$b \rightarrow c l v$ review (theory)

Stefan Schacht

Università di Torino \& INFN Sezione di Torino

3rd Workshop on LHCb Upgrade II

Laboratoire d'Annecy de Physique des Particules
Annecy, France, 21-23 March 2018

Status of $\left|V_{c b}\right|$

- $V_{c b}$ plays an important role in the Unitarity Triangle.
\Rightarrow We want to overconstrain the triangle as a new physics test.
- $V_{c b}$ goes into the prediction of ε_{K} via

$$
\varepsilon_{K} \propto x\left|V_{c b}\right|^{4}+\ldots
$$

- $V_{c b}$ goes into the predictions of flavor changing neutral currents.
- The ratio

$$
\left|\frac{V_{u b}}{V_{c b}}\right|
$$

directly constrains one side of the Unitarity Triangle.
Status: HFLAV $V_{c b}$ averages

$$
\begin{array}{lll}
\left|V_{c b}\right|=(42.19 \pm 0.78) \cdot 10^{-3} & \text { from } & B \rightarrow X_{c} l v \\
\left|V_{c b}\right|=\left(39.05 \pm 0.47_{\mathrm{exp}} \pm 0.58_{\mathrm{th}}\right) \cdot 10^{-3} & \text { from } & B \rightarrow D^{*} l v \\
\left|V_{c b}\right|=\left(39.18 \pm 0.94_{\mathrm{exp}} \pm 0.36_{\mathrm{th}}\right) \cdot 10^{-3} & \text { from } & B \rightarrow D l v
\end{array}
$$

Status of Lepton Flavor Universality Violation in $b \rightarrow c l v$

[HFLAV 1612.07233v3 and update FPCP 2017]

Semileptonic B decays

- Allow for the determination of $V_{c b}$ and $V_{u b}$.
- Exclusive analyses look at specific final states, e.g., $X=D, D^{*}, \pi, \rho$.

Lattice $+\operatorname{Exp}$ fit for $B \rightarrow D l v$

- Data + lattice beyond zero recoil allow good form factor determination.
- Including S_{1}, important for $R(D)$.

Good consensus of theory predictions for $R(D)$

Ref.
$R(D)$
0.407(39)(24)

Experiment [HFLAV update]
2018: Calculation of soft photon corrections
[de Boer Kitahara Nisandzic 1803.05881]

2016/17 theory results, using new lattice and exp. data:
[Bigi Gambino 1606.08030]
0.299(3)
2.4σ
[Bernlochner Ligeti Papucci Robinson 1703.05330]
[Jaiswal Nandi Patra 1707.09977]
0.299(3)
2.4σ
0.302(3)
2.3σ
2012 theory results:
[Fajfer Kamenik Nisandzic 1203.2654]

$0.296(16)$	2.3σ
$0.296\binom{8}{6}(15)$	2.3σ
$0.305(12)$	2.2σ

Recent (preliminary) Belle data for $B \rightarrow D^{*} l v$

- First time w and angular deconvoluted distributions independent of parametrization.
\triangle Possible to use different parametrizations.

$$
w=\frac{m_{B}^{2}+m_{D^{*}}^{2}-q^{2}}{2 m_{B} m_{D^{*}}}, q^{2}=\left(p_{B}-p_{D^{*}}\right)^{2}
$$

Model independent form factor parametrization

Boyd Grinstein Lebed parametrization

$$
\begin{aligned}
f_{i}(z) & =\frac{1}{B_{i}(z) \phi_{i}(z)} \sum_{n=0}^{\infty} a_{n}^{i} z^{n} \\
z & =\frac{\sqrt{1+w}-\sqrt{2}}{\sqrt{1+w}+\sqrt{2}}, \quad w=\frac{m_{B}^{2}+m_{D^{*}}^{2}-q^{2}}{2 m_{B} m_{D^{*}}} .
\end{aligned}
$$

- $0<z<0.056$ for $B \rightarrow D^{*} l v \Rightarrow$ truncation at $N=2$ enough, $z^{3} \sim 10^{-4}$.
- $B_{i}(z)$: "Blaschke factor": removes poles.
- $\phi_{i}(z)$: phase space factors.
- Limit of massless leptons:

3 form factors V_{4} (vector), A_{1} and A_{5} (axial vector).

