Overview on Calorimeter Simulation for Upgrade Ib/II

Adam Davis, on behalf of the Calorimeter Upgrade Group

March 22, 2018

Introduction

- Upgrade Ib gives the opportunity to partially replace ECAL
- Provides important input into Upgrade II detector
- Simulation studies must be performed to help evaluate possible new detector capabilities

Upgrade lb/II environment

- Occupancy in ECAL will increase dramatically
- Resolution will degrade
- Can change material (smaller Molière radius) and change cell size
- Clusterization techniques can get you so far (e.g. 2×2, swiss cross)
- Can timing help to resolve the remaining ambiguities?
- Many complex considerations beyond this simple picture

Upgrade lb/II environment

- Occupancy in ECAL will increase dramatically
- Resolution will degrade
- Can change material (smaller Molière radius) and change cell size
- Clusterization techniques can get you so far (e.g. 2×2, swiss cross)
- Can timing help to resolve the remaining ambiguities?
- Many complex considerations beyond this simple picture

Upgrade lb/II environment

- Occupancy in ECAL will increase dramatically
- Resolution will degrade
- Can change material (smaller Molière radius) and change cell size
- Clusterization techniques can get you so far (e.g. 2×2, swiss cross)
- Can timing help to resolve the remaining ambiguities?
- Many complex considerations beyond this simple picture

Setting the stage

• Example: π^0 mass resolution as a function of PV in Run II simulation (from UpgradeII EOI)

Already see degradation of S/B, as well as resolution

One example of timing

- Association of clusters to PV benefits from timing
- Example: 50 interactions per bunch crossing

▶ Mean number of incorrect primary vertices giving rise to background hits reduced to 1.1 for three planes with 20 ps timing resolution

Multifold Simulation Approach

- Simultaneous development in two directions:
 - Full simulation in Geant 4
 - Fast simulation using Delphes
- Fast and full simulation have a symbiotic relationship
- Pushing both projects at once is of utmost importance
- Main questions to answer:
 - How does performance scale with occupancy?
 - How does timing influence the ability to separate signal from background, especially given HL-LHC environment?
 - What detector granularity and response maximizes the physics output while minimizing the cost?
- Goal: Dream big, understand limitations quickly

Fast feedback on physics response **Delphes** Geant Accurate parameterization of timing response, shower development and energy deposition

Geant4 Studies

- Use work by F. Dettori et al. as a starting point
- Reproduce results: change calorimeter material to W.
 From M. Röhrken
- ► Goal: have generic framework to easily interchange between detector configurations at full simulation level
 - Implement Gauss level cross-checks for compatibility between fast/full simulation
 - Provide clusterization independent of digitization conditions
 - 3. Implement generic digitization for more accurate representation of entire software chain
- Next steps
 - Have comparison for spacial and energy resolution as a function of detector type
 - Have comparison from single-particle level to complete physics event output with fast simulation
- Imperative for tuning of fast simulation

$p(e^{\pm}) = 10 \text{ GeV}$

$p(e^{\pm}) = 100 \text{ GeV}$

Delphes Simulation

- Delphes is a fully parameterized detector simulation
- Use work by B. Siddi with Delphes as a starting point
 - Start with HepMC particles produced by Gauss
 - Propagate charged particles through LHCb magnetic field
 - Apply efficiency and resolution tunings to match full simulation
 - Write protoparticles directly to the TES
- Extension to neutral protoparticles straightforward
- Use Delphes calorimeter towers as building blocks to make current LHCb calorimeter as proof of principle
- Parameterize energy deposits in neighboring cells
- ► Next steps: Have full chain tested using $B_s^0 \to \phi \gamma$

Energy Resolution: $\sigma(E) = \frac{\alpha}{E} \oplus \beta$

Spacial Resolution $\delta(\cos\theta)$

Future plans

- With full and fast simulations at hand, begin comparing physics output for different use cases
- Define benchmark physics comparison cases, to name a few

Channel	Use Case
π^{0} inclusive	test merged/resolved π^0 resolution
$B_s^0 o \phi \gamma, \phi o K^+ K^-$	single γ resolution studies
Ke^+e^- aka $R(K)$	di-electron, higher momentum
$D_s o \phi \pi, \phi o e^+ e^-$	di-electron, lower momentum
$B^+ o K^+ \pi^0$	single π^0 , high momentum
$D^{*0} \to D^0 \pi^0, D^0 \to K^- \pi^+$	single π^0 , low momentum

Goal: Provide meaningful metrics to help advise on detector choices

Further down the road

- Possible applications of ML techniques to inform
 - Enhanced cluster reconstruction
 - Detector layout optimization
- ► From A. Ustyuzhanin

Muon Shield Design Case (an example)

Andrey Ustyuzhanin 1

D21 901 (111)

Cluster reconstruction with ML

Well-understood problem:

> Energy Resolution, Particle Identification

Things to undestand:

- > Additional design constraints? Pileup?
- > Physics channels? Are there any baselines?
- > Parametrized detector model (DELPHES/GEANT)?

Challenges:

- > Metric that naturally combines physics and cost
- Include Timing
- > Is it possible to optimize for design and algorithm simultaneously?

Andrey Ustyuzhanin

Can something similar be done for the ECAL?

http://iopscience.iop.org/article/10.1088/1742-

- Topics require defined metric
- ▶ Full and fast simulation maturity is a prerequisite

14

performance (muon background).

Conclusions and looking forward

- A lot of work has been done to bring fast and full simulations up to speed
- Real work is just beginning, but we are closing in on tackling physics goals
 - Geant level studies has framework defined. Incorporation of differing geometries next hurdle
 - Delphes studies are progressing towards completion
 - Down the road, possible ML optimization of clusterization and detector design
- More help is always welcome

Backup Slides