LHCb future upgrade: RICH software status

LHCb workshop: Annecy

Many people in RICH group including

Chris Jones, Floris Keizer, Steve Wotton, Michele Blago, Sajan Easo, Carmelo D'Ambrosio et.al.

S.Easo 23-03-201¹8

Cope with high occupancy expected in Phase2

- Phase 1a and 1b: nominal v=7.6
- phase2 onwards : nominal v=35 : RICH1 > 100 % occupancy

Upgrade the coverage at low and high momenta

- No signal from Kaons < 9.3 GeV/c and Protons < 18 GeV/c : Many charged tracks in this range
- Above ~ 70 GeV/c close to saturation from all particle types

Approaches to improve LHCb-RICH

- Mitigate occupancy: Use the space and time coordinates of hits : status report
 - Separate out hits from multiple PV
 - Reduce background in RICH
 - Needs new photon detectors and readout with fast timing
- Improve resolutions and yield :
- Extend the momentum coverage :
 - Develop novel radiators ۲

status report

status report

- Improve conventional radiators? ۲
- TORCH
- This presentation: Three status reports listed above \geq

Technical Issues

 Using SiPM means having much more channels compared to MaPMT. To label all of them needs a 64-bit word (for RichSmartID). Using dedicated 'branches' of LHCb software and databases and running on the grid Chris, Marco Adinolfi et.al.

- The 64-bit RichSmartID is also used to store and access the RICH Time information , for now.
- RICH needs a tracking detector to go with it, for simulation and reconstruction.
 Possibility to re-install 'cheated tracking' in reconstruction, to predict phase2 RICH performance ?
- RICH PID reconstruction is optimized for the standard configurations. Non-standard inputs normally seem to require detailed review.

Opel Mokka 1.4 turbo

• PV Time simulated in Gauss using a Markov chain sampler

Chris, Floris

RICH Hit Time Window

- Nominal background from out of 'time window' hits : RICH2 ~ 10% and RICH1 ~ few percent
- For test, artificially increase RICH2 background 10 times.

Black: standard phase1a

Red: Increased background, Green: Increased background+ Time Window

- Other similar tests underway also
- Superpose 5 RICH events to study the effect of pile-up at high luminosity

Towards RICH PID with Time

Chris, Floris

Nominally, $C = d_{track} / \beta c + d_{seg} \frac{n \cos \theta_c}{c} + d_{photon} \frac{n}{c}$ = 13.6 ns for RICH1, 52.95 ns for RICH2 $\beta = \frac{p}{\sqrt{p^2 + m^2}}$

Towards RICH PID with Time

• Obtain Time and Z shifts of PV from MC. Subtract this from RICH Time

- Peak at zero from signal (Correct combinations of Track and RICH hit)
- Gaussian backgrounds (from all other combinations)
- Next step : Extend the likelihood algorithm to include the time information

Probability distribution function : Eqn 18	of LHCb/98-040 RICH
$f_{h_j}(heta) \propto rac{1}{\sigma(heta)} \exp\left[-rac{(heta - heta_c(h_j))^2}{2\sigma^2(heta)} ight]$ (current)	
$f_{h_j}(\theta) \propto \frac{1}{\sigma(\theta)} \frac{1}{\sigma(t)} \exp\left[-\frac{(\theta - \theta_c(h_j))^2}{2\sigma^2(\theta)} - \frac{(t - t_{exp})^2}{2\sigma^2(t)}\right]$	(incl. time)

• Work in progress to implement and evaluate this from Brunel

Chris, Floris

Improve resolutions and yields

Phase-la upgrade Future upgrade options Black: Typical MaPMT Red : SiPM

Green: Photonics HPD prototype

- Slightly improved "green MaPMTs" available now from Hamamatsu
- SiPM-PDE with realistic "fill factor" under review. This may potentially affect the height of the red plot.
- SiPM gives better PDE than the QE of MaPMT photocathodes

RICH1 : A geometry option

Sph.Mirror ROC=3800 mm tilt ~ 140 mrad Flat mirror in acceptance

Phase-1a Upgrade: Sph. Mirror ROC=3650 mm tilt ~ 258 mrad

- Uses of light weight flat mirrors, which are more expensive than glass mirrrors
- The proposed geometry may require changing the magnetic shielding structure to get enough space inside the shielding.
- With SiPM, the shielding requirements are less stringent than those of MaPMTS

Resolutions, yields : RICH1

RICH1	Overall mrad	Chromatic mrad	Emis. Pt. mrad	Pixel mrad	Yield	ν	RICH1 Peak Occupancy	
Current	1.60	0.84	0.76	1.04	32	7.6	SiPM: 3.1 %	
Phase-1 upgrade Reference	0.78	0.57	0.36	0.45	41.2	35 SiPM : 14.3 %		
QE of SiPM	0.59	0.13	0.35	0.45	41.4			
QE of SiPM + Geometry modif.	0.44	0.12	0.10	0.43	30			
SiPM (QE+ pixel) + Geometry modif	0.22	0.12	0.10	0.15	35	SiPM with 1 mm pixel size used		
QE of Green HPD	0.61	0.18	0.34	0.46	19.4			

