# Monolithic Active CMOS Pixel Sensors: ASICs with Integrated High Precision Particle Detection

M. Winter & Ch. Hu-Guo (PICSEL team IPHC-Strasbourg)

LHCb Workshop / LAPP / 22 mars 2018

### Contents

- Introduction on Monolithic CMOS Pixel Sensor (CPS)
- On-going R&D relevant for high luminosity pp collisions
- *Remarks/Questions addressing the specific case of the LHCb tracker*
- Summary & Outlook

SOURCES : Talks at TWEPP-17, Hiroshima-17, CERN Workshop on Instrument. Techno. (16.03.18), LHCb meeting (16.03.18) SLIDES : Ch. Parkes, M. Needham, W. Snoeys, T. Kugathasan, D. Wiedner, H. Pernegger, ...

### **Origin of CMOS Pixel Sensors**

- CMOS Pixel Sensors are derived from ASICS

   Application-Specific Integrated Circuits
  - ASICs populate every day's life: e.g. credit cards,
    - PC, cell-phones, cars, washing machines, ...
    - $\Rightarrow$  industrial mass production item (world revenue  $\sim$  several 100 billions USD/year)
  - key element: MOSFET transistors & conductive traces
    printed in **Silicon** (usually)

- C.M.O.S. = Complementary Metal Oxyde Semi-conductor
  - widespread technology for constructing integrated circuits used in microprocessors, microcontrollers, memories, etc.



Substrat type P pour MOSFET canal N Substrat type N pour MOSFET canal P



### **CMOS Technology**

- CMOS fabrication mode :
  - \*  $\mu$ circuit lithography on a substrate sliced from a crystal ingot (or *boule*)
  - \* proceeds through reticules (e.g. 21x23 or 25x32 mm<sup>2</sup>) organised in wafers

| () CREDIT CA  | RD   |       |
|---------------|------|-------|
| 1234 5678     | 8765 | 4321  |
| JOHN R SAMPLE |      | 05/15 |













### **CMOS Pixel Sensors: Main Features**

- Prominent features of CMOS pixel sensors :
  - high granularity  $\Rightarrow$  excellent (micronic) spatial resolution
  - $_\circ\,$  signal generated in (very) thin (15-40  $\mu m$ ) epitaxial layer
    - $\hookrightarrow\,$  resistivity may be  $\gg$  1 k $\Omega\cdot cm$
  - $_\circ\,$  signal processing  $\mu\text{-circuits}$  integrated on sensor substrate
    - $\Rightarrow$  impact on downstream electronics and syst. integration ( $\Rightarrow$  cost)
- CMOS pixel sensor technology has the highest potential :
- ⇒ R&D largely consists in trying to exploit potential at best with accessible industrial processes
  - → manufacturing param. not optimised for particle detection:
    wafer/EPI characteristics, feature size, N(ML), ...
- Read-out architectures :
  - 1st generation : rolling shutter with analog read-out (twin-well)
  - 2nd generation : rolling shutter with // read-out & end-of-column discrimination (twin-well)
  - 3rd generation : data driven read-out with in-pixel discrimination (synchronous/asynchronous)



![](_page_3_Figure_15.jpeg)

### **Quadruple-Well**

### **Motivation for Using CMOS Pixel Sensors**

- CPS development triggered by need of very high granularity & low material budget
- Applications exhibit(ed) much milder running conditions than pp/LHC
  - $\Rightarrow$  Relaxed speed & radiation tolerance specifications
- Increasing panel of existing, foreseen or potential application domains :
  - Heavy Ion Collisions : STAR-PXL, ALICE-ITS, CBM-MVD, NA61, FOCAL,
  - ∘ e<sup>+</sup>e<sup>−</sup> collisions : ILC, BES-3, ...
  - Non-collider experiments : FIRST, NA63, Mu3e, PANDA, ...
  - High precision beam telescopes adapted to medium/low energy electron beams :
    - $\hookrightarrow$  few  $\mu m$  resolution achievable on DUT with EUDET-BT (DESY), **BTF-BT (Frascati)**, ...
  - $_\circ~$  RECENTLY: high rate pp collisions  $\Rightarrow~$  addressing the pb of speed and radiation hardness

![](_page_4_Figure_11.jpeg)