- Massive lepton $m_{\tau} \neq 0$: additional form factor P_{1} (pseudoscalar).

Form Factor Basis for $B^{(*)} \rightarrow D^{(*)}$

	$B \rightarrow D$	$B \rightarrow D^{*}$
$V, 1^{-}$	V_{1}	V_{4}
$A, 1^{+}$	-	A_{1}, A_{5}
$S, 0^{+}$	S_{1}	-
$P, 0^{-}$	-	P_{1}
	$B^{*} \rightarrow D$	$B^{*} \rightarrow D^{*}$
$V, 1^{-}$	V_{5}	$V_{2}, V_{3}, V_{6}, V_{7}$
$A, 1^{+}$	A_{2}, A_{6}	A_{3}, A_{4}, A_{7}
$S, 0^{+}$	-	S_{2}, S_{3}
$P, 0^{-}$	P_{2}	P_{3}

Commonly used ratios with A_{1}

$$
R_{0}=\frac{P_{1}}{A_{1}}, \quad R_{1}=\frac{V_{4}}{A_{1}}, \quad R_{2}=\frac{w-r}{w-1}\left(1-\frac{1-r}{w-r} \frac{A_{5}}{A_{1}}\right) .
$$

Unitarity Constraints

- Use dispersion relations to relate physical semileptonic region

$$
m_{l}^{2} \leq q^{2} \leq\left(m_{B}-m_{D}\right)^{2}, \quad q^{2} \equiv\left(p_{B}-p_{D^{*}}\right)^{2}
$$

to pair-production region beyond threshold

$$
q^{2} \geq\left(m_{B}+m_{D}\right)^{2}, \quad \text { with poles at } q^{2}=m_{B_{c}}^{2} .
$$

- Constrain form factors in pair-production region with pert. QCD.
- Translate constraint to semileptonic region using analyticity.

(Weak) Unitarity Conditions

- Vector current: $\sum_{i=0}^{\infty}\left(a_{n}^{V_{4}}\right)^{2} \leq 1$.
- Axial vector current: $\sum_{i=0}^{\infty}\left(\left(a_{n}^{A_{1}}\right)^{2}+\left(a_{n}^{A_{5}}\right)^{2}\right) \leq 1$.

Additional Theory Information on Form Factors

2 unquenched Lattice QCD (LQCD) results
$A_{1}(1)=0.906(13)$ [FNALMLLC 1403.0635] $\quad A_{1}(1)=0.895(26)$ [HPQCD 1711.11013]
Average $A_{1}(1)=0.904(12)$: \quad Normalization for $\left|V_{c b}\right|$ extraction
Light Cone Sum Rules (LCSR)
$A_{1}\left(w_{\max }\right)=0.65(18), \quad R_{1}\left(w_{\max }\right)=1.32(4), \quad R_{2}\left(w_{\max }\right)=0.91(17)$.

Heavy Quark Effective Theory and QCD sum rules (HQET)

[Bernlochner Ligeti Papucci Robinson 1703.05330, Caprini Lellouch Neubert hep-ph/9712417, Luke Phys.Lett B252,447 (1990),
Neubert Rieckert Nucl. Phys. B382, 97 (1992) Neubert hep-ph/9306320, Ligeti Neubert Nir hep-ph/9209271, 9212266, 9305304]

- Important constraints for all $B^{(*)} \rightarrow D^{(*)}$ form factors.
- In the heavy quark limit $m_{c, b} \gg \Lambda_{\mathrm{QCD}}$ all $B^{(*)} \rightarrow D^{(*)}$ form factors either vanish or are proportional to 1 Isgur-Wise (IW) function.
- NLO corrections at $O\left(\Lambda_{\mathrm{QCD}} / m_{c, b}, \alpha_{s}\right)$ known, expressible with 3 subleading IW functions, which are extracted using QCDSRs.