- Resolutions from particle gun events, for illustration
- A cut-off at 400 nm when using SiPM QE

Const. ~0.4 mrad New RICH related σ < Const

Resolutions, yields : RICH2

RICH2	Overall mrad	Chromatic mrad	Emis. Pt. mrad	Pixel mrad	Yield
Current	0.65	0.48	0.27	0.35	24
Phase-1 upgrade Reference	0.45	0.31	0.26	0.20	23
QE of SiPM	0.36	0.16	0.22	0.20	21
SiPM (QE+ pixel)	0.28	0.16	0.22	0.07	24
QE of Green HPD	0.37	0.18	0.24	0.20	10

- Resolutions from particle gun events, for illustration
- Quoting the values for small MaPMT (*R13742*), as an example here for the SiPM options
- A cut-off at 400 nm when using SiPM QE
- Plan to improve the geometry of RICH2 also so that New RICH2 σ < New RICH1 σ

Resolutions: Brunel

• B-events in Brunel:

- Overall resolution dominated by tracking resolution in RICH1 and RICH2, when using SiPM
- Work in progress to upgrade PID algorithm to use SiPM+Geometry in Brunel

Limitations of current radiators

- No good material to cover the full momentum range 1 10 GeV/c
- No Cherenkov photons produced by kaons below 9.3 GeV/c and protons below 17.7 GeV/c. Lot of the LHCb charged tracks are in this momentum range.

- Above 10 GeV/c we use large gas radiators which take up lot of valuable detector space. It would be desirable to have thin radiators
- Electron identification essentially impossible above a few GeV/c

Potential solutions

- Various solutions being discussed and pursued
- The approach discussed here is expected to be complementary to other solutions
- General idea:
 - Assemble materials to produce desired 'effective refractive index'
 - Design photonic crystals from transparent dielectrics
- Salient Features:

- Thickness of each layer is similar in magnitude to photon wavelengths.
- The 1d crystals with layer thickness of few hundred nanometers can be made on large scale.
- The production of Cherenkov photons from these crystals already shown in theory and experiments
- Simulations using FDTD (Finite Difference Time Domain) method and COMSOL framework available

Ref: backup slides

Simulations

FDTD: Solve Maxwell's equations for 1d system in example configurations

Backward θ = 180° – Forward θ Backward θ decrease with particle velocity

Backward setup: 10200 periods with (117.3nm+78.1nm)

R&D start up with prototypes

I.Kaminer, X.Lin

- Goal: To verify the simulations of 'effective Cherenkov radiation"
- R&D work in very early stages:
 - Few 1d samples obtained from industry $PVDF \quad n_1=1.414 + PET \quad n_2=1.567$ $1024 \quad layers, each \quad with \quad 250 \quad nm \quad thickness$

Photon energy density

Summary

- Several technical issues being worked through, to use our software framework for future upgrade
- Work in progress to use the RICH Hit Time information in Brunel and upgrade the PID algorithm
- Using an SiPM based RICH detector with geometry upgrade, the RICH resolutions can be improved. Work on progress to evaluate the corresponding PID improvements
- Current radiators have known limitations. One option overcome this limitation, is to develop new radiators. Work started towards this goal.

BACKUP SLIDES

RICH1 Occupancy

SiPM (Pixel + QE)+ new geometry

Number of hits in SiPM X (100/ (25 x25))

Luminosity : phase -1 upgrade : peak SiPM occupancy ~ 3.1 %

At phase-2 upgrade: assuming v=35 and linear scaling \therefore peak SiPM occupancy ~ 14.3 %

RICH1 Occupancy

MaPMT + phase I upgrade geometry

XY Location of Rich1 Gas PMT hits on PMT Plane

Luminosity: phase -1 upgrade : peak occupancy ~ 28 %

At phase-II upgrade: assuming v=35 and linear scaling : peak occupancy ~ 129 %

Typical resolutions and yields

22

Improving resolutions, yields and occupancy

 $\sigma_{p} = \sigma_{chromatic} \oplus \sigma_{emission point} \oplus \sigma_{pixel}$

Use new photodetectors : QE augmented and shifted to larger λ	 Improve chromatic error and yield Potential candidates: SiPM and MCP
Improve optics geometry	 Improve emission point error and occupancy Use new light weight mirrors Address the space constraints around the RICH system , costs for detector plane area etc.
Improve pixel granularity	1 mm pixel size as may be achieved in SiPM
Improve readout	➢ Binary readout → 'two bits' readout in high occupancy regions (apply two thresholds)

References:

- 1. V.Ginis et.al., "Controlling Cherenkov Radiation with Transformation-Optical Metamaterials", PRL 113, 167402 (2014)
- 2. C. Luo et.al., "Cerenkov Radiation in Photonic Crystals" Science Vol. 299, Issue 5605 page 368-371 (2003)
- 3. I.Kaminer, "Photonic crystals, graphene and new effects in Cerenkov radiation", RICH2016 conference <u>http://rich2016.ijs.si/</u>
- 4. J.D. Joannopoulos et.al. "Photonic crystals : Putting a new twist on light", Nature, vol 386 (1997) page 143-149