COMET@CCIN2P3

F. Kapusta

LPNHE Paris

CC-IN2P3 Lyon 30 janvier 2018

Motivations

- Le Modèle Standard est incomplet.
- ► Recherche directe à haute énergie de nouvelles particules (Frontière en énergie): $|A_{SM} + \varepsilon_{NP}|^2 \simeq |A_{SM}|^2 + 2Re(A_{SM}\varepsilon_{NP})$
- ► Recherche indirecte (Frontière en intensité) : processus rares $|A_{SM} + \varepsilon_{NP}|^2 \simeq |\varepsilon_{NP}|^2$ et mesure de quantités fondamentales.
- Les neutrinos oscillent et changent de saveur, impliquant une violation de la saveur leptonique dans le secteur chargé.

- ▶ Rechercher la transition d'un muon en électron sans production de neutrino.
- Expérimentalement une conversion muon-électron "assistée" par un noyau.

$$\mu^- + A(N,Z) \rightarrow e^- + A(N,Z)$$

COMET : COherent Muon to Electron Transition

JPARC vu du ciel

COMET Hadron Hall

Conversion μ -e

- Processus cohérent: noyau inchangé.
- ▶ Signal : électron mono-énergétique $E_e = m_\mu B_\mu E_{recul}$
- $m_e \ll m_\mu$, $B_\mu = m_\mu rac{1}{2} Z^2 lpha^2$ et $E_{recul} = m_\mu rac{m_\mu}{2M}$
- > Pour de l'aluminium utilisé par COMET : $E_e = 104.9$ MeV.
- ▶ On definit le taux de conversion $BR = \frac{\Gamma(conversion \ \mu e)}{\Gamma(capture \ de \ \mu)}$
- Limite actuelle de SINDRUM-II à 90% CL sur de l'or : $BR < 7. \ 10^{-13}$
- ▶ COMET Single-Event-Sensitivity Phase-I \leq 3 10⁻¹⁵ et Phase-II \leq 3 10⁻¹⁷

COMET@J-PARC

La recherche de désintégrations rares demande :

> Des détecteurs avec une très bonne résolution et réjection du bruit de fond.

Andrzej Czarnecki et Robert Szafron

▶ La meilleure simulation et reconstruction possible est fondamentale.

Comparaison entre $\mu \rightarrow e\gamma$	et la	conversion	$\mu - e$:
---	-------	------------	-------------

	bruit de fond	défi	intensité du faisceau
$\mu ightarrow e \gamma$	fortuites	résolution du détecteur	limitée
$\mu - e$ conversion	faisceau	bruit de fond faisceau	pas de limitation

- ▶ PSI $10^8 \mu/s$ vs J-PARC $10^{11} \mu/s$
- Recherche de nouvelle physique possible avec les nouveaux faisceaux de muons intenses et pulsés.

Historique

・ ・ 回 ・ ・ ヨ ・ ・ ヨ ・

Diagrammes d'exclusion

Faisceau de protons

- Faisceau pulsé pour rejeter le bruit de fond lié au faisceau.
- Séparation d'au moins 1μs (durée de vie du μ)
- Largeur de pulse étroit < 100 ns
- Extraction lente.

 Faisceau pulsé de protons de 8 GeV sur cible de graphite.

9/32

Structure en temps et composition du faisceau

A l'entrée de la cible d'arrêt des μ

Suppression additionnelle du bruit de fond :

• Extinction des protons : $\frac{Nombre de protons entre les paquets}{Nombre de protons dans les paquets} \le 10^{-9}$

- Restriction à des μ d'énergie \leq 75MeV.
- Détecteurs "fins" pour la détection des électrons.

COMET (E21)

- Sélection de μ de basse impulsion.
- Phase I en 2018 : 150 jours avec un faisceau de proton de 3.2 kW
- Phase II en 2021 : 1 an avec un faisceau de proton de 56 kW

$6.10^9 \ \mu$ arrêtés par seconde

Solénoide de transport des muons à J-PARC

▶ Installé fin mars 2015

- Test de faisabilité avec MuSIC à l'Université d'Osaka : cible de graphite et solénoïde de 3.5 T pour la capture de pions.
- \blacktriangleright A 400W, 3 $10^8/s$ pour les μ^+ et $10^8/s$ pour les $\mu^-.$

