IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

# Multi-zone fuel irradiation model for ASTRID-like SFR with the CLASS code

Faire avancer la sûreté nucléaire

3<sup>rd</sup> Technical Workshop on Fuel Cycle Simulation

July 9<sup>th</sup> - 11<sup>th</sup> 2018, Paris, France

Neutronics and Criticality Safety Department

09/07/2018

Léa Tillard, Ph.D. Student <u>lea.tillard@irsn.fr</u> Dr. Jean-Baptiste Clavel Dr. Eric Dumonteil

© IRSN



**Context & Objectives of the study** 

**Multi-zone Fuel Irradiation Model** 

**Multi-zone cross-sections Predictor** 

Impact of using a Power Predictor or a Flux Predictor on fuel composition estimation

**Conclusion & Perspectives** 

Léa Tillard - Multi-zone fuel irradiation model for ASTRID-like SFR with the CLASS code 9/07/2018 -  $\ensuremath{\mathbb O}$  IRSN

1/12

- Uncertain placement of nuclear power in the future french energy mix
  - Energy Transition Act, political & scientific discussions
- Uncertain strategy of reactor fleet renewal
  - Extension of the PWR fleet
  - Deployment of new SFR-CFV (low void effect) (Reference Strategy, CEA Report, 2015)
- Uncertain Pu status: waste or valuable fuel for a future SFR fleet
  - One waiting strategy: stabilization of Pu inventory in cycle thanks to Pu multi-recycling
    - PWR (e.g. with MOXEUS fuel<sup>1</sup>, ...)
    - ASTRID-like reactors: breeder, isogenerator, burner

- Uncertain placement of nuclear power in the future french energy mix
  - Energy Transition Act, political & scientific discussions
- Uncertain strategy of reactor fleet renewal
  - Extension of the PWR fleet
  - Deployment of new SFR-CFV (low void effect) (Reference Strategy, CEA Report, 2015)
- Uncertain Pu status: waste or valuable fuel for a future SFR fleet
  - One waiting strategy: stabilization of Pu inventory in cycle thanks to Pu multi-recycling
    - PWR (e.g. with MOXEUS fuel<sup>1</sup>, ...)
    - ASTRID-like reactors: breeder, isogenerator, burner

- Uncertain placement of nuclear power in the future french energy mix
  - Energy Transition Act, political & scientific discussions
- Uncertain strategy of reactor fleet renewal
  - Extension of the PWR fleet
  - Deployment of new SFR-CFV (low void effect) (Reference Strategy, CEA Report, 2015)

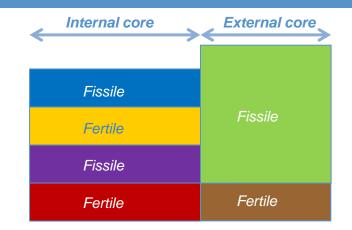
#### • Uncertain Pu status: waste or valuable fuel for a future SFR fleet

- One waiting strategy: stabilization of Pu inventory in cycle thanks to Pu multi-recycling
  - PWR (e.g. with MOXEUS fuel<sup>1</sup>, ...)
  - ASTRID-like reactors: breeder, isogenerator, burner

1. Study of plutonium incineration in PWR loaded with MOX on enriched uranium support with the fuel cycle simulator CLASS by Fanny COURTIN (Ph.D. Thesis)

- Uncertain placement of nuclear power in the future french energy mix
  - Energy Transition Act, political & scientific discussions
- Uncertain strategy of reactor fleet renewal
  - Extension of the PWR fleet
  - Deployment of new SFR-CFV (low void effect) (Reference Strategy, CEA Report, 2015)

#### • Uncertain Pu status: waste or valuable fuel for a future SFR fleet


- One waiting strategy: stabilization of Pu inventory in cycle thanks to Pu multi-recycling
  - PWR (e.g. with MOXEUS fuel<sup>1</sup>, ...)
  - ASTRID-like reactors: breeder, isogenerator, burner

#### **7** Possibilities for Pu in cycle dynamic management with SFR-CFV?

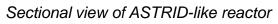
1. Study of plutonium incineration in PWR loaded with MOX on enriched uranium support with the fuel cycle simulator CLASS by Fanny COURTIN (Ph.D. Thesis)

