
Astronomy ESFRI & Research Infrastructure Cluster
 ASTERICS - 653477

01/06/2018 1ASTERICS-OBELICS School 2018 / Annecy

H2020-Astronomy ESFRI and Research Infrastructure Cluster
(Grant Agreement number: 653477).

2nd ASTERICS-OBELICS International
School

4-8 June 2018, Annecy, France.

A short course in PyVOA short course in PyVO
Markus Demleitner (msdemlei@ari.uni-heidelberg.de)

Hendrik Heinl (heinl@ari.uni-heidelberg.de)

Please open a browser and point it to

http://docs.g-vo.org/pyvo

Coming up (possibly): VO redux, operating simple data access

services, multi-service queries, sending results around on the

desktop, parameter discovery, TAP queries, async services,

UCDs, ObsTAP, Registry, VO for the solar system, datalink,

remote manipulation. . .

PrerequisitesPrerequisites

• python and astropy, of course

• 〈TOPCAT〉 for viewing and visualising tables

• 〈Aladin〉 to work with images

• PyVO. Get it from

• https://pypi.python.org/pypi/pyvo

• or try apt-get install python-pyvo

• or try pip install pyvo

• or try conda install pyvo

What’s the VOWhat’s the VO
The VO is a set of standards that let clients discover and

interrogate astronomical data services in a uniform manner.

Standards include:

• Registry – describing and finding services

• VOTable, UCD – writing tables with rich metadata

• SAMP – connecting software components

• SCS, SIAP, SSAP – querying catalog, image, and spectral

services

• TAP – running remote database queries

• Datalink – bundling up complex data and services

• MOC, HiPS – sky coverage and hierarchical imaging

What’s PyVO?What’s PyVO?
PyVO provides APIs for lots of VO protocols.

It’s glue between astropy and python in general and the

astronomical data services in the VO.

PyVO works for both python2 and python3. We hope the

examples here do, too.

It’s a community project. You’re welcome to contribute at

〈PyVO on github〉

Running Simple ServicesRunning Simple Services
When querying “simple” remote services (image, spectral, cone

search; not directly TAP), PyVO has a consistent pattern:

<prot> is SIA, SSA, SCS, SLA...

import pyvo

construct a service object with a service’s endpoint URL

service = pyvo.dal.<prot>Service(access_url)

#call the search method with the protocol’s parameters

for result in service.search(<parameters>):

...work on dict-like object result...

You’ll soon learn who to find out the access URLs.

Query a Single Image ServiceQuery a Single Image Service
Example: SIAP, the VO’s protocol to access image servers.

Query a VO service for a list of images covering a small field on

the sky, and download one of these images:

svc = pyvo.sia.SIAService(ACCESS_URL)

images = svc.search((11,35), (0.1, 0.1), verbosity=2)

image=iamges[0]

image.cachedataset()

[See trivial.py]

For SIAP, pos (as a tuple of ra and dec) and size (in degrees,

either one radius or extent in ra and dec) are mandatory. More

parameters: 〈in the pyvo docs〉.

This is PythonThis is Python
The advantage of doing this in Python is that it’s easy to add

your own logic:
svc = pyvo.sia.SIAService(ACCESS_URL)

for pos in [

(10, 20),

(45, 85)]:

images = svc.search(pos, (0.5, 0.5), verbosity=2)

for row in images:

if not DATE_MIN<row.dateobs<DATE_MAX:

continue

row.cachedataset()

[See multisiap.py]

Also: row.cachdataset saves the image to your local disk

under a name sensible for the metadata.

And now all-VOAnd now all-VO
The nice thing about standard services: Handle one, and you

get them all. So, let’s add a query to the Registry and run our

query all over the VO –

for svc in registry.search(servicetype="image"):

try:

search_one_service(svc.accessurl, image_sender)

except Exception:

import traceback; traceback.print_exc()

[See globalsiap.py]

Rule: In multi-service queries, expect at least one service to be

broken. Write your scripts to cope.