### **Evolution of Radiation Tolerance and Hit Rate Capability**

|                                 | RHIC<br>STAR     | LHC - ALICE<br>ITS | CLIC              | HL-LHC<br>Outer Pixel | HL-LHC<br>Inner Pixel | FCC pp                             |
|---------------------------------|------------------|--------------------|-------------------|-----------------------|-----------------------|------------------------------------|
| NIEL [n <sub>eq</sub> /cm²]     | 10 <sup>12</sup> | 10 <sup>13</sup>   | <10 <sup>12</sup> | 10 <sup>15</sup>      | 10 <sup>16</sup>      | 10 <sup>15-</sup> 10 <sup>17</sup> |
| TID                             | 0.2Mrad          | <3Mrad             | <1Mrad            | 80 Mrad               | 2x500Mrad             | >1Grad                             |
| Hit rate [MHz/cm <sup>2</sup> ] | 0.4              | 10                 | <0.3              | 100-200               | 2000                  | 200-20000                          |

![](_page_5_Picture_2.jpeg)

![](_page_5_Picture_3.jpeg)

**Alpide Sensor** 

MALTA & Monopix & Atlas Pix Sensor

- Evolution of process characteristics:
  - starting material: epitaxy thickness and resistivity
  - o doping profile: from twin-well to quadruple well with burried N-doped brane
  - feature size and nb of Metal. Layers
- Today's accessible CMOS processes allow considering pp collisions at LHC
  - $\hookrightarrow$  market drives CMOS technology in a direction complying with HEP needs

### Radiation Tolerance Achieved by 2013 (AMS-0.35 process)

![](_page_6_Figure_1.jpeg)

Reminder: radiation tolerance may be enhanced in various ways: sensing node density
 (= pixel pitch), operating temperature, epitaxy resistivity & depletion, signal processing speed, etc.

### **Main Components of the Signal Processing Chain**

![](_page_7_Figure_1.jpeg)

- Typical components of read-out chain :
  - AMP : In-pixel low noise pre-amplifier
  - Filter : In-pixel filter
  - **ADC** : Analog-to-Digital Conversion : 1-bit  $\equiv$  discriminator
  - Zero suppression : Only hit pixel information is retained and transfered
  - Data transmission : O(Gbits/s) link implemented on sensor periphery
- Read-Out in general data-driven:
  - Synchronous: clock distributed over pixel array  $\Rightarrow$  Power consumption !
  - Asynchronous : no clock running over pixel array  $\Rightarrow$  increased design complexity ?
- Trade-off between conflicting parametres:
  - $\rightarrow$  pixel dimensions (precision, sensing node density), speed and power, ...

 $\rightarrow$  exploit relaxed constraints to privilege the most demanding ones !

• Thin sensitive volume  $\Rightarrow$  small signal  $\Rightarrow$  VERY LOW NOISE signal processing circuitry

### Various In-Pixel Circuitry Approaches

- Monolithic CPS integrate the complete signal creation and processing chain :
  - ⇒ SPECIFIC GLOBAL OPTIMISATION for each dedicated application
- Sensing Node  $\equiv$  key element
- Large electrodes

![](_page_8_Figure_5.jpeg)

Small electrodes

![](_page_8_Figure_7.jpeg)

- +  $\mu$ -circuits inside coll. well
- + shortened drift distance
- + extended lateral depletion
- sensing node capacitance
- $\Rightarrow$  ENC, gain, signal rise, power
- risk of X-talks betw. digital & analog  $\mu {\rm C}$

- +  $\mu\text{-circuits}$  outside coll. well
- + small capa.  $\Rightarrow$  high SNR, fast signal
- + separate ana. & digi.  $\mu$ circuits
- sizeable drift distance
- $\Rightarrow$  calls for process modif. (rad. tol.)

 "Burried" electrodes (SOI)

![](_page_8_Figure_20.jpeg)

- +  $\mu\text{-circuit}$  & sensing node in separate layers
- + adaptable sensitive vol.

⇒ special design to overcome radiation induced charge build up at interfaces

### **TowerJazz 180 nm Modified Process**

- Modified process developed in collaboration of CERN with TJ foundry, originally developed in context of ALICE ITS
- Adding a planar n-type layer significantly improves depletion under deep PWELL
  - Increased depletion volume  $\rightarrow$  fast charge collection by drift
  - better time resolution reduced probability of charge trapping (radiation hardness)
  - Possibility to fully deplete sensing volume with no significant circuit or layout changes

![](_page_9_Figure_6.jpeg)