How large are the theoretical uncertainties due to
unknown NNLO corrections, $O\left(\alpha_{s}^{2}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{c, b}^{2}}, \alpha_{s} \frac{\Lambda_{\mathrm{QCD}}}{m_{c, b}}\right)$?

- Reliable estimate from NLO corrections complicate: At zero recoil several form factors protected from NLO power corrections through Luke's theorem
- Protection does not apply to NNLO corrections.
- The form factors which are not protected by Luke's theorem do have NLO corrections up to 60%.

$$
\begin{align*}
& \frac{V_{6}(w)}{V_{1}(w)}=1.0 \tag{LO}\\
& \frac{V_{6}(w)}{V_{1}(w)}=1.58(1-0.18(w-1)+\ldots) \tag{NLO}
\end{align*}
$$

Compare LQCD and HQET+QCDSR results: Difference from beyond NLO corrections

$$
\begin{array}{ll}
\left.\frac{S_{1}(w)}{V_{1}(w)}\right|_{\mathrm{LQCD}} \approx 0.975(6)+0.055(18) w_{1}, & \left.\frac{S_{1}(w)}{V_{1}(w)}\right|_{\mathrm{HQET}} \approx 1.021(30)-0.044(64) w_{1} \\
\left.\frac{A_{1}(1)}{V_{1}(1)}\right|_{\mathrm{LQCD}}=0.857(15), & \left.\frac{A_{1}(1)}{V_{1}(1)}\right|_{\mathrm{HQET}}=0.966(28) \\
\left.\frac{S_{1}(1)}{A_{1}(1)}\right|_{\mathrm{LQCD}}=1.137(21), & \left.\frac{S_{1}(1)}{A_{1}(1)}\right|_{\mathrm{HQET}}=1.055(2), \quad\left(w_{1}=w-1\right)
\end{array}
$$

\Rightarrow Deviations of 5\%-13\%.
Taking everything into account
NNLO corrections as large as $O(10 \%-20 \%)$ are natural. They cannot be neglected for robust tests of the SM and reliable extractions of $V_{c b}$.

Strong Unitarity Constraints and HQET Input

- Use HQET information on further $b \rightarrow c$ channels:

$$
B \rightarrow D, B^{*} \rightarrow D, B^{*} \rightarrow D^{*} \text {, to relate them to } B \rightarrow D^{*}
$$

- Make the unitarity bounds stronger:

$$
\sum_{i=1}^{H} \sum_{n=0}^{\infty} b_{i n}^{2} \leq 1 . \quad \text { for } S, P, V, A \text { currents }
$$

- Vary QCDSR parameters + higher order corrections: obtain many different unitarity bounds.
- Take their envelope as side condition in the fit.

Allowed regions for BGL parameters from strong unitarity constraints

Different Method: Use strong unitarity/HQET to eliminate parameters and obtain simplified parametrization
Caprini Lellouch Neubert parametrization as used in exp. analyses

$$
\begin{array}{rlrl}
h_{A_{1}}(w) & =h_{A_{1}}(1)\left(1-8 \rho^{2} z+\left(53 \rho^{2}-15\right) z^{2}-\left(231 \rho^{2}-91\right) z^{3}\right. \\
R_{1}(w) & =R_{1}(1)-0.12(w-1)+0.05(w-1)^{2}, & & R_{1}(1)=1.27 \\
R_{2}(w) & =R_{2}(1)+0.11(w-1)-0.06(w-1)^{2}, & & R_{2}(1)=0.80 .
\end{array}
$$

- Theoretical uncertainties for slope and curvature of form factor ratios R_{1} and R_{2} are set to zero.
- Relation of curvature and slope of axial form factor A_{1} is fixed to central value.
- Uncertainties on fixed parameters never included in exp. analyses.
- At current exp. precision these cannot be longer neglected.
- Also, inconsistent to fit $R_{1,2}(1)$ and fix other parameters: dependent on common underlying theory parameters.

