Chimie du protactinium et autres actinides en solution aqueuse

Coord. C. Le Naour Division de Recherche Groupe PACS

Participants IPNO

C. Le Naour (CR, PACS) 70% *Concours 2018 (CR, PACS) 100%*X. Doligez (CR, PACS) 5%
L. Audouin (MC, PACS) 5%
J. Roques (MC, Radiochimie) 5%
C. Cannes (CR, Radiochimie) 5%
V. Sladkov (CR, Radiochimie) 20%
C. Luchini (Doctorante PACS 3^{ème} année) 100%
M. He (Doctorant PACS/Radiochimie 2^{ème} année) 20%

Collaborateurs

- J. Aupiais, B. Siberchicot (CEA-DAM)
- C. Den Auwer (Univ. Nice)
- P. Moisy, D. Guillaumont (CEA-DEN)
- C. Hennig (HZDR, ESRF)
- P.L. Solari (Soleil)
- M. Meyer (ICMUB)

Infrastructures : Bâtiment en dépression, zones surveillées et contrôlées

> Equipements : BAG, spectrométries PERALS, α , γ , spectrophomètre UV-Vis PIR nucléarisé

Stock de matière
²²⁶Ra, ²²⁷Ac, ^{241,243}Am, ²³⁹Pu, ²⁴⁹Cf, ²³¹Pa, ²⁴⁸Cm, ²³⁷Np, ²³⁵U, U_{app}, ²³²Th

Autorisation ASN
^{227,228,232}Th; ^{231,233}Pa; ^{232,233,234,235,238}U; ²³⁷Np; ^{236,239,240,242}Pu; ^{241,243}Am; ^{244,248}Cm; ^{249,252}Cf

SCR, Service Compétent en Radioprotection

Compétences en chimie des actinides et en détection au sein des groupes PACS et Radiochimie

Radioéléments

Plusieurs degrés d'oxydation ⇒ grande variété de formes chimiques

Degré d'oxydation : ex. Uranium Configuration électronique [Rn] $5f^36d^17f^2$ Degré stable +6 : configuration [Rn], $O = U^{2+} = O$

Plutonium en solution aqueuse

Réactions redox

- avec quasiment tous les ions du tableau périodique
- avec une grande variété de réactifs organiques

5 degrés d'oxydation dont 4 peuvent coexister

$$Pu^{3+} + PuO_2^{2+} \xrightarrow{\rightarrow} Pu^{4+} + PuO_2^+$$

Molécules possédant des atomes O ou/et N : interaction très forte avec les actinides

Environnement : molécules d'origine naturelle ou anthropogénique

Acides carboxyliques, hydroxycarboxyliques, polyaminocarboxyliques, hydroxamiques

Modélisation de la migration Procédé de remédiation en cas de pollution Développement de capteurs spécifiques

> Décorporation

Acides polyaminocarboxyliques DTPA

Protactinium : quel intérêt ?

Chimie

Aspect environnemental

²³¹Pa : descendant de ²³⁵U

Accumulation dans les sites miniers d'uranium

Données sur la chimie du Pa nécessaires pour modéliser sa migration

Aspect fondamental
 Configuration électronique : [Rn] 7s² 5f² 6d¹

Premier actinide dont les orbitales 5f sont impliquées dans les liaisons chimiques

Fission

Combustible à base thorium

 ^{233}Pa : intermédiaire dans la production de ^{233}U ^{232}Th (n, γ) $^{233}\text{Th} \rightarrow ^{233}\text{Pa}$ ($\beta^{\text{-}},\,27,4$ j) \rightarrow ^{233}U

²³¹Pa : produit par réaction (n,2n) sur ²³²Th

 ^{232}Th (n,2n) \rightarrow ^{231}Th ($\beta^{\text{-}},$ 25,5h) \rightarrow ^{231}Pa

Isotope ²³¹Pa : Radiotoxicité la plus élevée dans le système U/Th

Données nucléaires sur les isotopes de Pa nécessaires pour modéliser leur comportement en réacteur

Protactinium : une chimie capricieuse

difficult and unpredictable chemistry mystery and witchcraft Sill, 1966 erratic and irreproducible behavior Kirby. 1960 Myasoedov, 2008 SERRERRRR frustrating habit of disappearing in the hands of inexperienced or unwary investigators Myasoedov, 2008 puzzling and controversial chemistry Siboulet, 2008 D capricious chemical behavior Kirby, 1960 chemical exception among the series Spezia, 2011 6