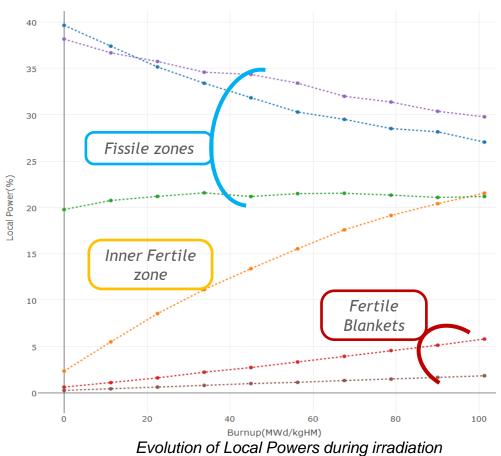
## **Objectives**

- Pu isogenerator ASTRID-like SFR-CFV heterogeneous core design (shape, fissile & fertile fuel zones)
- For one Cycle time & one fresh fuel composition: each zone as a really different behavior
  - E.g. at EOC: the inner fertile zone acts like an inner fissile zone



Sectional view of ASTRID-like reactor



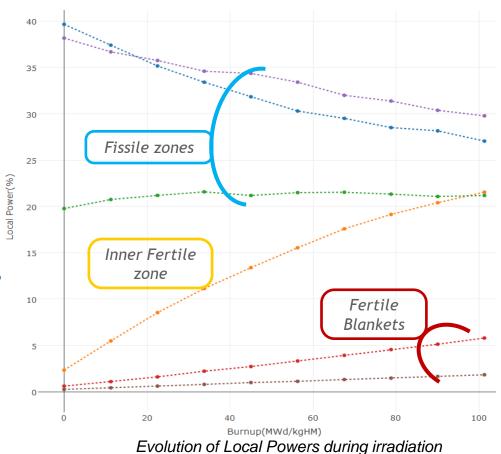


IRSI

## **Objectives**

- Pu isogenerator ASTRID-like SFR-CFV heterogeneous core design (shape, fissile & fertile fuel zones)
- For one Cycle time & one fresh fuel composition: each zone as a really different behavior
  - E.g. at EOC: the inner fertile zone acts like an inner fissile zone








## **Objectives**

- Pu isogenerator ASTRID-like SFR-CFV heterogeneous core design (shape, fissile & fertile fuel zones)
- For one Cycle time & one fresh fuel composition: each zone as a really different behavior
  - E.g. at EOC: the inner fertile zone acts like an inner fissile zone
- How to maintain the reactor heterogeneity during the fuel irradiation while keeping interactions between the fuel zones?



Sectional view of ASTRID-like reactor



#### Multi-zone Fuel Irradiation Model

- Cycle time, initial fuel composition of each evolutive zone
  → input data
- Bateman equations resolution for each zone

$$\frac{dN_i}{dt} = -(\lambda_i + \sigma_i \varphi)N_i + \sum_{j \neq i} (\lambda_{j \to i} + \sigma_{j \to i} \varphi)N_j \qquad i \text{ Isotope} \\ \underbrace{Loss}_{k \text{ zone}} Production \qquad k \text{ zone}$$

- $\circ$  Decay constants ( $\lambda$ )
- Local cross-sections ( $\sigma$ ) calculations  $\rightarrow a XS Model$
- Local flux ( $\varphi$ ): from a specific power calculation  $\rightarrow a$  Power Model

• With 
$$P_{tot} = \sum_{k} P_k(t)$$
  $\varphi_k(t) = \sum_{i} \frac{P_k(t)}{\varepsilon_i^{fis} \times \sigma_{i,k}^{fis}(t) \times N_{i,k}(t)}$ 