Collaboration COMET

The COMET Collaboration

R. Abramishvili¹¹, G. Adamov¹¹, R. Akhmetshin^{6,31}, V. Anishchik⁴, M. Aoki³², Y. Arimoto¹⁸, I. Bagaturia¹¹, Y. Ban³, A. Bondar^{6, 31}, Y. Calas⁷, S. Canfer³³, Y. Cardenas⁷, S. Chen²⁸, Y. E. Cheung²⁸, B. Chiladze³⁵, D. Clarke³³, M. Danilov^{15, 26}, P. D. Dauncey¹⁴ J. David²³, W. Da Silva²³, C. Densham³³, G. Devidze³⁵, P. Dornan¹⁴, A. Drutskoy^{15,26} V. Duginov¹⁶, L. Epshtevn^{6,30}, P. Evtoukhovich¹⁶, G. Fedotovich^{6,31}, M. Finger⁸ M. Finger Jr⁸, Y. Fuiji¹⁸, Y. Fukao¹⁸, J-F. Genat²³, E. Gillies¹⁴, D. Grigoriev⁶, ³⁰, ³¹ K. Gritsav¹⁶, E. Hamada¹⁸, R. Han¹, K. Hasegawa¹⁸, I. H. Hasim³², O. Havashi³² Z. A. Ibrahim²⁴, Y. Igarashi¹⁸, F. Ignatov^{6,31}, M. Iio¹⁸, M. Ikeno¹⁸, K. Ishibashi²², S. Ishimoto¹⁸, T. Itahashi³², S. Ito³², T. Iwami³², X. S. Jiang², P. Jonsson¹⁴, V. Kalinnikov¹⁶, F. Kapusta²³, H. Katavama³², K. Kawagoe²², N. Kazak⁵, V. Kazanin^{6, 31}, B. Khazin^{6, 31} A. Khvedelidze^{16,11}, T. K. Ki¹⁸, M. Koike³⁹, G. A. Kozlov¹⁶, B. Krikler¹⁴, A. Kulikov¹⁶ E. Kulish¹⁶, Y. Kuno³², Y. Kuriyama²¹, Y. Kurochkin⁵, A. Kurup¹⁴, B. Lagrange^{14, 21} M. Lancaster³⁸, M. J. Lee¹², H. B. Li², W. G. Li², R. P. Litchfield³⁸, T. Loan²⁹, D. Lomidze¹¹, I. Lomidze¹¹, P. Loveridge³³, G. Macharashvili³⁵, Y. Makida¹⁸, Y. Mao³ O. Markin¹⁵, Y. Matsumoto³², T. Mibe¹⁸, S. Mihara¹⁸, F. Mohamad Idris²⁴, K. A. Mohamed Kamal Azmi²⁴, A. Moiseenko¹⁶, Y. Mori²¹, M. Moritsu³², F. Motuk³⁸, Y. Nakai²² T. Nakamoto¹⁸, Y. Nakazawa³², J. Nash¹⁴, J. -Y. Nief⁷, M. Nioradze³⁵, H. Nishiguchi¹⁸, T. Numao³⁶, J. O'Dell³³, T. Ogitsu¹⁸, K. Oishi²², K. Okamoto³², C. Omori¹⁸, T. Ota³⁴, J. Pasternak¹⁴, C. Plostinar³³, V. Ponariadov⁴⁵, A. Popov^{6, 31}, V. Rusinov^{15, 26} A. Ryzhenenkov^{6,31}, B. Sabirov¹⁶, N. Saito¹⁸, H. Sakamoto³², P. Sarin¹³, K. Sasaki¹⁸ A. Sato³², J. Sato³⁴, Y. K. Semertzidis^{12,17}, D. Shemvakin^{6,31}, N. Shigvo²², D. Shoukavv⁵, M. Slunecka⁸, A. Straessner³⁷, D. Stöckinger³⁷, M. Sugano¹⁸, Y. Takubo¹⁸, M. Tanaka¹⁸, S. Tanaka²², C. V. Tao²⁹, E. Tarkovsky^{15,26}, Y. Tevzadze³⁵, T. Thanh²⁹, N. D. Thong³² J. Tojo²², M. Tomasek¹⁰, M. Tomizawa¹⁸, N. H. Tran³², H. Trang²⁹, I. Trekov³⁵ N. M. Truong³², Z. Tsamalaidze^{16,11}, N. Tsverava^{16,35}, T. Uchida¹⁸, Y. Uchida¹⁴, K. Ueno¹⁸, E. Velicheva¹⁶, A. Volkov¹⁶, V. Vrba¹⁰, W. A. T. Wan Abdullah²⁴, M. Warren³⁸, M. Wing³⁸ T. S. Wong³², C. Wu^{2,28}, H. Yamaguchi²², A. Yamamoto¹⁸, Y. Yang²², W. Yao², Y. Yao², H. Yoshida³², M. Yoshida¹⁸, Y. Yoshii¹⁸, T. Yoshioka²², Y. Yuan², Y. Yudin^{6,31}, J. Zhang², Y. Zhang², K. Zuber³⁷

COMET Phase I

 \blacktriangleright Etude du bruit fond faisceau et atteindre un S.E.S. $\simeq 3.10^{-15}$

CDC à KEK

 CDC et compteurs de "trigger" entourant la cible d'arrêt des muons.

