Technical Workshop on Fuel Cycle Simulation

Functionality Isolation Test (FIT)

09/07/2018

- N. Thiollière¹, B. Mouginot²,
- X. Doligez³,
- B. Feng⁴,
- E. Davidson⁵,
- J. Whan Bae⁵,
- R. Hays⁶,

- 1 Subatech, IMTA-IN2P3/CNRS-Université, Nantes, France
- 2 University of Wisconsin-Madison, USA
- 3 IPNO, CNRS-IN2P3/Univ. Paris Sud, France
- 4 Argonne National Laboratory, U.S.A.
- 5 Oak Ridge National Laboratory, U.S.A.
- 6 Idaho National Laboratory, U.S.A.

Fuel Cycle Simulators

Since the 90's, a lot of different fuel cycle tools have been developed

- Institutions : Industrial, Engineering, Academic
- Complexity : From the simple spread sheet to the complex simulation framework
- Capabilities and Flexibility : One specific problem to any problems

Oynamic fuel cycle simulators are used for several applications :

- Part of the technical evaluation of innovative systems deployment
- Identification of drivers / parameters interactions in fuel cycle fleet physics
- Production of data for further assessments (economy, safety, non-proliferation, etc.)

Improving the confidence in fuel cycle simulators output

Uncertainty assessment / propagation

Uncertainties

G. Krivtchik PhD : Nuclear data impact
A. Somaini PhD : Systems simplifications
Scenario simplifications

Operational data
 F. Courtin PhD : Global Sensitivity Analysis

Scenario usage
Problem formulation
Problem resolution / methodology

Link between scenario and decision

Sociology : Role of scenarios

- Interviews with users
- Focus Groups with actors
- Round Table with decision maker

Comparison with experimental data

Reactor Data

- Possible to validate PWR UOx models
- Complex to assess PWR MOx models
- No available data for innovating reactors

Fleet Data

Complex history with lack on input dataLack of output data

Code testing / comparison

Code comparison

- NEA benchmarks (2012)
- MIT Benchmark (2009)
- IAEA/INPRO Programme (2013)

Code testing methodsUnit tests

<u>Functionalities impact</u>
<u>FIT Project</u>

Nicolas Thiollière.

3rd Fuel Cycle Workshop. July 2018, Paris.

FIT (Functionality Isolation Test) Project description

SCIENTIFIC QUESTION

REQUIRED FEATURES

The FIT effort is another brick in the wall of fuel cycle output confidence:

- Focus on one single fuel cycle simulator functionality
- Based on <u>KISS</u> (Keep It Simple Scientist!) principle
- Recipe
- Continuous reprocessing
- No decay
- Agent based reactors
- A single composition
- Average load factor
- Constant fuel worth

- VERSUS DUpdate fuel composition
 - Reprocessing when needed
 - Isotopic decay
 - Fleet based reactors
 - Exact start-up composition
 - Load following
 - Physics of mixed core

Testing Update fuel composition VS recipe

Parameters	SFR	PWR
Power	$2500 \; \text{MW}_{\text{th}}$	$3000 \; \text{MW}_{\text{th}}$
Capacity factor	0.9	0.9
Cycle length	1.264 y	1 y
Number of batch	5	3
Fuel residence time	6.32 y	3 y
Core HM mass	51953.4 kg	72000 kg
Annual HM loading	8218.1 kg	24000 kg

- 4 different compositions
 - Reference is tuned to get FLM = FF
 - Three test compositions

Weight %	Reference	Compo 1	Compo 2	Compo 3
Pu-238	1.98	3.12	2.87	4
Pu-239	62.25	51.59	46.99	38.53
Pu-240	22.50	24.32	33.91	24.56
Pu-241	8.00	11.75	4.54	15.9
Pu-242	5.00	8.04	10.92	12.78
Am-241	0.27	1.18	0.77	4.23

Results For The Reactor Loading

FLM Results - PWR					● FLM	FLM Results - SFR					
CLASS - Neural Network					CLASS - Neural Network						
Frac Pu	7	8.7	15.3	12	Frac Pu	16	14.5	18.1	14.7		
Kthreshold	1.03	1.03	1.03	1.03	Kthreshold	1.03	1.03	1.03	1.03		
CYCLUS - Pu equivalent						CYCLUS - Pu equivalent					
Frac Pu	7	7.9	10.9	9.4	Frac Pu	16	15.6	22.6	16.4		

