

Mitesh Patel (Imperial College London) Annecy, 21st March 2018

Introduction

- Rare b→(s,d)II decays sensitive to NP in O₇, O₉ and O₁₀ operators
- Can measure amount of these different kinds of couplings to different quarks e.g. b→s vs b→d; and different leptons b→qee vs b→qµµ (b→qττ?)

Branching Fractions

- Dominant theory uncertainties from form factors
 - BF *already* have comparable theory/experimental errors
 - Lattice will improve at high q² but not a revolution
- To go beyond this, measure angular observables
 - Construct observables where form factors cancel to greater or less extent e.g. the infamous P₅'

Reminder – present status

- Existing discrepancies serve to illustrate power constrain mass-coupling plane of NP models e.g. with LQ
 - explanations with only on b-s coupling \rightarrow O(TeV) LQ;
 - with full couplings can have O(30TeV) LQ
- Tensions observed have exposed theory limitations e.g. ΔC₉ effect from cc̄ loops

Analysis in the upgrade era

- 50 (300) fb⁻¹ would enable us to parameterise and fit for form factors as part of fit to angular distribution, q²
 - Could then simultaneously constrain BF(*) and angular observables to get Wilson coefficients
 - (*) need Belle2 to improve knowledge of J/ ψ normaln modes
- Similarly, if can agree modelling with theory community, fit of interference resonances/rare decay will tackle cc̄ loop issue

 For μ channels, detector considerations are as might expect - maintain PID performance and mass resolution; vertex isoln important for rejecting cascade backgrounds

 [If can control syst. (...) and detector performance maintained] improvements in observables will distinguish between different NP models

e.g. $\Delta C_9 = -\Delta C_{10} = -0.7$ vs $\Delta C_9 = -1.4$ (SM)

Even with parametric approach, form factor uncertainties cause some saturation in extraction C₉, C₁₀ after ~30 fb⁻¹
need improvements from theory-side to go further

 However, will be able to probe C₉', C₁₀', which are essentially unconstrained at the moment – important for real models! [Still need to evaluate potential with C₇^(')]

• Again C₉', C₁₀' probes will discriminate between models

- Stat. uncertainties will become increasingly irrelevant key issue systematics
- Assumptions from modelling of resonances, parameterisation of form factors likely to be major sources
- Present syst: angular acceptance modelling of detector
 - will require enormous stats to drive this down (fast MC)
 - Stability of trigger/detector, data-taking important to ease calcn.
- Angular distribution of bkgrds can also give rise to syst.
 - Mitigate by improving separation (mass resoln, PID, vertex isoln)
 - Study directly with data need to be able to access wide range of related channels

Testing MFV with $b \rightarrow dII$

on of $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ in bins of dilepton invariant mass taken from Refs. [1] (APR13), [6] (HKR15) and from C15).

Testing MFV with $b \rightarrow dII$

- CKM suppressed $B_s^0 \rightarrow K^{*0}\mu\mu$ will enable full angular analysis with comparable precision to Run-1 $B^0 \rightarrow K^{*0}\mu\mu$
 - Simultaneous fit of B⁰ mode will help separate B_s⁰ and B⁰ angular observables but improved mass resolution would clearly help
- $B^0 \rightarrow \rho^0 \mu \mu$ requires flavour tag., also multiple $\pi \pi$ resonances
 - $B^+ \rightarrow \rho^+ \mu \mu$ would avoid flavour tagging but gives π^0 - good channel to consider in detector optimisation?
 - $\Lambda_b \rightarrow p\pi\mu\mu$ would similarly suffer from (many) $p\pi$ resonances

Other measurements

- Still something significant to understand in our isospin measurements
- With 300fb⁻¹, a sum of exclusive modes as a proxy for B→X_sII will become possible (but not theoretically clean): e.g. even one of worst modes for us that was used at Belle, K_Sππππ⁰ would give ~200 candidates

Charged p proach to the 0.5 cm in the tum above 0 π^{\pm} [12] is bas from the specmeasured by

Candidate by a multiva nique [13]. T two helices in y plane, the vector joining distance in t helices, the a laboratory-fr pion hit infor efficiency and 87% and 94

