Molten Salt Reactor Modeling and Simulation

Ben Betzler **Eva Davidson** Jeff Powers

July 11, 2018

ORNL is managed by UT-Battelle for the US Department of Energy

Presentation Outline

Understanding challenges with simulation molten salt reactors

- Introduction and background
- Reactor physics analysis challenges
 - Neutronics
 - Depletion
- Impacts on fuel cycle analysis
- Example cases
- Summary and future work

Liquid-Fueled Molten Salt Reactors Core designs using molten fuel salt

- Fast spectrum molten salt reactor (MSR) cores are usually large volumes of salt
- Thermal spectrum cores incorporate fixed moderator material
- Multiple fuel stream designs include
 - Different salt compositions
 - Fissile and fertile salt compositions
- Multiple spectrum zones include
 - Different fuel-to-moderator ratios
 - Driver and blanket zones for breeding

Liquid-Fueled Molten Salt Reactors Methods have built-in assumptions for solid fuel reactors

- Solid fuel reactor characteristics lead to assumptions that
 - Fission products and actinides remain with the fuel until reprocessing (if applicable)
 - Excess reactivity control occurs with soluble boron/burnable absorbers

- Liquid fuel reactor characteristics
 - Fuel flows with carrier material (delayed neutron precursor drift)
 - Includes continuous and batch chemical processing and fueling

Reactor Physics Analysis Challenges in neutronic modeling and simulation

- Delayed neutron precursor drift occurs in flowing fuel
 - Delayed neutron precursors are radioactive fission products that release neutrons upon decaying
 - In solid fuel systems, the movement of these delayed neutron precursors is negligible
 - In liquid fuel systems, the precursors move away from their birth location and may decay outside the core, changing the neutron source distribution within the core
- Fission source calculated by standard lattice physics codes is biased
 - Prompt neutrons and some delayed neutrons are emitted in the liquid fuel while it is still inside the core
 - Some delayed neutrons are emitted after the liquid fuel leaves the core (coolant loop, chemical processing, etc.)
 - Effect on k eigenvalue is on the order of a few hundred pcm

Reactor Physics Analysis Effect of precursor drift on transport equations

 Additional term in the neutron transport and precursor equations accounts for the precursor movement

$$\frac{1}{v}\frac{\partial\psi}{\partial t} + \hat{\mathbf{\Omega}}\cdot\nabla\psi + \Sigma\psi(\mathbf{r}, E, \hat{\mathbf{\Omega}}, t) = \iint \Sigma_{s}(E', \hat{\mathbf{\Omega}}' \to E, \hat{\mathbf{\Omega}})\psi'dE'd\mathbf{\Omega}' + \\ + \sum_{j}^{J}\frac{\chi_{j}}{4\pi}\lambda_{j}C_{j} + \iint \frac{\chi_{p}}{4\pi}(1-\beta)\bar{\nu}\Sigma_{f}\psi'dE'd\mathbf{\Omega}' + \frac{S}{4\pi}$$

$$\frac{\partial C_j}{\partial t} + \nabla \cdot \mathbf{u} C_j(\mathbf{r}, t) + \lambda_j C_j = \iint \beta_j \bar{\nu} \Sigma_f \psi' dE' d\mathbf{\Omega}', \text{ for } j = 1, \dots, J,$$

- Often, delayed and prompt fission is effectively lumped
- Effect on fuel cycle simulations is negligible

Reactor Physics Analysis Challenges in depletion modeling and simulation

- Depletion with continuous and batch feeds and removals
 - Continuous processes in liquid fuel systems remove fission gases and potentially other elements during operation
 - In addition to continuous processes, material may be added to and removed from the liquid in batches at specific times
- Point depletion equation describing the rate of change of nuclide *i*

$$\frac{dN_{i}}{dt} = \sum_{j=1}^{m} l_{ij} \lambda_{j} N_{j} + \overline{\Phi} \sum_{k=1}^{m} f_{ik} \sigma_{k} N_{k} - (\lambda_{i} + \overline{\Phi} \sigma_{i} + f_{i}) N_{i}$$
Decay rate
of nuclide *j*
into nuclide *i*

$$Production rateof nuclide ifrom irradiation$$
Loss rate of nuclide *i* due
to decay, irradiation, or
other means

Reactor Physics Analysis Two mixture problem example

- Mixture 1 is irradiated ²³³U and ²³²Th; mixtures 2 and 3 are initially empty
 - Analytic solutions for material quantities exist
 - Simulates removal of protactinium in a Th-fueled MSR