Add SAMP MagicAdd SAMP Magic
SAMP lets you exchange data between VO clients. Your script

is a VO client, too. Let’s make it broadcast some of the found

images:

with vohelper.SAMP_conn() as conn:

... (search) ...

vohelper.send_image_to(conn, None, image.acref)

[See globalsiapsamp.py]

(also, vohelper.py abstracts SAMP here).

Before running this, start Aladin so the images are displayed.

Custom ParametersCustom Parameters
SIAP and SSAP services can define custom parameters. Discover

them using a FORMAT=METADATA URL parameter.

Pass custom parameters as keyword arguments to search:
svc.search((107, -10), (0.1, 0.1),

dateObs="57050/58050",

bandpassId="SDSS i’")

[See siapextra.py]

Syntax trouble: Old-style VO services (parameters usually

declared as char[*] or double) write intervals with slashes.

New-style (SIAv2, datalink...) have interval xtypes and type

double[2]. Their intervals are written with a blank.

Enter TAPEnter TAP
What we’ve seen so far doesn’t scale when you’re interested in

more regions.

Also, only fairly basic constraints are supported.

TAP is far more powerful.

Sample use case: Integrate photometry from different source

catalogs, do some local work on results, try to obtain spectra

for interesting candidates.

Step 1a: Synchronous QueriesStep 1a: Synchronous Queries
Run queries via TAP:
access_url = "http://dc.g-vo.org/tap"

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(

"""SELECT raj2000, dej2000, jmag, hmag, kmag

FROM twomass.data

WHERE jmag<3""")

for row in result:

print(row["raj2000"], row["jmag"])

[See fetch3.py]

result.to table() is an astropy.table instance – here, we

take a column from it. To save it, say:

with open("result.vot") as f:

result.to_table().write(output=f, format="votable")

Step 1b: Three Queries, TOPCATStep 1b: Three Queries, TOPCAT
Separate “science” from “code” as much as possible:

QUERIES = [

("twomass", "http://dc.zah.uni-heidelberg.de/tap",

"""SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag

...

("allwise", "http://tapvizier.u-strasbg.fr/TAPVizieR/tap",

"""SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag

...

with vohelper.SAMP_conn() as conn:

topcat_id = vohelper.find_client(conn, "topcat")

for short_name, access_url, query in QUERIES:

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(query.format(**locals()), maxrec=90000)

vohelper.send_table_to(conn, topcat_id, result.table, short_name)

[See fetch2.py]

Also new: send retrieved tables directly to TOPCAT.

Step 2: Go AsyncStep 2: Go Async
When doing a lot of queries or long-running queries, run them

asynchronously and in parallel.
jobs = set()

for short_name, access_url, query in QUERIES:

job = pyvo.dal.TAPService(access_url).submit_job(

query.format(**locals()), maxrec=9000000)

job.run()

jobs.add((short_name, job))

while jobs:

time.sleep(5)

for short_name, job in list(jobs):

if job.phase not in (’QUEUED’, ’EXECUTING’):

jobs.remove((short_name, job))

vohelper.send_table_to(conn, topcat_id,

job.fetch_result().table, short_name)

job.delete()

[See fetch2 async.py]

Step 3a: UCDs build SEDsStep 3a: UCDs build SEDs
Can we build SEDs from the results of the three services?

Not simply; photometry metadata in the VO isn’t quite sufficient

for that yet. However, UCDs let us do a workaround:

UCD_TO_WL = {

"phot.mag;em.opt.u": 3.5e-7,

"phot.mag;em.opt.b": 4.5e-7,

"phot.mag;em.opt.v": 5.5e-7,

"phot.mag;em.opt.r": 6.75e-7, ...

for row in rows:

for index, col in enumerate(row):

ucd = row.columns[index].meta.get("ucd", "").lower())

if ucd.startswith("phot.mag"):

if ucd in UCD_TO_WL:

phots.append((UCD_TO_WL[ucd], col))

Step 3b: Aggregate PhotometryStep 3b: Aggregate Photometry
Construction of “clusters”

is in vohelper.py and uses

astropy’s SkyCoords and

match catalog to sky (asymmetric!).

For three catalogs, we must

perform six sky matches to get

pairs, then walk the graph to

gather the clusters.