## **Granular Monolithic CPS for LHC pp Running Conditions**

| Chip name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Technology         | CE Size* | Pixel size [µm <sup>2</sup> ] | R/O architecture | Staust          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-------------------------------|------------------|-----------------|--|
| aH18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AMS 180nm          | Large    | 56 × 56                       | Asynchronous     | Measurements    |  |
| Malta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TowerJazz          | Small    | 36 × 36                       | Asynchronous     |                 |  |
| TJ Monopix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180nm              | Small    | 36 × 40                       | Synchronous      | Submitted       |  |
| LF Monopix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LFoundry 150<br>nm | Large    | 50 × 250                      | Synchronous      |                 |  |
| Coolpix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Large    | 50 × 250                      | Synchronous      | Measurements    |  |
| LF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Large    | 50 × 50                       | Synchronous      |                 |  |
| 10mm    * CE Size = Collection Electrode Siz      Image: Collection Electrode Siz    Image: Ce Size      Image: Ce Size    Image: Ce Size      Image: Ce S |                    |          |                               |                  | mm <sup>2</sup> |  |
| ATLAS Pix 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MuPix              | MONO     | PIX, LF2 & COOLPIX            | MONOF            | PIX & MALTA     |  |
| AMS 180 nr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m                  | Lfound   | dry 150 nm                    | TowerJa          | azz 180 nm      |  |

## **ATLAS Inner Tracker Upgrade Phase 2**

Specifications for the ATLAS Inner Tracker Upgrade Phase 2 (HL-LHC)

|                                      | ALICE-LHC         | ATLAS-HL-LHC            |                  |
|--------------------------------------|-------------------|-------------------------|------------------|
|                                      |                   | Outer                   | Inner            |
| Required Time Res. [ns]              | 20 000            | 25                      |                  |
| Particle Rate [kHz/mm <sup>2</sup> ] | 10                | 1000                    | 10 000           |
| Fluence [n <sub>eq</sub> /cm²]       | >10 <sup>13</sup> | <b>10</b> <sup>15</sup> | 10 <sup>16</sup> |
| lon. Dose [Mrad]                     | 0.7               | 50                      | 1000             |

- ✓ Time resolution: fast collection by drift (<< 25 ns) → larger depletion
- ✓ High particle rate: short dead time (< 1 us)</p>
- ✓ Tolerance to non-ionizing radiation (displacement damage):
  fast collection by drift to decrease signal charge trapping probability → larger depletion
- ✓ High Q/C for power optimization:
  - High Q : less charge sharing (small cluster) → larger depletion
  - High Q : less charge sharing (small cluster) → larger depletion

### Large CPS Fabricated Recently for the ATLAS Inner Tracker

Design of two full-scale demonstrators to match ATLAS specifications for outer pixel layers :MALTA & TJ-Monopix

![](_page_12_Picture_2.jpeg)

### MALTA

Asynchronous readout architecture to reduce digital power consumption and increase hit rate capability in the matrix. No clock distribution over the pixel matrix -(power reduction)

![](_page_12_Figure_5.jpeg)

#### **TJ-Monopix**

Synchronous readout architecture. Uses the well-established column drain readout architecture (experience from LF-Monopix design)

#### ? Dead time ?

### **Test Results of Investigator Pixel Array Prototype**

![](_page_13_Figure_1.jpeg)

### **High-Voltage Monolithic CMOS Pixel Sensor**

- High Voltage Monolithic Active Pixel Sensors
- HV-CMOS technology
- N-well in p-substrate
- Reversely biased ~85V
  - O Depletion layer
  - Charge collection via drift
  - Fast <1 ns charge collection</p>
  - Thinning to < 50  $\mu$ m possible
- Integrated readout electronics

![](_page_14_Figure_10.jpeg)

#### by Ivan Perić I. Perić, A novel monolithic

pixelated particle detector implemented in high-voltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

![](_page_14_Figure_13.jpeg)

### HV-CMOS: Test Results of MuPix-7 and -8

- First large scale sensors : MuPix-7 and MuPix-8:
  - process: AMS-H18
  - triple well, no epitaxy
  - $_{\circ}\,$  thinned to 50  $\mu m$
  - light doping substrate:
    - $ho \sim$  20/80  $\Omega \cdot$ cm for MuPix-7/-8
  - $_{\circ}\,$  depletion depth:  $\simeq$  9/15  $\mu m$  for MuPix-7/-8

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

- $\circ$  pixels : 80 x 81  $\mu m^2$
- $_{\circ}\,$  fluence: 1.5  $\cdot 10^{15} \mathrm{p/cm}^{2}$  (CERN-PS)
- $_{\circ}~T_{\it op}\sim 10^{\circ}C$  ????
- response to 4 GeV  $e^+$  (DESY) 0.95
- non-ion. radiation tolerance
  after 1 yr of anealing

![](_page_15_Figure_13.jpeg)

### LHCb Tracker: Non-Uniform Radiation Load over Detection Area

- Smallest radii:
  - radiation hardness is a priority
  - ATLAS oriented CPS may be appropriate
- Medium and Large radii:
  - radiation hardness is much less demanding
  - o how to exploit this relaxed requirement ?
  - power saving becomes the priority:
    - pitch > 50  $\mu m$  complying with good det. eff. (small pixels may be grouped in larger super-pixels)
    - reduce in-pixel current?
    - etc.

