TORCH physics case

M. Kreps for TORCH collaboration

Physics Department

Initial look to possible gainsPlans for physics studies

What physics to look at?

- TORCH could be used for various purposes
- At this moment treat TORCH as PID detector which will help π , K, p separation
- Choose few decays which will
 - Evaluate performance gain for both kaons and protons
 - Try to map LHCb physics across several WG
- What I'm going to show is more starting point than anything sophisticated
- Some of the gains showed might need other changes/improvements to benefit from TORCH

from protons limited at low

While we have some capability for PID below 10 GeV, for simplicity here I look what fraction of signal has hadron below

; from protons limited at low

10 GeV mis-ID rate rises

• While we have some capability for PID below 10 GeV, for simplicity here I look what fraction of signal has hadron below

What is done

- Take generator level samples of signals (pythia8 @ 14 TeV)
- Use latest minimum bias simulation with latest upgrade detector to evaluate which tracks we can reconstructed
- Do very simple estimate of potential gains by counting "reconstructed" candidates with hadron with p < 10/12 GeV
 - Probably bit optimistic as it assumes no hadrons with lower momentum are used
- At this moment looking only to the signal, no background
- Eventually will need to make sure that phase-space region where TORCH helps is
 - reconstructed in tracking
 - used in analysis

Which tracks can be reconstructed in LHCb?

- PID helps only if we have tracks reconstructed
- Look to minimum bias upgrade simulation to create efficiency map
- In study we use generator level signal decays folded with reconstruction chance
 - Do not consider particles we cannot reconstruct as long tracks

Electroweak penguins

Interesting tensions with run 1 data

Several measurements could be tested

- Angular analysis
- Lepton universality tests
- Check which of these has larger fraction of low momentum tracks to find one which will benefit significantly

Electroweak penguins

- Reasonably large amount of signal has low momentum kaon
- Effect will depend on q² but we should benefit over whole q2 range
- Need to look carefully how angular efficiency and mis-ID rate will go
- There seems to potential for gain

$B_s \rightarrow K\mu\nu$ and $\Lambda_b \rightarrow p\mu\nu$

- Decay to measure |V_{ub}|
- Most precise determinations in high q² region where LQCD performs its calculations
- **There was measurement with** Λ_b but not yet with B_s (ongoing)
- In Λ_b proton momentum > 15 GeV because of PID performance
 Possible improvements in both cases with better PID at low momenta

$B_s \rightarrow K\mu\nu \text{ and } \Lambda_b \rightarrow p\mu\nu$

Check how many kaons/protons we have with p<10/12 GeV
For protons should probably go bit higher
At high q² possible impact is quite large
Need to fold in PID (both RICH and TORCH) and also what happens to muon

Pentaquarks

- Pentaquarks generated considerable interest
 Efficiency varies across phase-space
- Decreasing this variation can significantly improve result
- Full amplitude fit is probably beyond this study, but model independent version of this analysis is reasonably simple
- Search for prompt production in J/ψp important to build full understanding of the states

Pentaquarks

- Potentially large fraction of decays have K or p with momentum below 10 GeV
- Proton-kaon separation also important for correctly assigning tracks
- With better low moment PID, increase in efficiency, decrease swaps and possibly more uniform efficiency across Dalitz plot

Other physics to look at

Flavour tagging strongly depends on PID (dominantly kaon)
 Possible options to evaluate its performance

- B_s→KK: interesting for studies of CKM phase parameter in loop decay
- $B_s \rightarrow D_s K$: Used to determine CKM angle γ
- B_s→KK has simpler time dependence, but B_s→D_sK can potentially benefit more
- Needs some thinking how to do this, might need to wait for TORCH in Gauss
- □ Weak decay of D_{sJ} →p pbar π
 - Having two protons from D_{sJ} leads to many low momentum protons
 - PID will be main handle to suppress background

Summary

- Initial look to which channels are useful for building more detailed physics case for TORCH
- What I have showed is start rather than end product

Next step:

- Properly fold in PID efficiencies to the study (possibly should be quick)
- Start to look for backgrounds and replicate measurements in toy studies
- Full simulation within LHCb
 - Did started on incorporating TORCH into Gauss (hopefully geometry can be done within next two weeks)
 - Start to prepare code to simulate TORCH in Gauss