## Multi-zone Fuel Irradiation Model

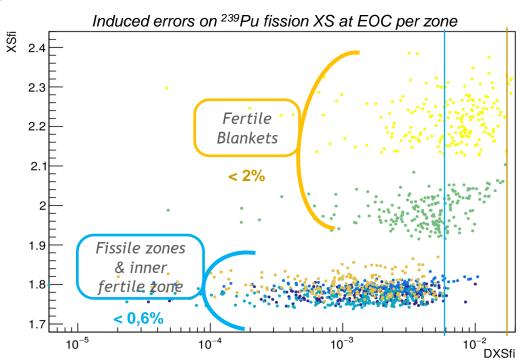
- Cycle time, initial fuel composition of each evolutive zone
  → input data
- Bateman equations resolution for each zone

$$\frac{dN_i}{dt} = -(\lambda_i + \sigma_i \varphi)N_i + \sum_{j \neq i} (\lambda_{j \to i} + \sigma_{j \to i} \varphi)N_j \qquad i \text{ Isotope} \\j \text{ Parent Isotope} \\k \text{ zone} \end{cases}$$

- Local cross-sections calculations  $\rightarrow a XS Model$
- Local flux: from a specific power calculation → a Power Model

• With 
$$P_{tot} = \sum_{k} P_k(t)$$
  $\varphi_k(t) = \sum_{i} \frac{P_k(t)}{\varepsilon_i^{fis} \times \sigma_{i,k}^{fis}(t) \times N_{i,k}(t)}$ 

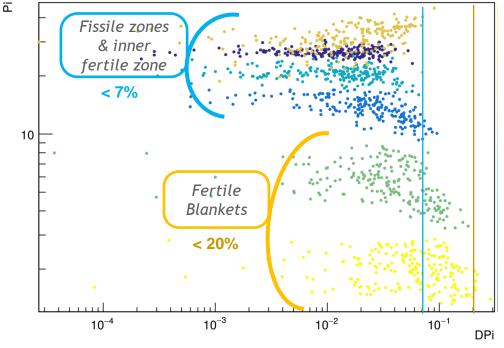
- Scenario simulation with the code CLASS
  - New dedicated model for **fuel irradiation in multi-zone reactors** 
    - Generally: homogeneous fuel ∼ approximation
    - 6 independant fresh fuel compositions: depletion over time and per zone
    - 2 predictive models based on Artificial Neural Networks (ANN)




## Multi-zone cross-sections predictor

- XS Model: training on full core depletion simulations
  - Zone number is an ANN new input parameter: *space discretization*
- Predictor accuracy verification
  - Example of XS<sub>fission</sub> (barn)
    <sup>239</sup>Pu per zone

$$\circ \quad DXS_{fi} = \left| \frac{XS_{fi}^{VESTA} - XS_{fi}^{CLASS}}{XS_{fi}^{VESTA}} \right|$$
  
at ~100 GWd/t


- Errors<sub>fertiles</sub> > Errors<sub>fissiles</sub>
- Induced errors by multi-zone XS<sub>f</sub> predictors < 2%</p>
- Direct impact of XS<sub>f</sub> on flux calculation



### Local power predictor

- Local power Model: training on full core depletion simulations
  - Zone number is an ANN new input parameter: *space discretization*
  - Constraint on local power:  $P_{tot} = \sum_{k} P_{k}(t)$
- Predictor accuracy verification
  - Pi: %power per zone •  $DP_i = \left| \frac{P_i^{VESTA} - P_i^{CLASS}}{P_i^{VESTA}} \right|$ at ~100 GWd/t
- Induced error < 20%</p>
- Direct impact on flux& composition per zone
- Important errors in fertile blankets but lower %power so lower impact on global inventories (<10% for Pu<sub>i</sub>)