・ロト・日本・モト・モト モックへで 14/32

COMET Phase I

- Mise en place de la ligne de faisceau dans le Hall
- Construction et test des détecteurs.

Straw tubes et Ecal

- Plans de straw tubes : mesure de l'impulsion
- Calorimètre à cristaux : mesure de l'énergie
- Combinaison pour une PID.
- Utilisés pour la caractérisation du faisceau en Phase I.
- Partie du détecteur principal pour la Phase II.

Signal Sensitivity for COMET Phase-I with CyDet

Signal Acceptance

Table 28: Breakdown of the $\mu^- N \rightarrow e^- N$ conversion signal acceptance.

Event selection	Value	Comments
Geometrical acceptance	0.37	
Track quality cuts	0.66	
Momentum selection	0.93	$103.6 \text{ MeV}/c < P_e < 106.0 \text{ MeV}/c$
Timing window	0.3	700 ns < t < 1100 ns
Trigger efficiency	0.8	
DAQ efficiency	0.8	
Track reconstruction efficiency	0.8	
Total	0.043	

Signal Sensitivity

 $B(\mu^- + Al \rightarrow e^- + Al) \sim \frac{1}{N_\mu \cdot f_{cap} \cdot A_e},$

- $f_{cap} = 0.6$
- $A_e = 0.043$
- $N_{\mu} = 1.23 \times 10^{16} \text{ muons}$

$$\begin{split} B(\mu^- + Al \to e^- + Al) &= 3.1 \times 10^{-15} \\ B(\mu^- + Al \to e^- + Al) < 7 \times 10^{-15} \quad (90\% C.L.) \end{split}$$

Muon intensity

about 0.00052 muons stopped/proton

With 0.4 µA, a running time of about 110 days is needed.

Background Estimate for COMET Phase-I with CyDet

Table 30: Summary of the estimated background events for a single-event sensitivity of 3.1×10^{-15} with a proton extinction factor of 3×10^{-11} .

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
Physics	Radiative muon capture	$5.6 imes10^{-4}$
Physics	Neutron emission after muon capture	< 0.001
Physics	Charged particle emission after muon capture	< 0.001
Prompt Beam	Beam electrons (prompt)	$8.3 imes10^{-4}$
Prompt Beam	Muon decay in flight (prompt)	$\leq 2,0 imes 10^{-4}$
Prompt Beam	Pion decay in flight (prompt)	$\leq 2.3 \times 10^{-3}$
Prompt Beam	Other beam particles (prompt)	$\leq 2.8\times 10^{-6}$
Prompt Beam	Radiative pion capture(prompt)	$2.3 imes 10^{-4}$
Delayed Beam	Beam electrons (delayed)	~ 0
Delayed Beam	Muon decay in flight (delayed)	~ 0
Delayed Beam	Pion decay in flight (delayed)	~ 0
Delayed Beam	Radiative pion capture (delayed)	~ 0
Delayed Beam	Anti-proton induced backgrounds	0.007
Others	Electrons from cosmic ray muons	< 0.0001
Total		0.019

Le Software de COMET basé initialement sr celui de T2K ND280

Overview

Integrated Comet Experiment Data User Software Toolkit

Software et simulation

- Simulation du faisceau de muons.
- Simulation de son interaction avec la cible d'arrêt.
- Première version stable : avril 2015.
- Statistique élevée : 2 10¹⁹ protons.
- ► Détails de géométrie, cartes de champs et processus physiques (modèles hadroniques, processus d'arrêt des muons)

La contribution française

- Production intensive de MC pour l'analyse : rôle important du CC-IN2P3 (membre de COMET)
- Comptes Unix/AFS, comptes iRODS et Soft de COMET sur Gitlab
- Stockage et CPU.
- MoU en cours

Track fitting

Espace COMET

Envoyé by Yonny Cardenas mi-août 2017

Informations about Grid Engine RQS for comet experiment at IN2P3 Computing Center

Area maintained by Thomas Kachelhoffer Last updated: 2017-08-18 12:02:05

Description of comet RQS:

In tables below, you will find a list of the RQS (Resource Quota Set) linked to comet experiment available on Grid Engine at Computing Center. The ratio becomes red if the value is higher than 95 %. A selection on a bold number will give you access to the corresponding plots. A selection on the complex name gives you access to the detail usage of this complex.

