory

; actually, efficient codes
may too.
Most of our processing is trivially parallel so you might hope to avoid
learning MPI or openMP or CUDA or openCL.
What actually matters more is the required memory per core; the next
generation of processors are expected to have ≥ 50 cores and run at ≥ 3
GHz.
LSST is hoping that cores will be smart enough to not need GPU-style
programming, and memory large enough that our work will fit on a (smart)
node. So maybe only openMP? But beware Python’s GIL.
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Better Data → Better Science

SuperCosmos (Hambly et al. 2001) SDSS, c. 2002

On the left, scanned Palomar plates; on the right SDSS CCD data.
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Better Data → Better Analysis

Getting something as good as that SuperCOSMOS colour-colour diagram
took heroic efforts fighting photographic emulsions:

CCDs have their little ways, but most of our challenge in SDSS was
algorithmic/statistical. E.g. for stellar photometry should we use:

Fixed aperture photometry

PSF fit photometry

Galaxy-model fit photometry

Adaptive aperture (e.g. Petrosian) photometry

Once you think about even humble aperture photometry it’s quite subtle

How does the surface brightness vary across the pixel?

What do the pixel values mean anyway?

What did the flat-field do to those values?

How should I relate the measured DN to the flux of standard stars?

How about to Janskys?
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Large Data → Systematics

As statistical errors become smaller, systematic errors come to
dominate.

Only about 50% of SNLS’s variance in Ωm based on c. 200 high-z SNe Ia
is statistical. LSST will detect c. 5× 105 SNe Ia, of which maybe 20000
will be useful for cosmological analysis.
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Large Data → Systematics

Software can contribute to systematic errors.

Shhhhhh!
For example, a statistical model for an image containing a star (with known
PSF ϕ) at x is

I(x) = Aϕ(x − x0) + ϵ

where I have subtracted the background level. If the noise ϵ has known
variance σ2, and if I know the position, the (unbiased) optimal linear
estimator for the flux A is

Â =

∑
i ϕ(xi − x0)I(xi)/σ2

i∑
i ϕ(xi − x0)2/σ2

i

and this is the MLE (and attains the Cramér-Rao bound) if the noise is
Gaussian.
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Large Data → Systematics

If the star is faint, the noise is the same in every pixel (σ2
i = σ2

0) and this
reduces to

Â =

∑
i ϕ(xi − x0)I(xi)∑
i ϕ(xi − x0)2

I can in fact spurn my statistical friends and replace ϕ(xi − x0)/σ2
i with any

weight function wi of my choice:

Â =

∑
i wiI(xi)∑

i wiϕ(xi − x0)

≡C
∑
i

wiI(xi)

e.g.

wi =

{
1 |xi − x0| < R

0 otherwise

How should we choose w?
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Â =

∑
i ϕ(xi − x0)I(xi)∑
i ϕ(xi − x0)2

I can in fact spurn my statistical friends and replace ϕ(xi − x0)/σ2
i with any

weight function wi of my choice:
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Large Data → Systematics

If you want as small a statistical error as possible, wi = ϕ(xi)/σ2
i

If you want as small a total error as possible for faint sources, use
wi = ϕ(xi)

If you want as small a total error as possible for bright sources, use
wi = (r < R ? 1 : 0) where R is large enough to include most of the
photons and not too much background.

You’ll probably be dominated by
the uncertainty in C, and in all the difficulties in calibration. E.g.
whether the wind blows from the East or West changes the
wavelength-dependence of the absorption by aerosols in the
atmosphere, and thus the effective filter passband.

And if you’re using photographic plates you’re on your own

There are similar discussions to be had about galaxy photometry, but they
are harder as the uses of the fluxes are more complex (and non-linear); e.g.
as inputs to photo-z codes used to estimate weak lensing kernels.
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Better Analysis → Complex Codes

Finally something related to this school!

You can no longer rely on one person to hold the complete codebase
and bug list in their head, exploit the catalogue, and write the papers.

Astronomers have to learn the tools of software engineering
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SDSS and Hipparcos

This part of my presentation started out with a conversation with Michael
Perryman (then P.I. of GAIA) about Hipparcos and SDSS.
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Lessons I Learnt from the SDSS

Lesson 1: You need a Project Manager

Lesson 2: Don’t join under-funded projects

Lesson 3: Don’t generate an inverted management structure

Lesson 4: Learn when, what, and how to review

Lesson 5: Practice good software engineering

Lesson 5b: Don’t Write Your Main Program in C

Lesson 6: Distribute Data and Information Freely

Lesson 7: Strive to ensure that the software takes full advantage of the
hardware, even at the beginning of a project

Lesson 8: Treat neither science nor software as a democracy

Lesson 9: Avoid single points of failure

Lesson 10: Find some way to reward people working on the project

I wrote these down in 2002; what have we learned in the last 16 years?
Some of these are obvious, but were nevertheless ignored by SDSS.
Many are being ignored by XXX and YYY too.
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Disclaimer

The advice in this talk comes from a PCA analysis of my involvement in

SDSS

PanSTARRS

ACT

HSC

LSST

Euclid

PFS

WFIRST

Any resemblance to actual projects, living or dead, or actual events is largely
coincidental.