2MASS SDSS WISE

⊕ ⊕ ⊕

⊕ ⊕ ⊕

〈2MASS-3,SDSS-132〉
〈SDSS-132,WISE-54〉
〈2MASS-29,WISE-21〉
〈WISE-21, 2MASS-3〉. . .

sky

p
airs

ca
t

Combine with “your” CodeCombine with “your” Code
This is python: Add your own logic!

Here: Let’s display the approximate SEDs and let the user

interactively select “interesting” cases.

for pos, phots in seds:

to_plot = np.array(phots)

plt.semilogx(to_plot[:,0], to_plot[:,1], ’-’)

plt.show(block=False)

selection = raw_input(

"s)elect SED, q)uit, enter for next? ")

if selection=="q":

break

if selection=="s":

selected.append(pos)

plt.cla()

return selected

Looking for SpectraLooking for Spectra
Suppose you have a couple of positions for “interesting” objects.

Can we find spectra for them?

Let’s use

ObsTAP = TAP with table ivoa.obscore

ivoa.obscore has lots of metadata on observational data

products (spectra, cubes, timeseries).

Plan:

• Search for obscore services

• Use TAP upload to search to collect spectra

• Send spectra to SPLAT

Query the RegistryQuery the Registry
Iterate over all obscore services (here: see what data collections

they house):

for svc_rec in pyvo.registry.search(datamodel="obscore"):

svc = pyvo.dal.TAPService(svc_rec.access_url)

result = svc.run_sync("SELECT DISTINCT obs_collection"

" FROM ivoa.obscore")

print("\n>>>>{}\n{}\n".format(

svc_rec.short_name,

"\n".join(

r["obs_collection"] for r in result))

Do not run this script just for fun.

Query with UploadQuery with Upload
For each ObsTAP service, we query against our object list:
if not svc.upload_methods:

return

result = vohelper.run_sync_resilient(svc,

"""SELECT TOP 2000 oc.obs_publisher_did, oc.access_url

FROM ivoa.obscore AS oc

JOIN TAP_UPLOAD.pois AS mine

ON 1=CONTAINS(

POINT(’ICRS’, oc.s_ra, oc.s_dec),

CIRCLE(’ICRS’, mine.ra, mine.dec, 0.01))

WHERE oc.dataproduct_type=’spectrum’

"""),

uploads = {"pois": pois})

Collect Spectra finishedCollect Spectra finished
The rest is almost standard SAMP fare to get the spectra

retrieved to SPLAT as they come in:
try:

target_id = vohelper.find_client(conn, "splat")

except KeyError:

sys.exit("Start Splat and try again")

...

for ds_name, access_url in specs:

try:

vohelper.send_spectrum_to(

conn, target_id, access_url, ds_name)

except vohelper.SAMPProxyError:

print(" (Failed)")

[See get spectra.py]

End of Part 1End of Part 1
We believe you now know enough to further explore PyVO and

the VO on your own.

However, we’ve prepared a couple of extra slides on special

topics. Here’s some titles – let me know after the break what

you’d like to do.

• Reacting to SAMP messages

• Solar System science with EPN-TAP

• Using datalink

• Multi-service TAP (Improvised)

• Walking a spectral grid (Improvised)

Higher SAMP MagicHigher SAMP Magic
Let’s say you’re debugging your pipeline and want to manually

inspect “weird” objects by checking what a set of other catalogs

have on them.

Plan: Write a program that other clients

• can send tables to (table.load.votable) and then

• when a table row is selected, computes a new table

• that’s then broadcast.

Pattern for listening:
conn.bind_receive_notification(

"table.highlight.row",

self.handle_selection)

Doin’ It With ClassDoin’ It With Class
Our program needs to manage quite a bit of state. At least:

• A table sent to us

• The SAMP connection
class VicinitySearcher(object):

def __init__(self, client):

self.client = client

self.cur_table = self.cur_id = None

self.client.bind_receive_call(

"table.load.votable", self.load_VOTable)

def load_VOTable(self, private_key, sender_id, msg_id, mtype,

params, extra):

self.cur_table = Table.read(params[’url’])

self.cur_id = params["table-id"]

self.client.reply(msg_id,

{"samp.status": "samp.ok", "samp.result": {}})

[See vicinitysearcher.py]

EPN-TAP 1: DiscoveryEPN-TAP 1: Discovery
EPN-TAP is a protocol for distributing solar system data;

essentially, it’s normal VO TAP plus a pre-defined table

structure; the tables are always called epn core.