Protactinium et hydrolyse

Pa(V) est hydrolysé dès pH 0 (tendance à l'hydrolyse >> Pu⁴⁺) (la première espèce hydrolysée de Np(V) apparaît à pH 10-11)

Forme non hydrolysée (PaO³⁺) existerait en milieu HClO₄ > 8M PaO³⁺ + H₂O \iff PaO(OH)²⁺ + H⁺ PaO(OH)²⁺ + H₂O \iff PaO(OH)₂⁺ + H⁺ PaO(OH)₂⁺ + 2H₂O \iff Pa(OH)₅ + H⁺ Pa(OH)₅ + H₂O \iff Pa(OH)₆⁻ + H⁺

Condensation, formation de colloïdes, polymérisation Sorption sur tout support solide (~100% sur le verre)

Un comportement non reproductible en l'absence de complexant fort

Protactinium : un élément particulier

Protactinium : approche expérimentale

Couplage avec des calculs DFT et MD

Principe : Mise en solution (HCl concentré)

Chromatographie sur colonne remplie de résine échangeuse d'anions

Résine échangeuse d'anions (anionique) :

Echangeur d'anions : matrice polymère sur laquelle sont fixés des groupements cationiques G^+ (ammonium $-NR_3^+$ et $-NR_2H^+$, phosphonium $-PR^+$)

Milieu 1 : Pa est fixé en tête de colonne sous forme de complexes anioniques

Th, Ac, Ra ne sont pas fixés

Purification de ²³³Pa

Production

Feuille de ²³²Th : ampoule en quartz scellée

Réacteur OSIRIS (CEA, Saclay) (jusqu'en décembre 2015)

300 MBq ²³³Pa

24h d'irradiation : Neutrons thermiques 232 Th(n, γ) 233 Th(β ⁻, 22min) 233 Pa(β ⁻, 27j)

Préparation de la solution mère

-Attaque de Th métallique en milieu HCl concentré pendant 2 jours -Purification sur colonne -Solution mère à ~5.10⁻⁷M en milieu HClO₄ 8M

Purification de ²³¹Pa

Stocks âgés => accumulation des descendants

²²⁷Ac ²²⁷Th ²²³Ra....

-Solubilisation délicate -Purification de ²³¹Pa vis-à-vis de des descendants -Conditionnement en milieu HCl/HF

Mise en contact de **2 phases non miscible** (organique et aqueuse) Partage de ²³³Pa entre les 2 phases caractérisé par le **coefficient de distribution D**

Compétition entre l'extraction en phase organique et la complexation en phase aqueuse Variations de la composition de la phase aqueuse ⇒**spéciation**

$$D = \frac{(C_M)_{org}}{C_M} = \frac{(\sum_{l=0} \sum_{x=0} \sum_{y=0} \sum_{s=0} [M(H_p L)_l (HA)_x H_{-y} (org)_s])_{org}}{\sum_{l=0} \sum_{x=0} \sum_{y=0} \sum_{s=0} [M(H_p L)_l (HA)_x H_{-y} (org)_s]}$$

$$D = \frac{(\sum_{l=0} \sum_{x=0} P_{l,x,N} K_{l,x,N} [H_p L]^l [HA]^x [H]^{-N})_{org}}{\sum_{l=0} \sum_{x=0} \sum_{y=0} K_{l,x,y} [H_p L]^l [HA]^x [H]^{-y}}$$

Exemple : Système Pa(V)-NTA

Variable	Information
C _{extractant}	Composition espèce extraite en phase organique
C _{NTA}	Composition des complexes en phase aqueuse
C _{H+}	Charge moyenne des espèces en phase aqueuse

Stæchiométrie maximum : 2 \Rightarrow ajustement par un polynôme d'ordre 2 dont les coefficients sont les β_n

C. Luchini et al. New Journal of Chemistry, 2018, DOI: 10.1039/C7NJ04683A

Méthode appliquée à ¹⁵²Eu (analogue Am, Cm, Cf), ⁹⁵Zr et ²²⁷Th (analogues Pu(IV))¹⁴

Etudes à l'échelle pondérable : Spectroscopie d'absorption des rayons X (²³¹Pa), calculs DFT

Echantillons difficiles à préparer

Pas de composés modèles pour l'analyse

⇒ interprétation des spectres extrêmement délicate

Collaboration étroite avec C. Den Auwer, C. Hennig, J. Roques, P.L Solari

Etudes à l'échelle pondérable : Cibles de ²³¹Pa

Méthode utilisée pour le dépôt de Th, U et Np inapplicable en raison de l'instabilité des solutions concentrées de Pa(V)

