#### MODELING A FAST MOLTEN SALT REACTOR WITH ORION

**Eva Davidson, ORNL, USA** Benjamin Betzler, ORNL, USA Robert Gregg, NNNL, UK Andrew Worrall, ORNL, USA

July 9-11, 2018 3<sup>rd</sup> Fuel Cycle Workshop Paris, France

ORNL is managed by UT-Battelle for the US Department of Energy



# Introduction

- Molten salt reactors (MSRs) are being pursued by private companies as a viable technology that can enable a low-carbon future
- Companies have invested heavily in the design of different MSRs leading to a response from the US Department of Energy (DOE) to provide assistance in research and development
  - Gateway for Accelerated Innovation in Nuclear (GAIN) initiative
  - Established the DOE Office of Nuclear Energy MSR Campaign
- This talk will focus on analyzing a single MSR in ORION to understand the current capability of modeling MSRs with this tool and to identify any deficiencies in modeling MSRs accurately



# **Modeling MSRs**

- An MSR was set up in ORION
- Simulation took advantage of inline ORIGEN depletion capabilities in ORION using an ORIGEN arplib file generated from a reactor physics simulation of a fast MSR
  - Ensures the fission yield and decay data comes from ENDF/B-VII
- Isotopic content of the salt evolves over time
- MSR design analyzed in this work reaches end of life after 20 years of operation and reaches equilibrium on approach to 20 years
- Certain MSR designs never reach equilibrium and continuously evolve over the entire life of the reactor
- Several assumptions had to be made to the input parameters in ORION due to the lack of current capability to account for certain behavior



# **MSR Reactor Physics Model**

- Based on a modified design of molten chloride fast breeder reactor utilizing a uranium/plutonium fuel cycle
- Two-stream system
  - First stream circulates within the core; PuCl<sub>3</sub>-NaCl fuel salt located at the center of the cylindrical reactor
  - Second stream is UCI<sub>3</sub>-NaCI coolant salt located in the annular blanket surrounding the core region
  - The FSMSR analyzed here is a single-fluid design that combines these two salts (similar to expected modern chloride MSR designs)



# **MSR Reactor Physics Model**

- Python script called ChemTriton used to model operation of FSMSR
  - Models salt treatment, separations, discards and fueling using single- or multi-zone unit cell models
  - Iteratively runs SCALE/Triton over small time steps to deplete the fuel salt and collects mass flow information at the end of the simulation
- Simulations for FSMSR used a single representative zone 2D unit cell model
- No structural components were represented in these models to simplify analysis
- Analysis uses 3-day depletion time steps
- Salt treatment and processing cycle times are set to 3 days for all fission products in order to remove them at each time step
- Continuous plutonium removal for the coolant salt



#### Cycle times for removals in salt treatment and separations

| Processing Type | Processing Group    | Elements                                  | Cycle<br>Time | Removal<br>Fraction |
|-----------------|---------------------|-------------------------------------------|---------------|---------------------|
| Salt treatment  | Volatile gases      | Xe, Kr                                    | 20 s          | 1                   |
|                 | Noble metals        | Se, Nb, Mo, Tc, Ru,<br>Rh, Pd, Ag, Sb, Te | 20 s          | 1                   |
|                 | Seminoble metals    | Zr, Cd, In, Sn                            | 3 d           | 1                   |
|                 | Volatile fluorides  | Br, I                                     | 3 d           | 1                   |
| Salt processing | Rare Earth elements | Y, La, Ce, Pr, Nd, Pm,<br>Sm, Gd          | 3 d           | 1                   |
|                 |                     | Eu                                        | 3 d           | 1                   |
|                 | Discard             | Rb, Sr, Cs, Ba                            | 3 d           | 1                   |
|                 | Plutonium           | Pu                                        | 2875 d        | 0.00104             |



# **ORION Input Parameters**

| INPUT PARAMETER        | PARAMETER VALUES |  |
|------------------------|------------------|--|
| Heavy metal load (MT)  | 26.11            |  |
| Thermal power (MWth)   | 2050             |  |
| Thermal efficiency (%) | 50               |  |
| Electrical power (MWe) | 1025             |  |
| Load Factor (%)        | 100              |  |
| Core life (years)      | 20               |  |
| Time step (yr)         | 1                |  |
| %Pu/HM at startup      | 10.298           |  |
| Fuel density (g/cm³)   | 2.11458          |  |
| Power density (W/gHM)  | 77.1538          |  |
| Pu removal fraction    | 1.270430E-01     |  |
| Pu recycled fraction   | 8.729570E-01     |  |



### Single MSR Model at Equilibrium





### **Total Heavy Metal Loading**





### %Pu in Fuel





#### **Pu Removal Rate**





11 Modeling A Fast MSR With ORION

# **Top-Off Feed In Each Step**





# <sup>239</sup>Pu Loading





# **Zirconium Removal Rate**



14 Modeling A Fast MSR With ORION



### **Cerium Removal Rate (Rare Earth Element)**





### **Ruthenium Removal Rate (Noble Metal)**





16 Modeling A Fast MSR With ORION

# **Cesium Removal Rate**



17 Modeling A Fast MSR With ORION



# **Iodine Removal Rate (Volatile Fluoride)**





# **Xenon Removal Rate**







- Stable isotope
- Directly correlated to the fission rate in a system
- Suggests that stable nuclides can be simulated with better agreement with the reactor physics models



~5% difference from RP data



- Half-life is 30 years
- Confirms theory that fission product generation of longer-lived isotopes can be easily compared between reactor physics and fuel cycle models



~3% difference from RP data





- Results from the single ORION MSR model agree well with the reactor physics model
- It is harder to make comparisons between the two models for shortlived nuclides due to differences in depletion time steps taken in the two models
- There are some differences as a result of larger timesteps taken in the ORION MSR model
  - However, there is good agreement in the results from the discharged fuel and the reactor physics data
- Future work will focus on performing transition analyses with MSRs



# **Backup Slide**