Induced errors on local power at EOC per zone

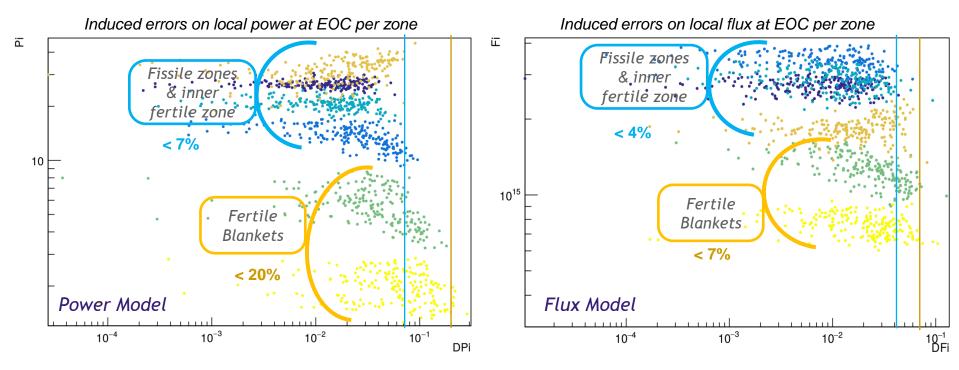


## Fuel composition estimation with a Power Model

Example of <sup>239</sup>Pu composition

#### per zone

Induced errors on <sup>239</sup>Pu inventory at EOC per zone 0.16 • Ni<sub>zone</sub>: <sup>239</sup>Pu atomic proportion 0.14  $\circ \quad DN_i = \left| \frac{N_i^{VESTA} - N_i^{CLASS}}{N_i^{VESTA}} \right|$ 0.12 Fissile zones at ~100 GWd/t < 2% 0.1 0.08 Errors on <sup>239</sup>Pu estimation in fertile zones ~10% 0.06 Fertile Zones 0.04 Too many uncertainty ? ~ 10% 0.02  $\varphi_k(t) = \sum_i \frac{P_k(t)}{\varepsilon_i^{fis} \times \sigma_{i,k}^{fis}(t) \times N_{i,k}(t)}$  $10^{-4}$  $10^{-3}$  $10^{-2}$  $10^{-1}$ DNi


7/12

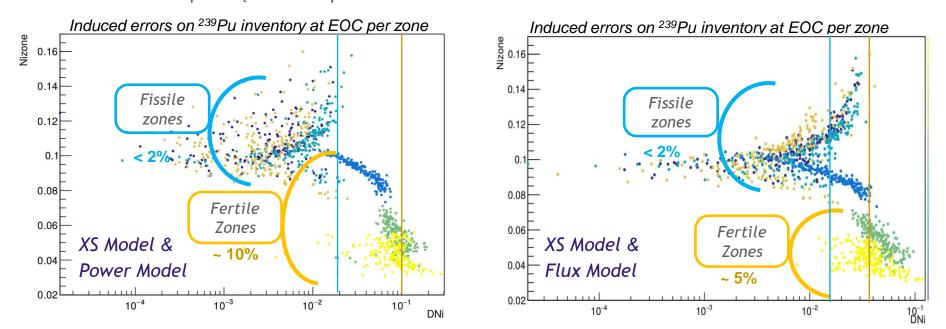
- Less constraint if direct prediction of local flux: a Flux Model
  - But size & reactor power modulations get more challenging 0

Léa Tillard - Multi-zone fuel irradiation model for ASTRID-like SFR with the CLASS code 9/07/2018 - © IRSN

## Local power predictor or local flux predictor

- Predictors accuracy verification: Power Model VS Flux Model
  - Pi: %power per zone & Fi: local flux (1/cm<sup>2</sup>/s)




- Induced errors by multi-zone local flux predictors < 7%</p>
- Improvement by predicting directly local flux
- Still an impact on the CLASS compositions estimation per zone

Léa Tillard - Multi-zone fuel irradiation model for ASTRID-like SFR with the CLASS code 9/07/2018 -  $\ensuremath{\mathbb{C}}$  IRSN

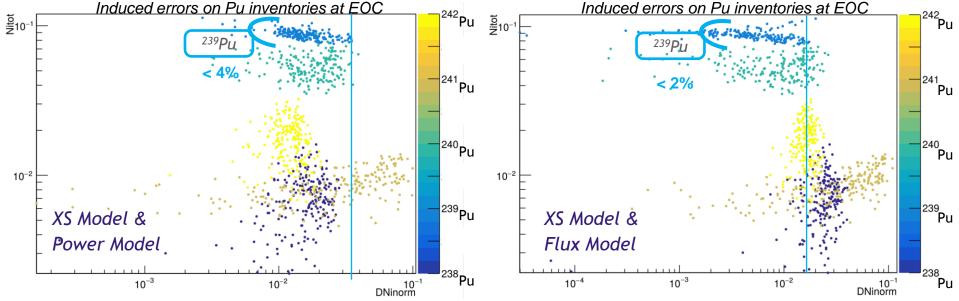
## Impact of the model on fuel composition estimation