Central values of $V_{c b}$ differ by

 3.6% (with LCSR) and 5.6% (wo LCSR) (preliminary Belle data + HFLAV average $\left.\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} l^{-} \bar{v}_{l}\right)=0.0488 \pm 0.0010\right)$[Bigi Gambino Schacht 1703.06124 and 1707.09509, "BGL weak" agreeing with Grinstein Kobach, 1703.08170]

Fit	BGL weak	BGL weak	BGL strong	BGL strong
LCSR	\times	\checkmark	\times	\checkmark
$\chi^{2} /$ dof	$28.2 / 33$	$32.0 / 36$	$29.6 / 33$	$33.1 / 36$
$\left\|V_{c b}\right\|$	$0.0424(18)$	$0.0413(14)$	$0.0415(13)$	$0.0406\binom{+12}{-13}$

Fit	CLN	CLN
LCSR	\times	\checkmark
$\chi^{2} /$ dof	$35.4 / 37$	$35.9 / 40$
$\left\|V_{c b}\right\|$	$0.0393(12)$	$0.0392(12)$

Main reason for deviation

$-\mathrm{CLN}+\mathrm{LCSR}$
$-\mathrm{BGL}+\mathrm{LCSR}$

- CLN fit has limited flexibility of slope.
\triangle CLN band underestimates all three low recoil points.
- Extrapolation near $w=1$ crucial: Lattice input for $V_{c b}$ extraction.
- CLN fit with free floating $R_{1,2}$ slopes (wo LCSR): $\left|V_{c b}\right|=0.0415(19)$.
- Intrinsic uncertainties of CLN fit can no longer be neglected.

Comparison of $R_{1,2}$ fits with HQET+QCDSR

[Bigi Gambino Schacht 1703.06124, Bernlochner Ligeti Papucci Robinson 1708.07134]
"BGL strong" without LCSR. "BGL strong" with LCSR.

- Fits for R_{2} in good agreement with HQET+QCDSR.

Same goes for R_{1} with LCSR.

- R_{1} without LCSR well compatible with HQET only at small/moderate recoil. At large w clear tension with both HQET and LCSR.
\rightarrow Fit without LCSR appears somewhat disfavored.
- Lattice will compute A_{1} and $R_{1,2}$ and settle the story.

Role of HQET relations in $V_{c b}$ extraction

(preliminary Belle data only)

STRONG HQET INPUT SMALL $V_{c b}$
 Refs.

 "practical" CLN: $\left|V_{c b}\right|=38.2(1.5) \cdot 10^{-3} \quad[1,5,6,7,8]$CLN+QCD sumrule errors $+B \rightarrow D \quad\left|V_{c b}\right|=38.5(1.1) \cdot 10^{-3}$
same + lattice at non-zero recoil $\quad\left|V_{c b}\right|=39.3(1.0) \cdot 10^{-3}$
BGL,HQET,LCSR, $B \rightarrow D$, nuisance $\quad\left|V_{c b}\right|=40.9(0.9) \cdot 10^{-3}$
BGL + strong unitarity $\left|V_{c b}\right|=40.8(1.5) \cdot 10^{-3}$ BGL + weak unitarity $\quad\left|V_{c b}\right|=41.7(2.0) \cdot 10^{-3}$
[5,6,7,8] NO HQET INPUT LARGE $V_{c b}$
[1] [Belle 1702.01521] [2] [Bernlochner Ligeti Papucci Robinson 1703.05330]
[3] [Jaiswal Nandi Patra 1707.09977] [4] [Bigi Gambino Schacht 1707.09509]
[5] [Bigi Gambino Schacht 1703.06124] [6] [HPQCD 1711.11013]
[7] [Bernlochner Ligeti Papucci Robinson 1708.07134] [8] [Grinstein Kobach 1703.08170]

Lepton Flavor Universality Violation:

$$
\text { Anatomy of } R\left(D^{*}\right) \equiv \frac{\int_{1}^{w \tau_{\tau} \max } d w d \Gamma_{\tau} / d w}{\int_{1}^{w_{\max }} d w d \Gamma / d w}
$$

