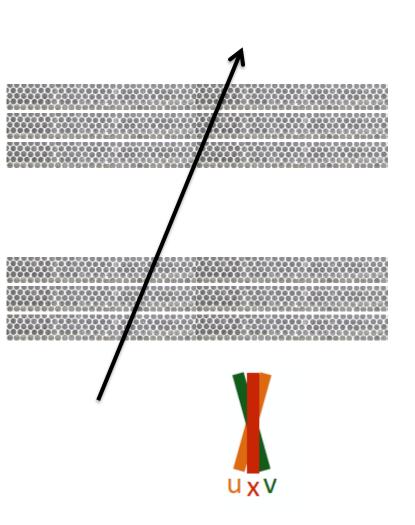


M.Bettler^a, P.Billoir^b, M.Chrzaszcz^a, C.da Silva^d, M.Durham^d, R.Greim^g, W.Karpinski^g, T.Kirin^g, M.Martinelli^e, M.M.Pikies^f
^aCERN, ^bCNRS, ^cUZH, ^dLANL, ^eEPFL, ^fPAN, ^gAachen

MOTIVATION

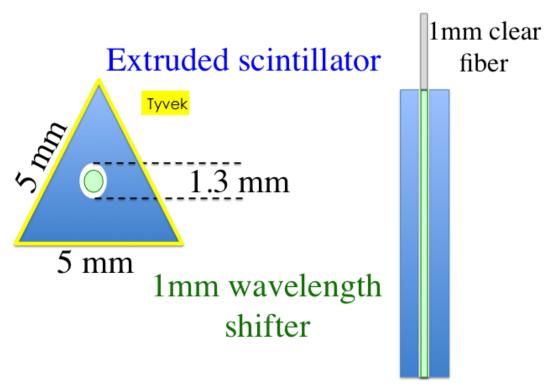


- δp/p~15%-20% for upstream tracks
- A 1mm z resolution tracker inside the magnet provides momentum resolution similar to long tracks
- See Marcin's presentation for physics possibilities

Proposed Implementation (1)

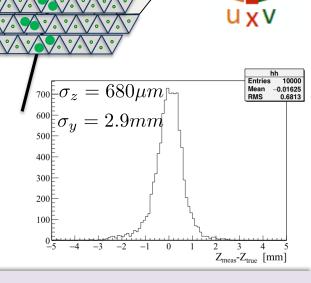
SCINTILLATING FIBERS

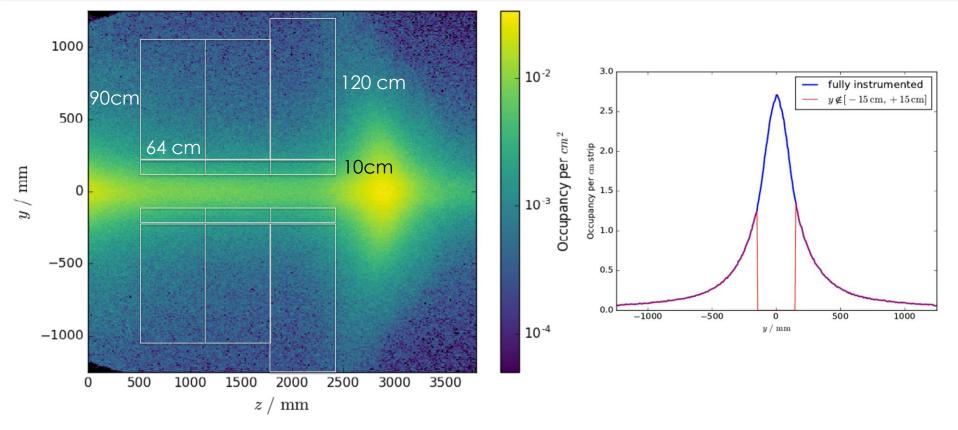
Use SciFi fiber mates (250 µm fibers)


Fiber-light guide coupling options:

- 250 μm clear fibers
- bundle fibers to 1mm clear fibers

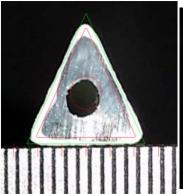
Coupling/bundling under study


Proposed Implementation (2)

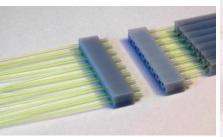


- Leverage R&D from D0 preshower
- Easier WS-clear fiber coupling
- Fewer number of channels