List of Grid Engine RQS defined for comet experiment at Computing Center:

Complex name	Slot limit	Objective	Slots used	Used/limit or Used/objective	Requested slots
irods	200		0	0.0 %	0
slots		1104.2	4023	364.3 %	50
cl7		1104.2	0	0.0 %	0
sl6		1104.2	4023	364.3 %	50
sps	400		0	0.0 %	0

2017 CPU current request and use

COMET was granted 90 M HS06.hours on bqs

Requête et consommation cpu du groupe comet en 2017

				2017						
			Demande en HS06.h	Valeur arbitrée en HS06.h	Temps de résidence normalisé en HS06.h	% du tps de résidence / Valeur arbitrée	CPU Consommé en HS06.h	Efficacité moyenne des jobs (CPU Consommé / Tps de résidence)	nb slots par nb jobs	
comet	Trimestre 1	janvier 2017	6 813 187	6 813 187		0 %		-	-	
		février 2017	6 373 626	6 373 626	14 911	0 %	9 714	65 %	1,00	
		mars 2017	6 813 187	6 813 187	27 942	0 %	26 885	96 %	1,00	
		Total	20 000 000	20 000 000	42 853	0 %	36 599	85 %	1,00	
	Trimestre 2	avril 2017	6 593 407	6 593 407	1 538 478	23 %	1 499 466	97 %	1,02	
		mai 2017	6 813 187	6 813 187	9 283 901	136 %	9 131 549	98 %	1,00	
		juin 2017	6 593 407	6 593 407	2 079 462	32 %	2 044 159	98 %	1,00	
		Total	20 000 000	20 000 000	12 901 840	65 %	12 675 174	98 %	1,00	
	Trimestre 3	juillet 2017	8 423 913	8 423 913	1 055 925	13 %	998 797	95 %	1,00	
		août 2017	8 423 913	8 423 913	8 962 124	106 %	8 814 233	98 %	1,00	
		septembre 2017	8 152 174	8 152 174	13 965 611	171 %	14 012 647	100 %	1,00	
		Total	25 000 000	25 000 000	23 983 661	96 %	23 825 677	99 %	1,00	
	Trimestre 4	octobre 2017	8 423 913	8 423 913	35 018 199	416 %	35 057 412	100 %	1,00	
		novembre 2017	8 152 174	8 152 174	17 084 212	210 %	16 885 636	99 %	1,00	
		décembre 2017	8 423 913	8 423 913	4 098 708	49 %	4 030 435	98 %	1,00	
		Total	25 000 000	25 000 000	56 201 119	225 %	55 973 484	100 %	1,00	
Total			90 000 000	90 000 000	93 129 472	103 %	92 510 934	99 %		

Code and data access

<ロト < 回 > < 目 > < 目 > < 目 > 目 の へ C 25/32

COMET foreign collaborators

	Login	First name	Last name	Email
1	khasmi	Akma	Khasmidatul	khasmidatul@siswa.um.edu.my
2	benayoun	Benayoun	Maurice	benayoun@lpnhe.in2p3.fr
3	cardenas	Cardenas	Yonny	cardenas@cc.in2p3.fr
4	dasilva	Dasilva	Wilfrid	dasilva@lpnhe.in2p3.fr
5	aedmonds	Edmonds	Andrew	a.edmonds@ucl.ac.uk
6	yfujii	Fujii	Yuki	yfujii@ihep.ac.cn
7	egillies	Gillies	Ewen	ewen.gillies12@imperial.ac.uk
8	ehamada	Hamada	Eitaro	ehamada@post.kek.jp
9	ajansen	Jansen	Andreas	andreas.jansen@mailbox.tu-dresden.de
10	pjonsson	Jonsson	Per	per.jonsson@imperial.ac.uk
11	jkang	Kang	Jisoo	rkdwltn628@kaist.ac.kr
12	cometmgr	Kapusta	Frederic	cometmgr@mail.in2p3.fr
13	kapusta	Kapusta	Frederic	kapusta@lpnhe.in2p3.fr
14	bkrikler	Krikler	Benjamin	benjamin.krikler07@imperial.ac.uk
15	kurup	Kurup	Ajit	a.kurup@imperial.ac.uk
16	laijun	Lai	Jun	laijun@kuno-g.phys.sci.osaka-u.ac.jp
17	shlee	Lee	Soohyung	soohyunglee@ibs.re.kr
18	litchfld	Litchfield	Phillip	r.p.litchfield@ucl.ac.uk
19	amelnik	Melnik	Anastasia	a.melnik@ifanbel.by
20	mmoritsu	Moritsu	Manabu	moritsu@kuno-g.phys.sci.osaka-u.ac.jp
21	ynakai	Nakai	Yuki	nakai@epp.phys.kyushu·u.ac.jp
22	nakamura	Nakamura	Yuki	y-nakamura@kuno-g.phys.sci.osaka-u.ac.jp
23	ynakatsu	Nakatsugawa	Yohei	yohei@ihep.ac.cn