Let’s try an all-VO query for data on Mars. For discovery, we

use GloTS:

glots_svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")

epn_services = glots_svc.run_sync(

"SELECT accessurl, ivo_string_agg(table_name, ’#’) as tables"

" FROM glots.services NATURAL JOIN glots.tables"

" WHERE table_name LIKE ’%epn_core’"

" GROUP BY accessurl")

EPN-TAP 2: Querying EPN-TAPEPN-TAP 2: Querying EPN-TAP
EPN-TAP services are queried like any other TAP service. Use

a table browser to see what columns are available or check 〈the

standard〉.

for svcrow in epn_services.table():

service = pyvo.dal.TAPService(svcrow["accessurl"])

for table_name in svcrow["tables"].split("#"):

print("\nQuerying {} on {}".format(

table_name, svcrow["accessurl"]))

for row in vohelper.run_sync_resilient(service,

"SELECT TOP 2 * FROM {} WHERE target_name=’Mars’".format(

table_name).table():

print(row)

[See epnquery.py]

Of course, you want to do smarter things than print a row.

Datalink: Related InfosDatalink: Related Infos
Datalink is a standard for “linking” files to datasets. Think

previews, extracted objects, etc.

After a data discovery query on a datalink-enabled service, you

can use the result’s iter datalinks method:

for dl in result.iter_datalinks():

for link in dl: # multiple links per dataset

print link

Each link has a URL, a description, and machine-readable

〈semantics〉. E.g., to load previews:

for dl in matches.iter_datalinks():

prev_url = dl.bysemantics("#preview").next()["access_url"]

im = Image.open(io.BytesIO(requests.get(prev_url).content))

...

[See datalink-previews.py]

Datalink: Remote processingDatalink: Remote processing
Datalink also lets you declare processing services. SODA is a

special set of parameters applicable to astronomical images

(CIRCLE, POLYGON, TIME, BAND,. . .).

Save a lot of time by only downloading cutouts of the object

you’re interested in:

roi = SkyCoord.from_name(’Mira’)

for rec in svc.run_sync(

"SELECT access_url, access_format FROM ivoa.obscore"

" WHERE obs_collection=’HDAP’"

"AND 1=CONTAINS(CIRCLE(’ICRS’, {}, {}, 0.05),"

"s_region)".format(roi.ra.deg, roi.dec.deg)):

processed = rec.processed(

circle=(roi.ra.deg, roi.dec.deg, 0.05))

[See datalink-soda.py]

Scaling TAP QueriesScaling TAP Queries
TBD (Take from https://blog.g-vo.org/adql-tricks-at-mpia/)

Operating Over Spectral GridsOperating Over Spectral Grids
TBD (let’s have some spectral arithmetic here – anyone in for

a nice python lib for rebinning spectra and computing RMSes?)

Splitting Up QueriesSplitting Up Queries
It usually pays to try and optimize ADQL queries (and we’ll

finally write a guide on this one of these days). But sometimes

you just need to partition queries; for instance, your result set

otherwise becomes too large, or your query really takes that

long. In the latter case, you can play with execution duration

on async jobs:
job = svc.run_async("...")

job.execution_duration=10000

This will not help you when you hit the hard match limit. In such

cases, the recommended way is to use the table’s primary key

to partition the data; usually, that should be the column with

the UCD meta.id;meta.main. For a rough partition, where

the partition sizes may be grossly different, just figure out the

maximum value of the identifier. For our light version of Gaia

Astronomy ESFRI & Research Infrastructure Cluster
 ASTERICS - 653477

Acknowledgement
• H2020-Astronomy ESFRI and

Research Infrastructure Cluster
(Grant Agreement number: 653477).

2ASTERICS-OBELICS School 2018 / Annecy01/06/2018