Suggested Segmentation

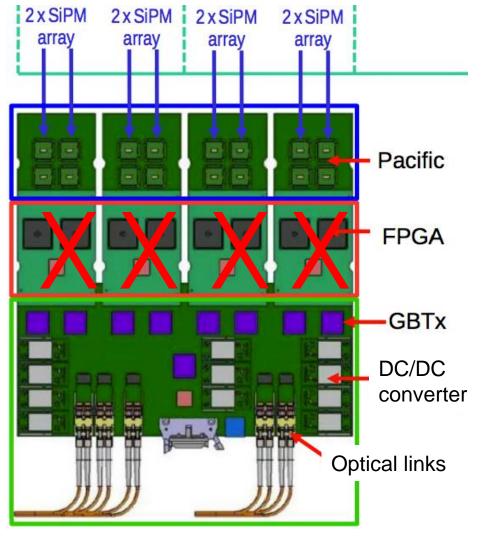


- 24 panels, could be a combination of fiber-based and bars-based panels
- < 5 % occupancy determines the location and horizontal size of the panels
- Run IV occupancies are 10x larger
- Need a simulation to have some idea about occupancies in the fiber and triangular bars
- Each panel: 128 triangular bars x 6 planes = 1536 bars/panel


R&D for triangular bars

- 500 m of triangular bars produced by Fermilab extruded scintillator factory
- smallest extruded bar ever produced in that facility, had to develop new tooling for 5mm triangular bars

 Wavelength shifter -> clear fiber -> SiPM couplers developed at LANL



- First version of SiPM array board developed at LANL
- Using 2 commercial 4x4 SiPM arrays (2x2 mm² each channel, but will change to 1.3x1.3 mm²)
- Second version with 4 SiPM arrays (64 channels) under development

Adopting SciFi electronics

NO clusterization in the cavern

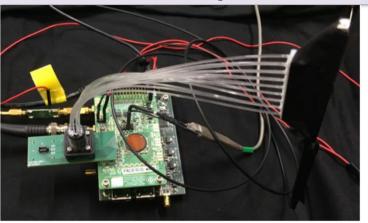
Online tracking can be done in TELL40

40 MHz x 5% occupancy = 2MHz / channel

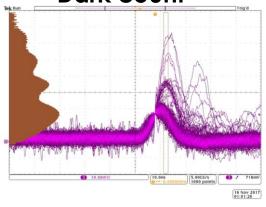
1 GBTx per 2 PACIFIC chips

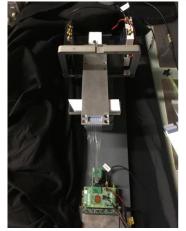
9 bits per signal (ID+2ADC bits)

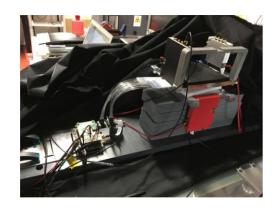
18 Mbits/s/channel

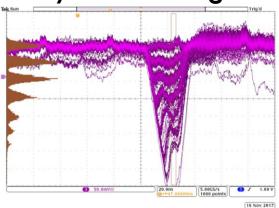

2.3 Gbits/s / GBTx chip

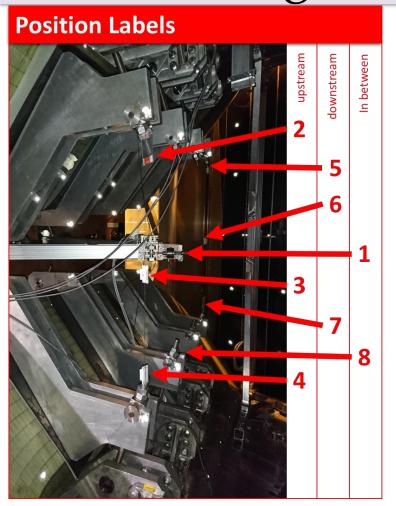
83 Gbytes/s for the entire detector


SiPMs and electronics placed in a rack on the sides of the magnets: 10⁻⁴ less radiation than in SciFi


Tests w/ PACIFIC in Heidelberg

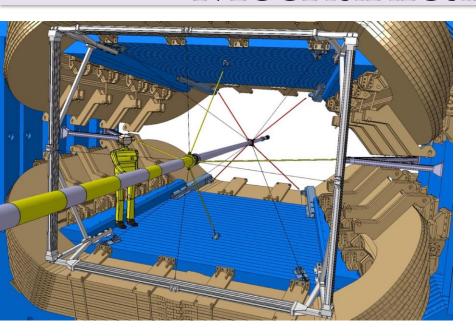


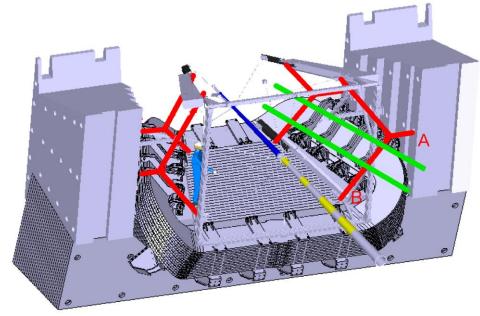

Dark count



- All channels worked
- Dark count signal shaping and gain same as SciFi
- Signal from Sr⁹⁰ close to saturation, but using very short clear fibers
- Observed cosmics, but needs a long run and longer bars (in preparation at LANL)