- Impact of both predictors on fuel composition estimation
- Example of <sup>239</sup>Pu composition per zone
  - Ni<sub>zone</sub>: <sup>239</sup>Pu atomic proportion

 $\circ DN_i = \left| \frac{N_i^{VESTA} - N_i^{CLASS}}{N_i^{VESTA}} \right| \text{ at ~100 GWd/t}$ 



**7** Gain of a factor 2 on the <sup>239</sup>Pu composition estimation


Léa Tillard - Multi-zone fuel irradiation model for ASTRID-like SFR with the CLASS code 9/07/2018 - © IRSN

IRSI

## Impact of the model on fuel composition estimation

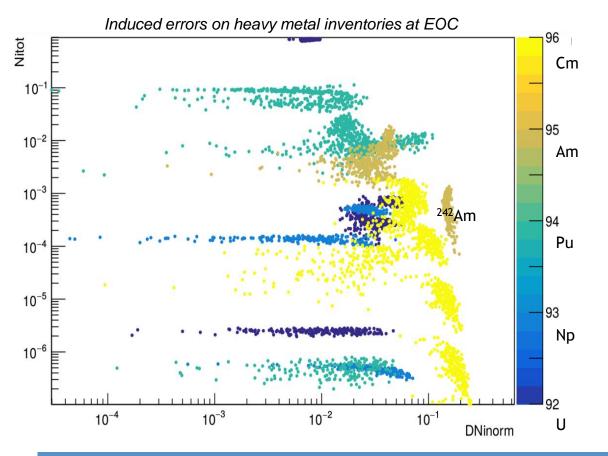
- Impact of both predictors on fuel composition estimation
- Example of Pu composition → global inventory: homogenization
  - Ni<sub>tot</sub>: total Pu atomic proportion

$$\circ DN_{inorm} = \left| \frac{N_i^{VESTA} - N_i^{CLASS}}{N_i^{VESTA}} \right| \text{ at ~100 GWd/t}$$



10/12

Errors in fertile zones > Errors on a global reactor scale


#### Fertile separation ?

Léa Tillard - Multi-zone fuel irradiation model for ASTRID-like SFR with the CLASS code 9/07/2018 - © IRSN

#### Fuel composition estimation with a Flux Model

- Isotopic composition → global inventory: homogenization
  - Ni<sub>tot</sub>: total Heavy Metal atomic proportion

$$DN_{inorm} = \left| \frac{N_i^{VESTA} - N_i^{CLASS}}{N_i^{VESTA}} \right| \text{ at ~100 GWd/t}$$



Good Pu estimation: new irradiation model appropriate for Pu stabilization in cycle

#### Model not appropriate for MA recycling

Léa Tillard - Multi-zone fuel irradiation model for ASTRID-like SFR with the CLASS code 9/07/2018 - © IRSN

## **Conclusion & Perspectives**

- To study the capability of ASTRID-like reactors to stabilize the Pu in cycle while keeping its heterogeneity
  → A new multi-zone fuel irradiation model
- Good multi-zone cross-sections predictions → errors induced < 2%
- Compromise between model accuracy & flexibility
  - Better prediction of local flux than local power → errors induced < 7%
    - $\rightarrow$  better composition estimations
    - $\rightarrow$  but no direct control of the reactor power
- Impact of multi-zone irradiation on the electronuclear fuel cycle
  - o Irradiation model accuracy very related with the zone number
  - o Uncertainty balanced on the reactor scale
    - $\rightarrow$  no fissile & fertile separation management with the Power Model
- Impact of the multi-zone fuel irradiation model at a scenario scale ?
- Homogeneous irradiation model / Multi-zone fuel irradiation model ?
- Application with other type of reactor