![](_page_16_Figure_11.jpeg)

### **Time Remaining for Dedicated Sensor Realisation**

![](_page_17_Figure_1.jpeg)

#### • 2 different time scales

- o for 2026 : how much can one depart from designs currently under development ?
- o for 2031 : time sufficient to develop a specific sensor, possibly based on new CMOS technology & concept

### **System Integration Aspects**

#### Prominent performances driving parametres for high-resolution trackers

- track finding in dense environnement
- track momentum reconstruction (impacts track origin rec.)
- track origin (esp. for high P), if material budget low
- rejection of secondaries from interactions in det. material (esp. if detector material shrinks with new tracker)
  - $\rightarrowtail$  detector radiography
- track pointing to ECAL (electron-photon separation) and HCAL (neutral hadron showers)

#### Double-sided detection modules

 improves track reconstruction (against ghosts), pointing resolution (upstream and downstream), momentum reconstruction, station spatial resolution (30 %) and alignment

![](_page_18_Picture_10.jpeg)

- redundancy alleviates impact of detection inefficiencies (esp. after irradiation)
- possibility to combine two different sensors (< 1 ns timestamping ?)
- BUT: doubles power consumption and increases moderately (true ?) the material budget

### **CONCLUSION** and **OUTLOOK**

- $\sim$  20 yrs of Monolithic CMOS Pixel Sensors development for charged particle detection
- $\rightarrowtail$  achieved maturity allows addressing very demanding running conditions & large detection areas
  - $\Rightarrow$  relevant technological approach for pixelated trackers of O(100) m $\hat{2}$  (R&D still needed !)
- Each application calls for specific design(s), guided by realistic, comprehensive, MC simulations, accounting for global yield & system integration aspects
- On-going R&D expected to establish the possibility to realise monolithic CPS combining

< 10  $\mu m$  resolution, timestamping < 25 ns & high rad. tol. (10<sup>15</sup>n<sub>eq</sub>/cm<sup>2</sup>, 100 MRad)

- Are these sensors suited to the most exposed parts of the LHCb tracker ?  $\Rightarrow$  MC simulations should tell
- Which benefits would follow from relaxing the rad. tol. requirement on the design, to derive a sensor optimised (power !) for less exposed & largest surface of the tracker ?
- Reduced material budget associated to CPS  $\rightarrow$  double-sided stations may be of significant advantage
- Perspectives:
  - smaller feature size  $\Rightarrow$  faster & more complex (low power) circuitry for signal conditionning & transmission
  - stacked layers incorporating  $\geq$  3 CPS / station module ( $\equiv$  mini-tracker)

### **CONCLUSION** and **OUTLOOK**

- $\sim$  20 yrs of Monolithic CMOS Pixel Sensors development for charged particle detection
- $\rightarrowtail$  achieved maturity allows addressing very demanding running conditions & large detection areas
  - $\Rightarrow$  relevant technological approach for pixelated trackers of O(100) m $\hat{2}$  (R&D still needed !)
- Each application calls for specific design(s), guided by realistic, comprehensive, MC simulations, accounting for global yield & system integration aspects
- On-going R&D expected to establish the possibility to realise monolithic CPS combining

< 10  $\mu m$  resolution, timestamping < 25 ns & high rad. tol. (10<sup>15</sup>n<sub>eq</sub>/cm<sup>2</sup>, 100 MRad)

- Are these sensors suited to the most exposed parts of the LHCb tracker ?  $\Rightarrow$  MC simulations should tell
- Which benefits would follow from relaxing the rad. tol. requirement on the design, to derive a sensor optimised (power !) for less exposed & largest surface of the tracker ?
- Reduced material budget associated to CPS  $\rightarrow$  double-sided stations may be of significant advantage
- Perspectives:
  - smaller feature size  $\Rightarrow$  faster & more complex (low power) circuitry for signal conditionning & transmission
  - stacked layers incorporating  $\geq$  3 CPS / station module ( $\equiv$  mini-tracker)

#### $\Rightarrow$ MONOLITHIC CMOS PIXEL SENSORS OFFER A PROMISING FUTURE FOR LHC TRACKERS