Differential decay rate for $B \rightarrow D^{*} \tau \nu_{\tau}$

$$
\begin{aligned}
\frac{d \Gamma_{\tau}}{d w} & =\frac{d \Gamma_{\tau, 1}}{d w}+\frac{d \Gamma_{\tau, 2}}{d w} \\
\frac{d \Gamma_{\tau, 1}}{d w} & =\left(1-m_{\tau}^{2} / q^{2}\right)^{2}\left(1+m_{\tau}^{2} /\left(2 q^{2}\right)\right) \frac{d \Gamma}{d w} \\
\frac{d \Gamma_{\tau, 2}}{d w} & =\left|V_{c b}\right|^{2} m_{\tau}^{2} \times \text { kinematics } \times P_{1}(z)^{2}
\end{aligned}
$$

- $d \Gamma / d w$: Measured differential decay rate of $B \rightarrow D^{*} l v$ with $m_{l}=0$, depends on axial vector form factors A_{1}, A_{5} and vector form factor V_{4}.
- P_{1} : Additional unconstrained pseudoscalar form factor.
- $d \Gamma_{\tau, 2} / d w$ contributes $\sim 10 \%$ to $R\left(D^{*}\right)$.
- Common normalization/notation:

$$
R_{0}=\frac{P_{1}}{A_{1}}=1 \quad \text { in heavy quark limit } \quad[B G L, \text { hep-ph/9705252] } \quad \text { Annecy March } 2018 \quad 21 / 29
$$

Standard $R\left(D^{*}\right)$ Calculation: Normalizing P_{1} on A_{1}

- NLO HQET result for $R_{0}=P_{1} / A_{1}$. [Berrlochner Ligeti Papuci Robinson 1703.05330]
- Estimate of NNLO uncertainty as 15% of P_{1} central value (enters quadratically).
- Our result using this method and strong unitarity bounds:
- with LCSR:

$$
\begin{aligned}
R_{\tau, 1}\left(D^{*}\right) & =0.232 \quad R_{\tau, 2}\left(D^{*}\right)=0.026 \\
R\left(D^{*}\right) & =0.258(5)\binom{+8}{-7}=0.258\binom{+10}{-9}
\end{aligned}
$$

- without LCSR:

$$
\begin{aligned}
R_{\tau, 1}\left(D^{*}\right) & =0.232, \quad R_{\tau, 2}\left(D^{*}\right)=0.025, \\
R\left(D^{*}\right) & =0.257(5)\left({ }_{-7}^{+8}\right)=0.257\binom{+10}{-8} .
\end{aligned}
$$

More precise: BGL expansion + enforcing a constraint at

$$
q^{2}=0
$$

Use $N=2$ BGL expansion

$$
P_{1}(w)=\frac{\sqrt{r}}{(1+r) B_{0^{-}}(z) \phi_{P_{1}}(z)} \sum_{n=0}^{2} a_{n}^{P_{1}} z^{n},
$$

with 3 unknowns $a_{0}^{P_{1}}, a_{1}^{P_{1}}, a_{2}^{P_{1}}$ and 3 constraints:

- Kinematical endpoint relation $P_{1}\left(w_{\max }\right)=A_{5}\left(w_{\max }\right)$, with fit result for $A_{5}\left(w_{\max }\right)$.
- HQET result $P_{1}(1)=1.21 \pm 0.06 \pm 0.18$.
- 1st error: Parametric NLO error.
- 2nd error: Estimate of the NNLO uncertainty as 15% of central value.
- Strong unitarity.
$\triangleleft R_{\tau, 2}\left(D^{*}\right)=0.028, \quad R\left(D^{*}\right)=0.260(5)(6)=0.260(8)$.

Comparison of Different Normalizations for P_{1}

- Dashed yellow: normalized on V_{1}, $R\left(D^{*}\right)=0.268\binom{+15}{-13}$.
- Dashed blue: normalized on A_{1}, $R\left(D^{*}\right)=0.258\binom{+10}{-9}$.
- Solid blue: zero-recoil normalization to IW function and
$P_{1}\left(w_{\max }\right)=A_{5}\left(w_{\max }\right)$, $R\left(D^{*}\right)=0.260(8)$.