### **Conclusion & Perspectives**

- To study the capability of ASTRID-like reactors to stabilize the Pu in cycle while keeping its heterogeneity
  → A new multi-zone fuel irradiation model
- Good multi-zone cross-sections predictions → errors induced < 2%
- Compromise between model accuracy & flexibility
  - Better prediction of local flux than local power  $\rightarrow$  errors induced < 7%
    - $\rightarrow$  better composition estimations
    - $\rightarrow$  but no direct control of the reactor power
- Impact of multi-zone irradiation on the electronuclear fuel cycle
  - o Irradiation model accuracy very related with the zone number
  - o Uncertainty balanced on the reactor scale

 $\rightarrow$  no fissile & fertile separation management with the Power Model

- Impact of the multi-zone fuel irradiation model at a scenario scale ?
- Homogeneous irradiation model / Multi-zone fuel irradiation model ?
- Application with other type of reactor



## **Conclusion & Perspectives**

- To study the capability of ASTRID-like reactors to stabilize the Pu in cycle while keeping its heterogeneity
  → A new multi-zone fuel irradiation model
- Good multi-zone cross-sections predictions → errors induced < 2%</li>
- Compromise between model accuracy & flexibility
  - Better prediction of local flux than local power  $\rightarrow$  errors induced < 7%
    - $\rightarrow$  better composition estimations
    - $\rightarrow$  but no direct control of the reactor power
- Impact of multi-zone irradiation on the electronuclear fuel cycle
  - o Irradiation model accuracy very related with the zone number
  - o Uncertainty balanced on the reactor scale

 $\rightarrow$  no fissile & fertile separation management with the Power Model

- Impact of the multi-zone fuel irradiation model at a scenario scale ?
- Homogeneous irradiation model / Multi-zone fuel irradiation model ?
- Application with other type of reactor



# Thank you for your attention !

Special thanks to Marc Ernoult, Xavier Doligez, Abdoul-Aziz Zakari-Issoufoub



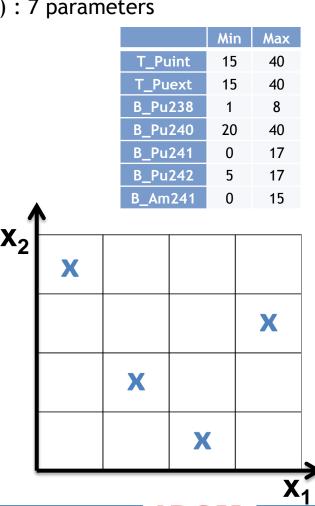
Léa Tillard - Multi-zone fuel irradiation model for ASTRID-like SFR with the CLASS code 9/07/2018 - © IRSN

IRSN

#### Databank generation

#### Learning and training database

#### Draw of t<sub>Pu</sub> (2 cores), initial isotopic vector (5 isotopes) : 7 parameters


- LHS method (Latin HyperSquare)
- Buffer <sup>239</sup>Pu
- U isotopic vector (<sup>238</sup>U 99.2% <sup>235</sup>U 0.8%)
- 1000 initial fuel compositions

#### 7 1000 Monte-Carlo depletion calculations

#### Testing database

- Same methodology
- 200 initial fuel compositions

#### 7 200 Monte-Carlo depletion calculations



#### Depletion calculations: 10 timesteps

#### **7** Relative error due to the random seed with one composition

Error EOC

| lsotope                  | <sup>239</sup> Pu fission XS | Flux           | <sup>239</sup> Pu Composition |
|--------------------------|------------------------------|----------------|-------------------------------|
| Upper Fissile            | 0.13%                        | 1 <b>.29</b> % | 0.12%                         |
| Lower Fissile            | 0.12 %                       | 1.10%          | 0.09%                         |
| External Fissile         | 0.12%                        | <b>2.92</b> %  | 0.1%                          |
| Inner fertile            | 0.12%                        | 0.64%          | 0.09%                         |
| Fertile Blanket internal | 0.27%                        | 1.37%          | 2.44%                         |
| Fertile Blanket external | 0.75%                        | 2.30%          | 1.15%                         |

IRSN