Développement d'un protocole avec des analogues stables (Nb, Ta) et en présence de traceur ²³³Pa

Stabilisation de Pa(V) par ajout de HF dans la solution d'isobutanol Formation d'un complexe anionique : incompatible avec un dépôt à la cathode (Al)

Dépôt de Nb sur Al 2µm

Acidification par HNO₃

Rendement : 40% 2 dépôts successifs

Autoradiographie des cibles Nb/²³³Pa

Ressources humaines

Permanents

1999-2006 : 2 chercheurs

2007-aujourd'hui : 1 chercheur

2005, 2009-avril 2010, avril 2011-avril 2013 : 1 T

5 doctorants et 7 stagiaires

Radiochimie : C. Jaussaud (2003), M.V. Di Giandomenico (2007), M. Mendes (2010), S. Leguay (2012) *1 M2, 1M1, 2 IUT* PACS : C. Luchini (2018) *1 M2, 1M1, 1 IUT*

Collaboration : CEA-DEN Marcoule, CEA-DAM BIII, FZD Dresde (ESRF-BM20), Univ. Nice

Ressources financières

Contrat ANDRA, ACTINET, GNR PARIS, NEEDS, AP IN2P3, Contrat prestation EDF

Production scientifique

13 articles, 14 communications orales

Thématique arrêtée fin 2012, reprise en 2014 (Groupe PACS)

Migration d'un ion sous l'effet d'un champ électrique à la vitesse V_M

Expérimentalement : t_M ⇒ Mobilité électrophorétique

 $\overline{v_{ep}} = \mu_{ep}\overline{E}$

Autres actinides – Acides polyaminocarboxyliques

EC-ICP-MS

Autres actinides – Acides polyaminocarboxyliques

Calculs DFT

Actinides trivalents - DTPA

Protonation sur des **atomes d'oxygène Cm(DTPA)**²⁻

Protonation sur des **atomes d'azote**

V. Sladkov, Radiochimie

Uranium(VI) : Etude par électrophorèse capillaire

Acide picolinique

16000	[5E-2 M
	Ĺ	2E-2 M
14000		1E-2 M
		8E-3 M
12000		5E-3 M
	·	2E-3 M
10000		1E-3 M
8000		8E-4 M
		5E-4 M
6000		2E-4 M
4000		1E-4 M
		5E-5 M
2000		1E-5 M
		5E-6 M
0		0
:	3 4 5	6
	Time, min	

Perspectives (1/2)

- > Cibles de ²³¹Pa (exp. n-TOF à partir du 26 mars 2018)
- Réhabilitation d'un laboratoire en zone contrôlée

Transfert du matériel et des sources non scellées dans d'autres BAG Décontamination des anciennes boîtes à gants avant démantèlement **Réaménagement progressif selon financement** Personnel impliqué : agent(s) du service SCR, du groupe PACS

> Hydrolyse et polymérisation du protactinium : rôle de la liaison mono-oxo

En milieu HClO₄ concentré : PaO³⁺ (espèce jamais mise en évidence) Concentration d'espèces de Pa(V) et Pa(IV) hydrolysées ou non sur silice mésoporeuse Analyse sur la ligne MARS de SOLEIL Personnel impliqué : 1 CRCN du groupe PACS (+ 1 nouvel entrant) Financement : AP IN2P3 (?), NEEDS (?), contrat prestation EDF > ANR PLUTON (Coord. M. Meyer (ICMUB), Coord. IPNO V. Sladkov) Partenaires : IRSN , TRISKEM)

1/03/2018 - 31/08/2021 500 k€ dont 158 pour l'IPNO

) SET FINANCÉ PARIS Développement de ligands spécifiques des An(IV) et des analogues (Zr, Hf, Th) Caractérisation des complexes formés (constantes de stabilité, structure) Greffage des ligands sur un polymère Fabrication et tests de capteurs passifs

Etude d'une voie alternative de production et séparation de ⁵²Mn (Défi ISOTOP2018) Production de ¹⁶⁵Er par irradiation de Ho ou Tb, développement d'un procédé de séparation, Automatisation et radiomarquage

Etude des propriétés redox d'actinides (U, Np, Pu)

Installation en boîte à gants d'un dispositif permettant de coupler techniques électrochimiques et spectroscopiques (UV, Raman) Financement Région (SESAME) ?

· PROJEC

NDED BY THE