FF impact on K _{threshold}				FF impact on K _{threshold}					
CLASS - Neural Network					CLASS - Neural Network				
Frac Pu	7	7	7	7	Frac Pu	16	16	16	16
Kthreshold	1.03	1.005	0.959	0.97	Kthreshold	1.032	1.09	0.96	1.08

What is the impact of reactor deviation on a fuel cycle calculation?

- One Reactor for 100 years operation
- No decay in the stock 1: Same Fuel @ BOC

Results for PWR - MOx Compo 3 / CLASS

- The deviation between Total Plutonium FF and FLM is acceptable
 - Burn-up are similar so Pu balance are comparable
- The deviation between Stock 2 Plutonium FF and FLM is important
 - Pu fraction at B.O.C. are very different

Results for PWR - MOx Compo 3 / CLASS

- Example of questions strongly impacted by the fuel loading method
 - We suppose we need 100 tons of Pu to start a new technology.
 - When will the deployment be possible?
 - Fixed Fraction answer : 90 years VS Fuel Loading Model answer : 50 years.

Results for SFR - MOx Compo 2 / CYCLUS

- The deviation between Total Plutonium FF and FLM is strong
 - SFR is sur-generator or burner
- The deviation between Stock 2 Plutonium FF and FLM is smaller / PWR
 - Impact for deployment strategy is smaller

Conclusions and Perspectives

FIT Project has started since 2 years as a collaboration France - US

- 2016 : Madison University and CNRS
- 2018 : ANL, ORNL and INL integration
- Lack of time for results integration
- FIT Project is opened to any fuel cycle simulation tool
 - Increase range of functionalities
 - Small investment, around 2 weeks per year
- 2018 2019 : Closing the first functionality tests
 - Run with all fuel cycle simulators involved
 - Formulation of conclusions for range of application of Fuel Loading Model
- Later : Test other functionalities
- Later : Build a dedicated framework for results presentation

Conclusions and Perspectives

BACKUP

Nicolas Thiollière.

3rd Fuel Cycle Workshop. July 2018, Paris.

Results from ORNL / ORION

PWR Model used in ORION

- One reference composition for cross sections librairies
- Burnup-dependent cross section from SCALE code
- Westinghouse 17 by 17 LOPAR fuel assembly
- 27 burnup steps

wt%	\mathbf{ref}	% diff	1	% diff	2	% diff	3	% diff
U234	0.002	-4.07	0.002	33.1	0.003	-4.35	0.005	-4.89
U235	0.117	0.0650	0.108	5.81	0.099	6.33	0.099	8.98
U236	0.023	-1.03	0.024	-2.50	0.026	-6.29	0.026	-6.32
U238	90.5	-0.400	89.8	0.193	89.8	0.051	89.8	0.076
NP237	0.016	-inf	0.015	-inf	0.019	-inf	0.019	-inf
PU236	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PU238	0.120	3.99	0.205	0.875	0.170	1.29	0.320	3.19
PU239	2.25	-0.55	2.17	-10.7	1.83	-5.43	1.76	-5.97
PU240	1.62	-6.97	1.45	0.622	1.63	5.60	1.35	-3.31
PU241	0.862	4.37	0.910	1.68	0.953	-1.49	0.863	4.15
PU242	0.436	5.00	0.549	19.6	0.700	12.7	0.814	21.3
AM241	0.059	5.98	0.078	2.16	0.0690	-8.99	0.116	-0.510
Am+Pu	5.48	-3.19	5.59	-4.95	5.61	-2.83	5.52	-3.21

Table 5: Discharge fuel composition for MOX LWR with percent differences from Cyclus results

Change in plutonium stream quality does affect the ORION output depletion
 Important deviation could be observed between ORION and Cyclus

FIT case #1 : SFR

FIT case #2 : PWR

3rd Fuel Cycle Workshop. July 2018, Paris.

Nicolas Thiollière.