24	nakazawa	Nakazawa	Yu	y•nakazawa@kuno•g.phys.sci.osaka•u.ac.jp
25	jnash	Nash	Jordan	j.nash@imperial.ac.uk
26	hnatori	Natori	Hiroaki	natori@ibs.re.kr
27	kokinaka	Okinaka	Kaori	k-okinaka@kuno-g.phys.sci.osaka-u.ac.jp
28	sakamoto	Sakamoto	Hideyuki	sakamoto@kuno-g.phys.sci.osaka-u.ac.jp
29	asato	Sato	Akira	sato@phys.sci.osaka-u.ac.jp
30	shoukavy	Shoukavy	Dzmitry	shoukavy@ifanbel.bas-net.by
31	ntran	Tran	Nam	nam@kuno-g.phys.sci.osaka-u.ac.jp
32	mvassant	Vassantrai	Monish	mv1213@ic.ac.uk
33	warin	Warin-Charpentier	Patricia	warin@lpnhe.in2p3.fr
34	yweichao	Weichao	Yao	yao@ihep.ac.cn
35	mwong	Wong	Mark	m-wong@kuno-g.phys.sci.osaka-u.ac.jp
36	twong	Wong	Tingsam	samwong@kuno-g.phys.sci.osaka-u.ac.jp
37	chenwu	Wu	Chen	wuchen@ihep.ac.cn
38	xingty	Xing	Tianyu	xingty@ihep.ac.cn
39	hyamaguc	Yamaguchi	Hiroshi	yamaguchi@phys.kyushu·u.ac.jp
40	tyamane	Yamane	Takahito	t-yamane@kuno-g.phys.sci.osaka-u.ac.jp
41	yyang	Yang	Ye	kanouyou@kune2a.nucl.kyushu+u.ac.jp
42	byeo	Yeo	Beomki	yeobk1202@kaist.ac.kr
43	hyoshida	Yoshida	Hisataka	hisataka@kuno-g.phys.sci.osaka-u.ac.jp
44	yuany	Yuan	Ye	yuany@ihep.ac.cn
45	yaozhang	Zhang	Yao	zhangyao@ihep.ac.cn
46	izhang	Zhano	Jie	zhi@ihep.ac.cn

Community Data Access

Stockage actuel

- HPSS quota 215 TB : space used 102 TB
- XROOTD disk space used : 33 TB as HPSS Front End
- ▶ iRODS disk space used : 137 TB of which egillies 68 TB and cometprod 53 TB.
- iRODS is used also for data tranfers between sites.
- SPS "hep/sps/comet" disk space quota : 25 TB, 19 TB used

- ▶ 50% de plus de CPU
- Adapter de même le stockage : + 100 TB
- Préparer un calcul en continu
- ► Se préparer à la prise de données et à leur stockage.
- Finaliser le MoU COMET-IN2P3

En résumé

- ▶ cLFV : la meilleure façon de chercher la Physique au-delà du Modèle Standard.
- ▶ La conversion μe pourrait être un des processus importants de la cLFV.
- COMET Phase I vise un SES de 3.10⁻¹⁵
- ► La construction de la ligne de faisceau a commencé en 2013 à KEK.
- La mesure démarrera en 2018-2019.
- COMET Phase-II à J-PARC vise un SES de (1.0 2.6)10⁻¹⁷ qui suivra immédiatement la Phase-I

Le CC-IN2P3 est le Centre de Calcul de COMET.

Visitez le Hall COMET

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q (~ 31/32)

Merci et à bientôt dans COMET