No animals were harmed in the writing of this talk.
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Disclaimer

The advice in this talk comes from a PCA analysis of my involvement in

SDSS

PanSTARRS

ACT

HSC

LSST

Euclid

PFS (Ask me about my job at http://web.astro.princeton.edu/jobs)

WFIRST

Any resemblance to actual projects, living or dead, or actual events is largely
coincidental.

No animals were harmed in the writing of this talk.
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First the good news

We’ve learned a lot about software engineering:

Douglas Adams (The Hitchhiker’s Guide to the Galaxy. 1978)
Orbiting this at a distance of roughly ninety-two million miles is an utterly
insignificant little blue green planet whose ape-descended life forms are so
amazingly primitive that they still think fortran is a pretty neat idea.
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First the good news

Some of us have learned a lot about software engineering:

C
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Actually SDSS didn’t do too badly.
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First the goodish news

Some of us have learned a lot about software engineering.

What have we
learned about software design and practice?
Quite a lot:

testing

interfaces

reusing packages

community standards

documentation tools

code review

Unfortunately our new-found wisdom sometimes makes the job of managing
software groups harder; some people love the journey more than the
destination, others are Luddites who don’t care about technical debt.
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Project Managers

Robert Lupton "Lesson 1: You need a Project Manager"
You need a strong and impartial project manager. SDSS is a collaboration of
a large number of institutions and we have never managed to take technical
decisions unimpeded by politics.

H. H. Munro (Reginald at the Theatre. 1904)
"When I was younger, boys of your age used to be nice and innocent.
"Now we are only nice. One must specialise these days"

I no longer innocently believe that all we need to do is to hire a project
manager, as they mostly come from quite another world. We do need them,
of course, but we need to choose them carefully.
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The problem[s] with project managers

Many project managers come from hardware backgrounds.

They are
comfortable writing contracts with requirements for stiffness and mass and
knowing that the sub-contractor will deliver (and that the milestones mean
something).
Strategies that I have witnessed for managing Data Management (DM):

Ignore the problem

Make the scientists responsible for DM

Treat DM as a subcontract; believe what you are told

Appoint a DM Project Manager; believe what you are told

So we have a recursive problem. How do we manage the DM Project
Manager? Or, better, how should we find managers who don’t need
managing?
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Manager? Or, better, how should we find managers who don’t need
managing?
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People

Tools don’t write programs, people do.

Some of our problems are
engineering (‘How should we handle multiprocessing?’), some are
algorithmic (‘Please write me a weak-lensing-quality deblender’), and some
are computational (‘I’ll give you 10ms per object to fit a galaxy model’), but
most are about working together, making the best use of our varied skills.

Robert Lupton "Lesson 8: Treat neither science nor software as
a democracy"
Neither Science nor Software can be run as a democracy. Not all participants
are equal, and it’s folly to pretend that they are. This is not to say that the
most senior (or smartest) individual should simply lay down the law.

A piece of good news:

Janel Garvin, Dr. Dobbs Journal (2015-10-01)
So, all told, developers are not the lonely, antisocial nerds that they are
portrayed to be, nor are they free-wheeling socialites.
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Roberts’ Paradox

Unfortunately I’m naming it not for me, but for Eric Roberts at Stanford who
in 2000 wrote a report for the US National Academy with the blessing of the
ACM. The paradox is that:

There are unemployed software engineers

There is a shortage of software engineers

The resolution is that the shortage is of the best engineers, not the median:

If the best software developer can do the work of 10, 20, or even
100 run-of-the-mill employees, a single-person company that
attracts such a superstar can compete effectively against a much
larger enterprise
[. . . ]
In some cases, software developers who fall at the low end of the
productivity curve may be essentially nonproductive or even
counterproductive
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Single point failures

Robert Lupton "Lesson 9: Avoid single points of failure"
OK, so this is totally obvious, but there are subtler aspects:

If one person is allowed to become essential it implies that it’s proved
impossible to find someone else who could fill their rôle
In consequence, if they are on the critical path, and problems arise, it’s
hard to add resources to solve the problem.

If someone with an essential job isn’t very good, then an essential
component of your system isn’t going to work very well.

My only update would be:
Hire as many people as you can who have with the ability to become single
points of failure; then try to manage the project so that they don’t.

Robert’s Corollary
Roberts’ paradox implies that we’ll almost always have single points of
failure
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The Emperor’s New Clothes

I’ve spent most of my "career", and written and re-written hundreds of
thousands of lines of code, processing imaging data.

One of the many things I worry about when giving talks like this is the
thought that actually it’s an easy problem, and that my concerns are really
just a way of making myself feel important.

Maybe the real question is, "What should we expect from our university
faculty?" Which of:

being able to do SPH calculations in your head and knowing all about
resonances in magnetised disks

and

dreaming about CRTP and inventing cunning new deblending algorithms
that enable us to characterise high-z Luminous Red Galaxies

is of intrinsically higher worth? And which is a more valuable skill to teach
our students?
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Conclusions

We build big complicated instruments

Our instruments generate big complicated data

Big data requires good algorithms and good code

Good algorithms are difficult
Good code is difficult

You have to think

thinking is difficult

I asked

Scientific Software: Art, Engineering, or Science?
and now we know the answer:

Scientific Software: Art, Engineering, and Science.
And Fun.
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