Belle, Phys.Rev. D93 032008 (2016)			
\bar{B}^0 decays		B^- decays	
	(K_{S}^{0})	K^{-}	_
$K^{-}\pi^{+}$	$(K_S^0\pi^0)$	$K^{-}\pi^{0}$	$K^0_S\pi^-$
$K^-\pi^+\pi^0$	$(K_{S}^{0}\pi^{-}\pi^{+})$	$K^{-}\pi^{+}\pi^{-}$	$K^0_S \pi^- \pi^0$
$K^-\pi^+\pi^-\pi^+$	$(K_S^0 \pi^- \pi^+ \pi^0)$	$K^{-}\pi^{+}\pi^{-}\pi^{0}$	$K^0_S\pi^-\pi^+\pi^-$
$(K^-\pi^+\pi^-\pi^+\pi$	$(K_S^0\pi^-\pi^+\pi^-\pi^+)$	$(K^-\pi^+\pi^-\pi^+\pi^-$	$(K_S^0 \pi^- \pi^+ \pi^- \pi^0)$

• $B \rightarrow X_a | + | - 50\%$ of rate

TABLE I. Regated modes a via $\pi^+\pi^-(\gamma\gamma)$ include interm not reconstruct

LFU observables

- Ratios of BF's between different flavours of leptons e.g. R_{K*}, R_K, or differences between angular observables e.g. D_i=S_i^e-S_i^μ, theoretically pristine
 - Precision dictated by electron modes – while again expect substantial yields, projections based on extrapolating current performance forward (...)
- Will have statistics to measure CKM sup. versions e.g. R_π and many new channels R_φ, R_Λ etc.

Electron analyses with 300fb⁻¹

- Need to drive systematics down to <1% level to get benefit from 300fb⁻¹ data
- Large uncertainty from modelling backgrounds which can study with data and hence will scale with luminosity, ditto data-derived corrections to simulation
- However, sub-dominant uncertainties from e.g. modelling of bremsstrahlung

 Difference between C₉, C₁₀ computed in electron and muon modes is free of theory uncertainties and will discriminate between models

- C_i projections based on stat. extrapolation but not detailed bkgrd, acceptance, angular resolution in new upgrade/HL environment
 - Each will be much bigger effects for us than for Belle2
 - Belle2 will also access additional channels which will add to their sensitivity substantially

Future detector considerations

- Width of mass peak → ability to recover brem. before magnet
 - affects ability to reconstruct signal and to reject bkgrds that we otherwise need to model

- Can we maintain existing ability to reconstruct brem photons? To improve need to *reduce* material in front of the magnet?
 - Phase-I VELO will have better vertex/IP resoln but how much material?

Future detector considerations

 Technologically conceivable to have directionality in ECAL st can distinguish PV of neutral object – could this be to the extent we could improve the brem. matching based on this directionality?

- To maintain electron-hadron separation need *longitudinal* segmentation of ECAL that effectively have with PS in Run1,2 and will lose for Phase I
- Bkgrds from K* and higher resonances critical issue ability to veto additional charged track
- Could tolerate factor increase in combinatorial

Connection to other areas

- (Atm) mixing constraints squeeze out most of parameter space for Z' explanation of anomalies
- FLAG update of parameters give some tension in Δm_s :
 - $-\Delta m_s^{SM} > \Delta m_s^{expt}$ [theory limited]
 - need negative NP contribution \rightarrow possible with some new phase - best constraints come from $A_{mix}(B_s \rightarrow J/\psi \phi) = sin(\Delta \phi - 2\beta_s)$
 - However, phase can spoil interference SM and NP contribution to e.g. R_{K^*} clear that there is a subtle interplay to disentangle

Conclusions

- Existing discrepancies illustrate the power of b→qll decays as probes of NP, this will continue in the upgrade/HL era
- With upgrade/HL datasets will be able to discriminate between different C₉, C₁₀ NP models and probe e.g. V_{td}/V_{ts}
- Even with a parametric approach, our ability to probe these WC's will start to saturate due to theory uncertainties
- New observables C₉', C₁₀' and $\Delta C_9, \Delta C_{10}$ will remain compelling
- Need to think about detector that will allow us to access and control systematics for these observables

Figure 2: Bounds from B_s -mixing on the parameter space of the simplified Z' model of Eq. (20), for real λ_{23}^Q and $\lambda_{22}^L = 1$. The blue and red shaded areas correspond respectively to the 2σ exclusions from $\Delta M_s^{\text{SM}, 2015}$ and $\Delta M_s^{\text{SM}, 2017}$, while the solid (dashed) black curves encompass the 1σ (2σ) best-fit region from $R_{K^{(*)}}$.

Figure 3: Bounds from B_s -mixing on the parameter space of the scalar leptoquark model of Eq. (24), for real $y_{32}^{QL}y_{22}^{QL*}$ couplings. Meaning of shaded areas and curves as in Fig. 2.

Figure 4: Combined constraints on the complex Wilson coefficient C_{bs}^{LL} . The blue shaded area is the 2σ allowed region from A_{CP}^{mix} , while the solid (dashed) red curves enclose the 1σ (2σ) regions from $\Delta M_s^{SM, 2017}$.