Reactor Physics Analysis

Approaches for molten salt reactor modeling and simulation

- Historically, many conceptual designs used a neutron balance table to demonstrate the neutron behavior at equilibrium
- Simulating the changing isotopic composition of the irradiated fuel salt
 - Modeling removal as a continuous process
 - Approximating continuous removal as a semi-continuous process via batching
 - Continuous process model with tracking of waste and alternate irradiated materials
- Calculating the out-of-core delayed neutron source
 - Zero-dimensional model
 - One-dimensional model
 - Multi-dimensional model with or without coupled TH calculations

Reactor Physics Analysis Integrates more tightly with fuel cycle analysis

 Reactor physics performance of a molten salt reactor is not well understood without simulating material additions and removals

National Laboratory

Molten Salt Reactor Modeling and Simulation Tools ChemTriton material tracking script

- Object-oriented Python script: material stream as object
- Tracks characteristics of each stream
 - Volume, isotopic composition, and mass, etc.
- Available actions for each stream
 - Read and write stream isotopic information in SCALE standard composition format
 - Separate out specific isotopes from stream
 - Feed in specific isotopes to stream
 - Combine and split streams
 - Run SCALE using an external input template file(s)
- Variable feed/removal rate and multi-zone capabilities

B. R. Betzler, J. J. Powers, and A. Worrall, "Molten Salt Reactor and Fuel Cycle Modeling and Simulation with SCALE," Annals of Nuclear Energy, 101, pp. 489–503 (2017).

Thermal Spectrum Reactor Performance Effect of different material removal rates

- Some elements have strong effect on reactivity and reactor operation
 - Cycle times depend on the processing technology
 - Defined as the time it takes to completely remove a given element
 - Continuous removal of highly absorptive elements has largest impact

Removals	Core lifetime	
	time [y]	additional [+%]
None	2.73	-
Volatile gases	2.93	7.5
Noble metals	2.92	7.1
Seminoble metals	2.74	0.3
Volatile fluorides	2.74	0.4
Rare earth elements	3.12	14.4
Discard	2.73	0.2
Gases and noble metals	3.14	15.1
Gases, noble metals, and rare		
earth elements	3.63	32.9

Effect of processing group removals on core lifetime for a thermal MSR.

- no removal O
- volatile gases & noble metals × rare earth elements ◊
- volatile gases, noble metals, & rare earth elements

Calculated k-infinity of a unit cell with different removal groupings.

Processing Group	Elements	Cycle time
Volatile gases	Xe, Kr	20 s
Noble metals	Se, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sb, Te	20 s
Seminoble metals	Zr, Cd, In, Sn	200 d
Volatile fluorides	Br, I	60 d
Rare earth elements	Y, La, Ce, Pr, Nd, Pm, Sm, Gd	50 d
	Eu	500 d
Discard	Rb, Sr, Cs, Ba	3435 d

CAK RIDGE

12 MSR Modeling and Simulation

DOE-NE Fuel Cycle Evaluation and Screening Study Evaluation groups selected for assessment of MSR impact

• EG23: Continuous recycle of U/Pu with new natural-U fuel in fast critical reactors

DOE-NE Fuel Cycle Evaluation and Screening Study *Evaluation groups selected for assessment of MSR impact*

- Unit cell models of the molten chloride fast breeder reactor (MCFBR)
 - Simulation of approach to equilibrium
 - Zone power ratios taken from literature

Paramotor	Valuo
Farameter	Value
Power	2000 MWt (800 MWe)
Fuel salt composition	PuCl ₃ -NaCl
Coolant salt composition	UCI ₃ -NaCI
Fuel salt temperature	1260 K
Coolant temperature	1066 K
Fuel salt volume	3.37 m ³
Coolant salt volume in tubes	4.85 m ³
Coolant salt volume in blanket	41.1 m ³
Coolant tube pitch	1.38 cm
Coolant tube outer diameter	1.26 cm
Core total volume fraction	16.7% (8.23 m ³)
Blanket total volume fraction	83.3% (41.1 m ³)

National Laboratory

Summary and Future Work Improving molten salt reactor analysis tools

- Two main challenges with modeling MSRs are due to delayed neutron precursor drift and continuous processing of the liquid fuel
- Motivated by growing interest in MSRs and analysis needs, tools were developed to perform fuel cycle analysis of MSRs
- Capabilities of these tools are being improved
 - Delayed neutron precursor drift model
 - Continuous processing capabilities
 - User interface to interact with these tools

Questions