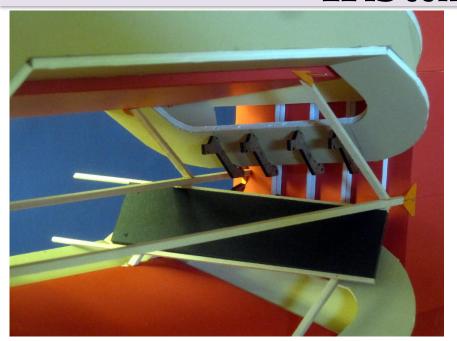
Magnet Dosimetry

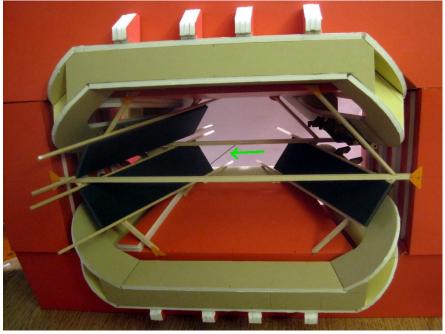



Do	sim	ete	ers re	ead (out	in T	S2 2	2017	(Se	
The	accı	ımulc		ose co				integr	ated	
luminosity of 0.9512 fb ⁻¹										
	ID	Label	Alanine Dose [Gy]	Simulation Dose [Gy]	Ratio Sim/Al	x [cm	y] [cm	z n] [cm		
	16211	1	39	79	2.03	190	-3	525		
	16212	2	18.4	48	2.61	172	42	458		
	16213	3	129.1	140	1.08	172	-1	458		
	16214	4	16.6	47	2.83	172	-42	458		
	16215	5	8.9	18	2.34	245	67	639		
	16216	6	167.7	96	0.57	245	-1	639		
	16217	7	11.1	18	1.62	245	-67	639		
	16218	8	8	nulatio	1.89	190	-58	withir		
Fv	f	acto	r of 3 c	at the e	valuc	ıted ı	oositic	ons	fb-1	
	паро	anoi	i ioi ai	ı iilicgi	arca	101111	liosity	01 00		
	II		0.95			x	У	Z		
		EGI	pel Dose			[cm]	[cm]	[cm]		
	162 162		39			190 172	-3 42	525 458		
	162					172	-1	458 458		
	162					172	-42	458		
	162					245	67	639		
	162					245	-1	639		
	162 162					245 190	-67 -58	639 525		
	162	10 8	9	4/3.	J000	170	-30	525		

- Extruded scintillators + WS have 5% yield reduction after 10 kGy (gamma)
- clear fibers may run through top and bottom of the magnet, ~ half of radiation from center

Mechanical Structure





- Planning for installation of rails during LS II, when beam pipe and spiderweb will not be present
- Discussion with LHCb and LANL engineering teams for implementation using LANL manpower under LHCb engineering team supervision
- Still depends on approval
 - Approval of funding from DOE/US
 - LHCb upgrade team official approval of safety, design, technical details, schedule
- Must have minimal interference with schedule LSII activities

Installation

- Installation planning using a realistic 1:21 replica of the magnet in card board (vertical bars are only for the model)
- panels installed on rails, rails can fold during installation
- So far just just one conflict: one cable from spiderweb (green arrow on right)
- Connectors may allow ~1mm freedom for magnet moves when changing polarities

COST for bars

Mechanical Structure: rails and support	~50 KCHF
Fibers / bars+WS	~120 KCHF
Clear fibers	~180 KCHF
SiPM	~300 KCHF
Electronics(PACIFIC, GBTx, TELL40, etc) 10CHF/channel	~400 KCHF
Infrastructure, cooling	200 KCHF
TOTAL	~ 1.3 MCHF

SCHEDULE and Effort

- LANL is submitting a proposal to DOE in two weeks
 - Magnet Station R&D
 - Mechanical structure installation during LSII
 - 2/24 panels and corresponding electronics installed in 2022
- Mechanical structure and two panels will allow
 - Background studies
 - Occupancies
 - Aging
 - Tracking
 - Perhaps, first physics results
- Design open for new ideas, as long it fits the rails

BACKUP SLIDES

Table 1: Specifications for the Magnet Station.

N bars per panel	128×2 triangle orientations $\times 6$ planes = 1536				
position resolution	σ_z =0.68 mm, σ_y =2.9 mm				
<pre>light yield arriving the readout></pre>	9-11 photoelectrons				
N panels	$(6 \text{ short+} 6 \text{ long}) \times 2 \text{ magnet sides} = 24$				
clear fiber length	$<5 \text{ m}> \times 36.9 \text{ k channels} = 185 \text{ km}$				
N PACIFIC readout chips	576				
data streaming	$2 \text{ MHz} \times 9 \text{ bits} \times 36.9 \text{ K channels} = 83 \text{ Gbytes/s}$				
N GBTx	288				
power consumption	0.6 W × 576 chips + 1.5 W× 288 GBTx chips ~ 780 W				

May need ~300 optical fibers for data transmission