Experiment [HFLAV update]

0.304(13)(7)
-
2017 theory results, using new lattice and exp. data:

[Bernlochner Ligeti Papucci Robinson 1703.05330]	$0.257(3)$	3.1σ
Our result [Bigi Gambino Schacht 1707.09509]	$0.260(8)$	2.6σ
[Jaiswal Nandi Patra 1707.09977]	$0.257(5)$	3.0σ

[Fajfer Kamenik Nisandzic 1203.2654]
[Celis Jung Li Pich 1210.8443]
[Tanaka Watanabe 1212.1878]

$0.252(3)$	3.5σ
$0.252(2)(3)$	3.4σ
$0.252(4)$	3.4σ

Due to accounting for unkown NNLO corrections, we have a larger uncertainty as present in the literature.

Fit to NLO HQET Parametrization

- Fit QCDSR parameters in HQET parametrization at $O\left(\Lambda_{\mathrm{QCD}} / m_{c, b}, \alpha_{s}\right)$ to $B \rightarrow D^{(*)} l v$ data.
- Include conservative apriori range for QCDSR parameters.
- Introduce HQET breaking in normalization through extra normalization factors which rescale form factor results to lattice input.
- Rescaling with normalization factors effectively includes higher order effects for those form factors which are calculated on the lattice.
- Of course rescaling not possible for P_{1} as no lattice result available. \Rightarrow no NNLO error included for $P_{1} \Rightarrow R\left(D^{*}\right)=0.257(3)$.

Future is Bright

Lattice

- $B \rightarrow D^{*} l v$ at non-zero recoil is on the way, preliminary results shown at Lattice 2017.
[Vaquero Avils-Casco, DeTar, Du, El-Khadra, Kronfeld, Laiho, Van de Water 2017]
- We can test HQET using lattice QCD.
- This will stabilize the fits and reduce the errors of $V_{c b}$ and $R\left(D^{*}\right)$.

More R observables for $b \rightarrow c \tau \nu$

$$
\begin{array}{rrr}
R\left(B_{c} \rightarrow J / \psi \tau v\right) & \left.R\left(\Lambda_{b} \rightarrow \Lambda_{c}^{(*)} \tau v\right)\right) & R\left(B^{0} \rightarrow D^{+} \tau v\right) \\
R\left(B^{0} \rightarrow D^{0} \tau \nu\right) & R\left(B_{s} \rightarrow D_{s} \tau \nu\right) & R\left(B \rightarrow D^{* *} \tau \nu\right)
\end{array}
$$

High Luminosity: More than just higher precision

- Extend perspective to $b \rightarrow u \tau v$.

$$
R(B \rightarrow p \bar{p} \tau v) \quad R\left(\Lambda_{b} \rightarrow p \tau v\right) \quad R(B \rightarrow \pi \tau v) \quad R\left(B_{s} \rightarrow K^{*} \tau v\right)
$$

We will need robust theory predictions for all the R 's.

Future has already started. . .

$R\left(B_{c}\right)$

$$
R\left(B_{c}\right)^{\exp }=0.71 \pm 0.25 .
$$

Theorists have to work harder: $\quad R\left(B_{c}\right)^{\mathrm{SM}}=0.25-0.28$ (range of models).
Theory of $\Lambda_{b} \rightarrow \Lambda_{c}^{(*)} \tau v$ is available

$$
\begin{aligned}
& R\left(\Lambda_{c}\right)^{\mathrm{SM}}=0.3328 \pm 0.0102 . \quad \text { [Detmold Lehner Meinel 2015] } \\
& \Lambda_{b} \rightarrow \Lambda_{c}^{*} \tau \mathcal{V}: \quad[\text { Böer Bordone Graverini Owen Rotondo Van Dyk 2018] }
\end{aligned}
$$

There's more than just R
q^{2} dependence, angular observables, τ polarization, CP violation, making use of the full decay chain.
[Tanaka Watanabe 2010, Sakaki Tanaka 2013, Hagiwara Nojiri Sakaki 2014, Bordone Isidori van Dyk 2016, Ligeti Papucci Robinson 2016, Becirevic Fajfer Nisandzic Tayduganov 2016, Ivanov Koerner Tran 2017, Alonso Camalich Westhoff 2017, ...]

Conclusions

- Belle has new data: Deconvoluted, independent of parametrization.
- Different parametrizations imply different theoretical assumptions and different treatments of theoretical uncertainties.
- They give different results for $\left|V_{c b}\right|$, also with strong unitarity.
- In view of today's exp. precision, it is important to take into account theoretical uncertainties of HQET, including $O(10 \%-20 \%)$ uncertainty from unknown corrections beyond NLO.
- This is rather accomplished using the BGL parametrization with side conditions than by simplified parametrizations.
- Reanalysis of previous Belle and BaBar data is necessary. Together with future lattice data on slopes this will conclusively settle the case.
- Results: $\left|V_{c b}\right|=40.6\binom{+1.2}{-1.3} \cdot 10^{-3}$ (with LCSRs),

$$
\begin{aligned}
& \left|V_{c b}\right|=41.5(1.3) \cdot 10^{-3} \text { (wo LCSRs), } \\
& R\left(D^{*}\right)=0.260(8) \quad \text { (with and wo LCSRs). }
\end{aligned}
$$

- The $R\left(D^{*}\right)$ anomaly is persistent, slightly reduced to 2.6σ.

BACK-UP

Angular Dependence

- Angular bins have little sensitivity to low recoil region.
- Dilute information of first bins in w spectrum.

Comparison in case of weak unitarity bounds

[Bigi Gambino Schacht 1703.06124, Bernlochner Ligeti Papucci Robinson 1708.07134]

Anatomy of numerical large NLO HQET corrections Ratios are all 1 at LO

- $B \rightarrow D^{*}$

$$
\begin{array}{ll}
\left(\frac{P_{1}(1)}{V_{1}(1)}\right)_{\text {full NLO }}=1.21 & \left(\frac{P_{1}(1)}{V_{1}(1)}\right)_{\text {only } 1 / m}=1.24 \\
\left(\frac{V_{4}(1)}{V_{1}(1)}\right)_{\text {full NLO }}=1.24 & \left(\frac{V_{4}(1)}{V_{1}(1)}\right)_{\text {only } 1 / m}=1.19
\end{array}
$$

- $B^{*} \rightarrow D^{*}$

$$
\begin{array}{ll}
\left(\frac{V_{3}(1)}{V_{1}(1)}\right)_{\text {full NLO }}=1.18 & \left(\frac{V_{3}(1)}{V_{1}(1)}\right)_{\text {only } 1 / m}=1.18 \\
\left(\frac{V_{6}(1)}{V_{1}(1)}\right)_{\text {full NLO }}=1.58 & \left(\frac{V_{6}(1)}{V_{1}(1)}\right)_{\text {only } 1 / m}=1.54 \\
\left(\frac{V_{7}(1)}{V_{1}(1)}\right)_{\text {full NLO }}=1.39 & \left(\frac{V_{7}(1)}{V_{1}(1)}\right)_{\text {only } 1 / m}=1.34
\end{array}
$$

No artifact from unfortunate adding up α_{s} and $1 / m$ corrections.

Future Scenario of Lattice Input

Future lattice fits	$\chi^{2} /$ dof	$\left\|V_{c b}\right\|$
CLN	$56.4 / 37$	$0.0407(12)$
CLN+LCSR	$59.3 / 40$	$0.0406(12)$
BGL	$28.2 / 33$	$0.0409(15)$
BGL+LCSR	$31.4 / 36$	$0.0404(13)$

- Fits including a hypothetical future lattice calculation giving

$$
\text { slope information at } 5 \%:\left.\quad \frac{\partial \mathcal{F}}{\partial w}\right|_{w=1}=-1.44 \pm 0.07
$$

- Additional theory input stabilizes the results.

